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Abstract  
Robust functional continuum regression (RFCR) is an innovation as a development of functional 
continuum regression that can be applied to functional data and is resistant to outliers. The resistance 
of RFCR depends on the applied weighting function. This study aims to evaluate the RFCR 
performance to handle outliers. We propose the various weighting functions in this evaluation, i.e., 
Huber, Hampel, Ramsay, and Tukey (Bisquare), which do not eliminate or give zero weight to observed 
data identified as outliers. This contribution is essential to determining the appropriate RFCR method 
without eliminating the outlier data. The result shows that the RFCR performance with the Huber 
weighting function is better than the others, based on the goodness of fit, consisting of the root means 
square error of prediction (RMSEP), the correlation between the actual data and the model, and the 
mean absolute error (MAE).  
Keywords: Functional data analysis; Huber weighted function; Hampel weighted function; Ramsay 
weighted function; Tukey (Bisquare) weighted function. 

 
Abstrak 

Regresi kontinum fungsional kekar (RFCR) merupakan inovasi yang merupakan pengembangan dari regresi kontinum 

fungsional yang dapat diaplikasikan pada data fungsional dan tahan terhadap outlier. Resistansi RFCR bergantung 

pada fungsi pembobotan. Penelitian ini bertujuan untuk mengevaluasi kinerja RFCR. Kami mengusulkan beberapa 

fungsi pembobotan dalam evaluasi tersebut, yaitu Huber, Hampel, Ramsay, dan Tukey (Bisquare), dengan tidak 

menghilangkan atau memberikan bobot nol pada data observasi yang teridentifikasi sebagai outlier. Kontribusi ini 

penting untuk menentukan metode RFCR yang tepat tanpa menghilangkan data outlier. Hasil menunjukkan bahwa 

kinerja RFCR dengan fungsi pembobotan Huber lebih baik dibandingkan fungsi pembobotan lain berdasarkan goodness 

of fit, yang terdiri dari root mean square error of prediksi (RMSEP), korelasi antara data aktual dan model, dan mean 

kesalahan absolut (MAE). 

Kata Kunci: Analisis data fungsional; Fungsi berbobot Huber; Fungsi tertimbang Hampel; Fungsi tertimbang 
Ramsay; Fungsi berbobot Tukey (Bisquare). 
 
2020MSC: 62J99, 62R10 
 

1. INTRODUCTION 

Functional data is often inappropriate to analyze with conventional methods due to its complex 
and dynamic nature [1]. Functional data generally includes function-shaped variables that evolve over 
time or in the context of a specific domain closely related to continuity, such as curves, spectra, or 
images. The functions are often defined in terms of time but can also be spatial locations, wavelengths, 
probabilities, and more [2]. Intrinsically, functional data is infinite-dimensional. The inherently high 
dimensionality of these data brings challenges to theory and computation, and these challenges vary 
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according to how the functional data is sampled [3]. However, high-dimensional or infinite data 
structures are a rich source of information, and there are many exciting challenges to data research 
and analysis. 

A more advanced approach is often required to generate meaningful insights when dealing with 
functional data. Some commonly used methods for functional data analysis include [4]. Functional 
Analysis involves the use of mathematical and statistical techniques specifically designed to handle 
functional data; examples are harmonic Analysis, wavelet analysis, functional principal component 
regression (FPCR), or functional partial least square regression (FPLSR) approaches [5][6]. (1) Splines 
and Basis Functions: this approach approximates the functional data with basis functions such as 
splines or wavelets; the functional data is broken down into simpler components for further analysis 
[7]. (2) Nonlinear Models and Machine Learning for highly complex data. Nonlinear models and 
machine learning techniques can extract patterns hidden in functional data, such as neural networks, 
support vector machines, or decision trees applied to functional data [8]. (3) Spatial Analysis and 
Geostatistics If the functional data is related to the spatial dimension, such as satellite or medical image 
data, spatial Analysis and geostatistics methods can be used to understand the spatial and temporal 
patterns in the data [9]. 

Analysis methods must be selected according to the structure and nature of the specific functional 
data. A combination of different analysis techniques and modeling approaches is often required to 
understand the functional data comprehensively. The robust functional continuum regression (RFCR) 
is a development of the continuum regression originated by Stone & Brooks [10]. RFCR can be applied 
to functional data and is robust, i.e., resistant to outliers.  

An outlier is an observation significantly different from the general pattern in the data and can 
affect the analysis results [11]. Outliers are only sometimes a nuisance, but sometimes they can provide 
important information or valuable insights due to the natural variability of the data [12]. One 
alternative that can deal with outliers is assigning a lower weight value to observations considered 
outliers, thus reducing their influence on the analysis results. Weighting functions help to reduce 
possible bias by proportionally decreasing the impact of outliers rather than eliminating them [13]. 
The robustness of RFCR depends on the weighting function chosen. Commonly used weighting 
functions are Huber, Hampel, Ramsay, and Tukey (Bisquare) [14]. 

Based on these weighting functions, this study will examine the performance of RFCR against 
the presence of outliers with the four weighting functions as Huber, Hampel, Ramsay, and Tukey 
(Bisquare). The weights obtained based on the criteria in each method in Table 1 will be normalized 
by adding the weight value with a constant and dividing each weight with the minimum value of a set 
of weights, with normalization it will avoid the occurrence of reduction (zero weight) as it applies to 
the Hampel and Tukey (Bisquare) weight function.  

  
2. METHODS 

This section will discuss the performance of RFCR in modeling with simulated data and will be 
applied to empirical data to illustrate the theoretical results. We evaluated the performance of RFCR 
with both data based on the goodness of fit values, namely the correlation of the observed value 

(𝑦𝑖) with the predicted value (�̂�𝑖) for each of the 𝑛 observations, root means square error of prediction 
(RMSEP) and mean absolute error (MAE) using R software: 

Correlation = 
∑(𝑦𝑖−�̅�𝑖)(�̂�𝑖−�̂��̅�)

(𝑛−1)𝑠𝑦𝑠�̂�
, 
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where 𝑠𝑦 and 𝑠�̂� are the standard deviations of the observed and estimated data, respectively. 

RMSEP = √
∑(𝑦𝑖−�̂�𝑖)

2

𝑛
, 

MAE = 
∑|𝑦𝑖−�̂�𝑖|

𝑛
. 

Table 1 shows four weighted functions: Huber, Hampel, Ramsay, and Tukey (Bisquare). It also 
shows their respective weighting function formulas, which are used for analysis. 

Table 1. Weighted Function 

No Metode Weighted Function Reference 

1 Huber 
𝒘(𝒆𝒊) = {

𝟏            𝐟𝒐𝒓 |𝒆𝒊| ≤ 𝒌
𝒌

|𝒆𝒊|
       𝐟𝐨𝐫 |𝒆𝒊| > 𝒌

 

𝒌𝟏 = 𝟏. 𝟑𝟒𝟓 

[15] 

2 Hampel 
𝒘(𝒆𝒊) =

{
 
 
 

 
 
 

𝟏                          𝐟𝐨𝐫 |𝒆𝒊| ≤ 𝒌𝟏
𝒌𝟏
|𝒆𝒊|

                 𝐟𝐨𝐫 𝒌𝟏 < |𝒆𝒊| < 𝒌𝟐

𝒌𝟏

𝒌𝟏 − |𝒆𝒊|
𝒌𝟑 − 𝒌𝟐
|𝒆𝒊|

       𝐟𝐨𝐫 𝒌𝟐 < |𝒆𝒊| < 𝒌𝟑

𝟎                   𝐟𝐨𝐫 |𝒆𝒊| > 𝒌𝟑 

 

𝑘1 = 1.7; 𝑘2 = 3.4; 𝑘3 = 8.5 

[14] 

3 Ramsay 
𝑤(𝑒𝑖) = 𝑒𝑥𝑝(−𝑘|𝑒𝑖|)    for |𝑒𝑖| < ∞ 

𝑘 = 0,3 
[16] 

4 
Tukey 

(Bisquare) 

𝑤𝑇(𝑒) = {
[1 − (

𝑒

𝑘
)
2

]
2

  for |𝑒| ≤ 𝑘

0                   for |𝑒| > 𝑘

 

𝑘 = 4.685 

[15] 

 

Where the constant 𝑘1, 𝑘2, 𝑘3 in Hampel, 𝑘 in other are called tuning constants satisfying 0 < 𝑘1 <
  𝑘2 <  𝑘3 < ∞ and 0 < 𝑘 < ∞, the residuals are given by 𝑒𝑖 = 𝑦𝑖 − �̂�𝑖. The functional continuum 
regression algorithm developed by Zhou [18] is as follows: 
 

Algorithm 1. The functional continuum regression algorithm [18] 

for (𝑝, 𝛼) in finite set do           # 𝑝 and 𝛼 ∈ [0,1) are the tuning parameters 
     for i from 1 to n do 

          if 𝑝 = 1 then 

 �̂�𝑖
(𝑝,𝛼) 

← 𝑋𝑖 − �̅�          # 𝑋𝑖 ith observation data (independent variable), �̅� mean of 𝑋, �̂�𝑖
   

estimated data 𝑋𝑖 

 �̂�𝑖
(𝑝,𝛼) 

← 𝑌𝑖 − �̅�  # 𝑌𝑖 ith observation data (dependent variable) �̅� mean of 𝑌, �̂�𝑖
   

estimated data 𝑌𝑖 

 �̂�𝑝−1,𝛼 ← 0             # �̂� model coefficient estimator     

          else 

�̂�𝑖
(𝑝,𝛼) 

← �̂�𝑖
(𝑝−1,𝛼) 

− 𝑐2. 𝑐3. �̂�𝑋(�̂�𝑝−1,𝛼)         # �̂�𝑋 the covariance estimator X, �̂� basis  
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function estimator 

 �̂�𝑖
(𝑝,𝛼) 

← �̂�𝑖
(𝑝−1,𝛼) 

− �̂�𝑝−1,𝛼(𝑋𝑖)       # �̂� conditional expected value estimator  

          end if 
     end for 

     �̂�𝑗
(𝑝,𝛼) 

, �̂�𝑗
(𝑝,𝛼)

← the jth eigenvalue and eigenfunction of �̂��̂�(𝑝,𝛼) 

     𝑎𝑗 ← 𝑐𝑜�̂� {�̂�(𝑝,𝛼), ∫ �̂�(𝑝,𝛼)�̂�𝑗
(𝑝,𝛼)

𝕋
} 

     𝑏𝑗 ← 𝑣𝑎�̂� {∫ �̂�(𝑝,𝛼)�̂�𝑗
(𝑝,𝛼)

𝕋
} 

𝑄𝑝,𝛼(𝛿) ←

{
 

 

∑
𝑎𝑗
2

�̂�𝑗
(𝑝,𝛼)

+
�̂�1
(𝑝,𝛼)

𝛿

∞

𝑗=1

}
 

 
2

{
 
 

 
 

∑
𝑎𝑗
2

(�̂�𝑗
(𝑝,𝛼)

+
�̂�1
(𝑝,𝛼)

𝛿
)

2

∞

𝑗=1

}
 
 

 
 

𝛼
(1−𝛼)

{
 
 

 
 

∑
𝑎𝑗
2𝑏𝑗

(�̂�𝑗
(𝑝,𝛼)

+
�̂�1
(𝑝,𝛼)

𝛿
)

2

∞

𝑗=1

}
 
 

 
 

𝛼
(1−𝛼)

−1

 

  

�̂�(𝑝,𝛼) ← argmin𝛿∈(−1,0)∪(0,∞) − ln𝑄𝑝,𝛼(𝛿) 

�̂�𝑝,𝛼 ←

{
 
 

 
 

∑
𝑎𝑗
2

(�̂�𝑗
(𝑝,𝛼)

+
�̂�1
(𝑝,𝛼)

𝛿(𝑝,𝛼)
)

2

∞

𝑗=1

}
 
 

 
 

1
2

∑
𝑎𝑗

�̂�𝑗
(𝑝,𝛼)

+
�̂�1
(𝑝,𝛼)

𝛿(𝑝,𝛼)

∞

𝑗=1
�̂�𝑗
(𝑝,𝛼)

 

𝑐1 ← cov̂ (𝑌,∫ 𝑋�̂�𝑝,𝛼
𝕋

) 

𝑐2 ← var̂−
1
2 (∫ 𝑋�̂�𝑝,𝛼

𝕋

) 

𝑐3 ← ∫ �̂�𝑖
(1,𝛼)

�̂�𝑝,𝛼
𝕋

 

�̂�𝑝,𝛼 ← �̂�𝑝−1,𝛼 + 𝑐1𝑐2�̂�𝑝,𝛼 

for i from 1 to n do 

�̂�𝑝,𝛼(𝑋𝑖) ← �̅� + ∫ �̂�𝑖
(1,𝛼)

�̂�𝑝,𝛼
𝕋

 

end for 

GCV(p, α) ← (n − p − 1)−2∑ {𝑌𝑖 − �̂�𝑝,𝛼(𝑋𝑖)}
2𝑛

𝑖=1    # generalized cross-validation (GCV) 

end for 

optimal(p, α) ← argminGCV
(p,α)

(p, α) 

 

We propose the algorithm for RFCR is as follows: 

1. Regress 𝑦 and 𝑦′ using the FCR method, 

2. Calculate the residuals (𝑒𝑖) for each observation based on the model obtained in  step 1, 

3. Calculate �̂�, where �̂� = 1,4826(𝑚𝑒𝑑𝑖𝑎𝑛|𝑒𝑖 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑒𝑖)|, 
4. Calculate the weight value for each observation (𝑤𝑖) based on the value of the residuals obtained 

in Step 2; the weight formulation uses Table 1. 

5. Normalize the weight value 𝑤∗(𝑒𝑖) =
𝑤(𝑒𝑖)+0,1

𝑚𝑖𝑛 (𝑤(𝑒𝑖)+0,1)
, 

6. Generate data 𝑦 and 𝑦′ as much as each weight obtained in Step 5, 
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7. Regress the generated data in Step 6 using the FCR method, 
8. Repeat Steps 2 to 7 until the value converges. The convergent value is obtained when 

|𝑒𝑛 − 𝑒𝑛−1| ≤ 0,00001 and the maximum iteration is 10. This iteration number is selected based 
on the previous simulation, and the convergent value is obtained at the 10th iteration. 
 

3. RESULTS 

3.1. Simulation Data 

In the simulated data, we assume that there are 365 independent variables, which are functions 

of 𝑠𝑖𝑛 (𝑖𝜋/45) + distribusi uniform (91,−0.1,0.1), 𝑖 = [0,90]. One response variable 𝑦𝑖 =

∑ 𝑥𝑖,𝑗
365
𝑗=1 , 𝑗 = 1, 2, . . , 𝑛, each variable has 50 replicates, and the generation data prepared are 𝑛 = 50, 𝑛 =

100, and 𝑛 = 200, and the provision of outliers that vary ( 3%, 6%, and 10%). Table 2 show the 
goodness of fit from the simulation data. Based this table, RFCR performs well when the amount of 
data increases and decreases when the percentage of outliers increases; all weighting functions 
consistently experience this. 

Table 2. Goodness of fit 

Goodness 
of Fit 

Weighted 
Function 

𝒏 = 𝟓𝟎 𝒏 = 𝟏𝟎𝟎  𝒏 = 𝟐𝟎𝟎  

3% 6% 10% 3% 6% 10% 3% 6% 10% 

RMSEP 

Huber 2,5791 3,4568 4,2168 1,7912 2,4650 3,1401 1,3224 1,8006 2,2881 

Hampel 2,6185 3,5394 4,4205 1,7877 2,4667 3,1577 1,3155 1,7943 2,2842 

Ramsay 2,5991 3,4978 4,3251 1,7893 2,4658 3,1496 1,3185 1,7973 2,2861 

Tukey (Bisquare) 2,6160 3,5320 4,3993 1,7897 2,4694 3,1603 1,3172 1,7967 2,2869 

Correlation 

Huber 0,2034 0,1883 0,2034 0,4859 0,3727 0,3056 0,5926 0,4709 0,3954 

Hampel 0,1535 0,1313 0,1538 0,4838 0,3692 0,2992 0,5926 0,4705 0,3944 

Ramsay 0,1822 0,1685 0,1859 0,4849 0,3711 0,3025 0,5927 0,4708 0,3950 

Tukey (Bisquare) 0,1607 0,1427 0,1675 0,4838 0,3693 0,2994 0,5925 0,4705 0,3944 

MAE 

Huber 1,3698 1,9227 2,6394 0,6366 0,9371 1,3429 0,4841 0,6348 0,8363 

Hampel 1,3666 1,9097 2,6035 0,6463 0,9406 1,3340 0,4969 0,6452 0,8431 

Ramsay 1,3612 1,9055 2,5998 0,6406 0,9381 1,3367 0,4897 0,6392 0,8392 

Tukey (Bisquare) 1,3622 1,9053 2,5989 0,6424 0,9369 1,3310 0,4929 0,6413 0,8395 

 

RFCR with the Huber weighting function obtained the smallest RMSEP value compared to the 
other methods when n=50 but became the largest when n increased (n=100 and n=200). On the other 
hand, the MAE value of RFCR with the Huber weighting function is the largest when n is small (n=50) 
and becomes the smallest when n=100 and n=200. Meanwhile, the correlation value obtained by 
RFCR with the Huber weighting function is consistently greater than the other methods for all n. 

Overall, the goodness of fit value of RFCR obtained for all weighting functions is similar, as 
shown in Figure 1. The graphs tend to overlap, so in this study, we apply the performance of RFCR 
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with various weighting functions when dealing with outliers. The novelty of this study is that it does 
not eliminate or give zero weight to observed data identified as outliers. 

 

 
 
 

 
 

 
 

 Figure 1. Goodness of fit of simulation data: RMSEP (top), correlation between actual data and model 
(middle), and  MAE (bottom) 
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3.2. Empirical Data 
 

The data used in this study are blood glucose data measured using invasive techniques by the 

PRODIA Laboratory of IPB Indonesia (y) and invasive techniques using the Spectroscopy-Based 

Non-Invasive Blood Glucose Detection Tool Prototype developed by the Physics and Statistics Team 

of IPB in 2019 (y'). The data sample obtained was 74 people who were the general public living in the 

IPB Bogor Indonesia neighborhood, aged 21-87 years. 

 

Figure 2. Visualization of blood glucose level data 

 

Data on blood glucose levels in this study showed the lowest value was 69 mg/dL, and the highest 

was 614 mg/dL, with an average of 140.7 mg/dL. The American Diabetes Association (ADA) divides 

blood glucose levels into three categories, namely normal (< 100 mg/dL), prediabetes (100 mg/dL - 

125 mg/dL) and diabetes (> 125 mg/dL) (American Diabetes Association 2014), so based on these 

categories, data obtained as many as 35 respondents were included in the normal category, 11 

respondents were included in the prediabetes category. There were 28 respondents included in the 

diabetes category. Data visualization is shown in Figure 1; respondents' blood glucose levels tend to 

be close to 100 mg/dL rather than above 100 mg/dL. There are eight respondents' blood sugar levels 

that are outliers, including 256 mg/dL, 258 mg/dL, 274 mg/dL, 282 mg/dL, 303 mg/dL, 319 mg/dL, 

328 mg/dL, and 614 mg/dL.  

Intensity Residual Data Visualization of intensity residual value data: A sample of 5 out of 74 

respondents in the first replication is taken so that the pattern of each respondent's data can be seen, 

as shown in Figure 3. It is evident in Figure 3 that the patterns formed are almost similar between 

respondents; it can be seen that the data patterns overlap. The amount of data generated varies 

between respondents and between replicates, so it is necessary to cut (reduce) the data to obtain the 

same amount between respondents. It replicates so that data analysis can be carried out. The cutting 

technique uses the trapezoidal rule's numerical method to determine the curve's area value. The cutting 

results show that the number of variables for each respondent for one replication is 20, so 100 

variables are received for five replications. Figure 4 shows the data visualization of the cutting results 

on the first respondent; the cutting results have a consistent pattern in each replication; the data that 

forms the peak is the 1st to 5th replication data; this result looks different from Figure 3 before cutting. 
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Figure 3. Visualization of Glucose Data from respondents 1, 2, 3, and 4 in the second repetition 

 

 
Figure 4. Visualization of area data 

The results of data analysis using the RFCR approach with the Huber weighting function obtained the 
goodness of fit value in Table 3. The RMSEP value obtained was 83.84, the correlation was 36.48%, 
and the MAE value was 48.97. We evaluate the goodness of the model through the data pattern 
formed. The estimated data obtained by the RFCR method has the same pattern as the actual data, as 
shown by the level of correlation obtained. Figure 5 shows the estimate of blood glucose using RFCR 
compare to the actual data. 

Table 3. Goodness of fit RFCR: empirical data 

RMSEP Correlation MAE 

83,84 0,3648 48,97 
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Figure 5. The estimate of blood glucose using RFCR compare to the actual data 

 
 

4. DISCUSSION 

RFCR is an improved method of FCR initiated by Zhou [18] that is resistant to outliers. The 
resistance of RFCR to outliers depends on the applied weighting function. The study of the four 
weighting functions Huber, Hampel, Ramsay, and Tukey (Bisquare) applied to FCR so that FCR 
becomes resistant to outliers and is referred to as RFCR.  

The results of the Huber weighting function show better RFCR performance than others based 
on the goodness of fit values obtained, namely RMSEP, the correlation between actual data and 
models, and MAE. This study's results align with research by Nawaz et al. [19]. Still, the novelty of 
this study is that it does not eliminate (reduce) observed data identified as outliers because, in general, 
the measurement data is relatively complex to obtain because it requires high cost and a long time, so 
it is unfortunate if the data is reduced, besides that outliers are sometimes not a disturbance but a data 
phenomenon with high variability. Thus, outliers provide important and in-depth information.  

As in the Hampel and Tukey (Bisquare) weighting functions, data reduction or zero weighting 
may show better performance, as in research by Pratiwi et al. [20]. Still, it will undoubtedly lose 
complete data. This research has the potential to be developed with other weighting functions, such 
as Andrew, Welsch, or others, as well as studies on other goodness of fit values, such as bias or mean 
square of error (MSE).   

5. CONCLUSIONS 

The simulation results show that the larger the amount of data, the RFCR performance with 
Huber, Hampel, Ramsay, and Tukey (bisquare) weighting functions increases. Still, on the contrary, it 
decreases when the percentage of outliers increases. The performance of RFCR with the Huber 
weighting function shows better results than the other three weighting functions. However, the 
difference is very small due to the normalization of the weight values obtained based on the criteria 
of each weighting function.  
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