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Abstract  
Multilevel Structural Equation Modeling (MSEM) is claimed to address hierarchical data structures and 
latent response variables, but it becomes unstable with an increasing number of levels. N-Level SEM 
(nSEM) is an SEM framework designed to handle a growing number of levels in the model. The nSEM 
framework uses the Maximum Likelihood Estimation (MLE) method for parameter estimation, which 
requires a large sample size and correct model specification. Therefore, it is essential to consider the 
necessary minimal sample size to ensure accurate and efficient parameter estimation in the nSEM model. 
This study examined how sample size affects the performance of parameter estimators in nSEM models. 
We propose a method to evaluate the effect of many environments to estimate the results of factor 
loadings and environmental variance produced by the model. In addition, we also assess the impact of 
environment size on the estimation results of factor loadings and individual variance. The results were 
then applied to actual data on student mathematics learning motivation in Depok. The findings show 
that neither the number of environments nor the size of the environment affects the performance of 
fixed parameter estimation in the nSEM model. nSEM indicates excellent performance in estimating 
environmental variance at level 2 when the number of environments increases. Conversely, increasing 
the size of the environment worsens the performance of estimating individual variance parameters. 
Overall, the nSEM framework for the latent random-intercept (LatenRI) model performs well with 
increasing sample sizes. The application data on LatenRI models show almost similar estimation results.  
Keywords: hierarchical data; latent random intercept model; multilevel structural equation modeling; 
n-level structural equation modeling. 

Abstrak 
Multilevel Structural Equation Modeling (MSEM) diklaim dapat mengatasi struktur data hierarki dan variabel 

respons laten, namun menjadi tidak stabil dengan bertambahnya jumlah level. N-Level SEM (nSEM) adalah 

kerangka kerja SEM yang dirancang untuk menangani semakin banyak level dalam model. Kerangka kerja nSEM 

menggunakan metode Maximum Likelihood Estimation (MLE) untuk estimasi parameter, yang memerlukan 

ukuran sampel yang besar dan spesifikasi model yang benar. Oleh karena itu, penting untuk mempertimbangkan ukuran 

sampel minimal yang diperlukan untuk memastikan estimasi parameter yang akurat dan efisien dalam model nSEM. 

Studi ini menguji bagaimana ukuran sampel mempengaruhi kinerja penduga parameter dalam model nSEM. Kami 

mengusulkan metode untuk mengevaluasi pengaruh banyak lingkungan dalam memperkirakan hasil factor loadings  

dan varians lingkungan yang dihasilkan oleh model. Selain itu, kami juga menilai dampak ukuran lingkungan terhadap 

hasil estimasi factor loadings dan varians individu. Hasilnya kemudian diterapkan pada data aktual motivasi belajar 

matematika siswa di Depok. Hasil menunjukkan bahwa baik jumlah lingkungan maupun ukuran lingkungan tidak 

mempengaruhi kinerja estimasi parameter tetap pada model nSEM. nSEM menunjukkan kinerja yang sangat baik 

dalam memperkirakan varians lingkungan pada level 2 ketika jumlah lingkungan meningkat. Sebaliknya, peningkatan 

ukuran lingkungan akan memperburuk kinerja pendugaan parameter varians individu. Secara keseluruhan, kerangka  
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nSEM untuk model intersepsi acak laten (LatenRI) bekerja dengan baik dengan meningkatnya ukuran sampel. Data 

penerapan model LatenRI menunjukkan hasil estimasi yang hampir serupa. 

Kata Kunci: data hirarki; model intersep acak laten; model persamaan structural multilevel; model persamaan 
structural n-level. 
 
2020MSC: 62D99 
 

1. INTRODUCTION 

Researchers often examine the relationship between a response variable and several explanatory 
variables. The most straightforward way to see the relationship between the two is through a multiple 
regression analysis with a linear model approach, with only one continuous response variable. 
However, this analysis cannot handle the complex structure of the response variable [1]. For example, 
in educational studies, the response variable is latent or cannot be measured directly and has a 
hierarchical structure. If the data has a hierarchical structure, the random effect on the response 
variable can be overcome with a linear mixed model. However, if the response variable cannot be 
observed directly, the linear mixed model and Structural Equation Model (SEM) cannot yet handle 
both response variable structures. If one of these two response variable structures is ignored, then not 
only are the parameter estimates and standard errors biased, but essential information about the 
observed phenomenon can also be lost. In addition, [2] also revealed that severe inferential errors can 
occur due to complex data analysis if it is assumed that the data was obtained based on a simple 
random sampling scheme. 

The multilevel model (MLM) or Hierarchical Linear Modeling (HLM) is proposed to analyze 
hierarchical data, where observations at the lowest level (e.g., students) are nested within units at 
another level (e.g., classes). MLM addresses aggregation bias, standard error estimation errors, and 
heterogeneity in least squares regression [3]. MLM allows researchers to separate individual and 
environmental influences [4], [5], understand intergroup diversity [6], [7], and consider hierarchical 
data structures [8]. The development of multilevel models continues to follow developments in 
methodological work that result in complex data structures. Multilevel SEM (MSEM) integrated the 
multilevel model with SEM, which was developed by Muthen [6], [9]. They proposed hierarchical 
constraints that link the parameters of the SEM model at the lowest and highest levels. The MSEM 
can become very complex, especially if it involves many hierarchy levels, variables, or relationships 
between variables. Some software for MSEM analysis has limitations on the number of levels and how 
to connect those levels. [10] overcame the limitations of the MSEM model with the TEM framework. 
This framework is claimed to be flexible with a large number of levels and complex relationships 
between variables [11], [12], [13]. The Latent Variable Random-Intercept Model (LatenRI) is one of 
the MSEM models in the nSEM framework. This model includes the influence of environmental 
random intercepts at level 2 that affect individual latent factors at level 1.  

LatenRI is a model with a reasonable complexity that affects the determination of the minimum 
sample size required. LatenRI in the nSEM framework uses the Maximum Likelihood Estimation 
(MLE) method in parameter estimation, so it needs a large sample size and the correct model 
specification [14], [15]. This study examined how sample size affects the performance of parameter 
estimators in nSEM models. The model built in this study has a split plot variance structure with a 
complexity that is still simple; namely, the model only includes random intercepts. The sample size at 
the lowest and highest level provides different performance. [16] revealed that the consideration in 
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choosing the sample size is the type and complexity of the model. The determination of the sample 
size of the multilevel model needs to pay attention to the total sample size for each level [17], [18]. 
The results of this study provide recommendations for determining the sample size that optimizes the 
performance of the nSEM model. 

2. METHODS 

2.1.  NSEM: Latent Variable Random-Intercept (LatentRI) 

NSEM is an alternative framework combining the SEM approach for cluster and longitudinal 
data [10]. TEM is also a general approach to formulate and estimate complex data relationships, such 
as model specifications that include multiple levels, cross-classified [12], or multiple memberships [19], 
coupled with complex nested structures such as partially nested and multivariate outcomes [20]. The 
equations used in nSEM to represent the model are pretty complex, so modeling uses superscripts 
and subscripts [10]. Superscripts indicate each variable and parameter level, while subscripts are, as 
usual, to reflect the variable with provisions. The modeling framework allows observed variables and 
latent variables at any level to be influenced by observed variables and latent variables at that level and 
at higher levels.  

The LatenRI model is a 2-level hierarchical model that only includes random intercepts at level 
2. The multilevel model's random intercepts are considered latent variables within the SEM 
framework, namely latent random intercept variables or single latent variables at level 2. This model 
addresses the problem of non-independence in individual observations, as individuals can be 
influenced by their environment or group. Figure 1 shows the path diagram of the latent variable 
random-intercept model (LatenRI). This model includes individual factors at level 1, measured by p 
observed variables, and influenced by environmental factors at level 2. 

 

Figure 1. Path diagram of LatentRI model 
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The scalar model from Figure 1 is expressed in equation (1). Consider 𝑦𝑝𝑖𝑗
1  is p-th observed variable 

(𝑝 = 1,2,… , 𝑃) measured at level 1 for 𝑖-th individual (𝑖 = 1,2,… , 𝑛), nested within 𝑗-th environment 

at level 2 (𝑖 = 1,2,… ,𝑚): 

Level 1   : 𝑦𝑝𝑖𝑗
1 = 𝑣𝑝

1 + 𝜆𝑝1
1,1𝜂1𝑖𝑗

1 + 𝜀𝑝𝑖𝑗
1  

Level 2 → Level 1 : 𝜂1𝑖𝑗
1 = 𝛽11

1,2𝜂1𝑗
2 + 𝜉1𝑖𝑗

1 = 1 ∙ 𝜂1𝑗
2 + 𝜉1𝑖𝑗

1 . 

The simplified of those both models is: 

𝑦𝑝𝑖𝑗
1 = 𝑣𝑝

1 + 𝜆𝑝1
1,1𝜂1𝑗

2 + 𝜆𝑝1
1,1𝜉1𝑖𝑗

1 + 𝜀𝑝𝑖𝑗
1 , (1) 

where 𝑣𝑝
1 is intercept at level 1, and 𝜆𝑝1

1,1
 is the loading factor to connected 𝑦𝑝𝑖𝑗

1  and latent variable 

𝜂1𝑖𝑗
1  for the i-th individual nested within jth environment 𝜂1𝑖𝑗

1 . 𝜂1𝑗
2  represents the random intercept 

for the 𝑗-th environment at level 2 with 𝜂1𝑗
2 ~𝑁(0,𝜓1,1

2,2). The level 1 structural error 𝜉1𝑖𝑗
1  for the 

individual latent factor is the deviation between individuals in each environment with the assumption 

𝜉1𝑖𝑗
1 ~𝑁(0,𝜓1,1

1,1). 𝜀𝑝𝑖𝑗
1  is the measurement error at level 1 (𝜀𝑝𝑖𝑗

1 ~𝑁(0, 𝜃1,1)). Equation (1) can also be 

expressed in matrix notation for all 𝑖, 𝑗 and 𝑝, namely: 

𝐲1 = 𝟏𝑚𝑛 ⊗ 𝝂1 + (𝐈𝑚 ⊗ 𝟏𝑛 ⊗ 𝚲1,1)𝛈1
2 + (𝐈𝑚𝑛 ⊗ 𝚲1,1)𝛏1 + 𝛆1, (2) 

where 𝚲1,1 is a vector of the loading factor, and 𝛈1
2 is a vector of a latent variable at level 2. 𝛏1 is a 

vector of level 1 structural error, and 𝛆1 is a vector of level 1 measurement error. 𝛾
1,1

1,2
 is a fixed 

regression coefficient with a value of 1. The Interclass Class Correlation (ICC) in the LatenIA model 
indicated the proportion of variance in the individual latent factor at level 1 that is explained by the 
random intercept of the single latent factor at level 2, namely ([21]): 

𝐼𝐶𝐶 =
𝜓1,1

2,2

𝜓1,1
2,2+𝜓1,1

1,1 .      (3) 

Equation (3) also indicates that individual variance in the underlying latent factor causes variance in 
each observation.  

Model fit indices are crucial in model selection, especially when determining the appropriate 
variance structure. The choice of the variance-covariance structure is vital in psycholinguistics, 
genetics, and medical research. Various studies highlight the importance of choosing the most suitable 
variance structure for the model under analysis [22], [23], [24]. Deviance [25], Akaike's Information 
Criterion, and Schwartz's Bayesian Information Criterion (BIC) are commonly used indices. Deviance 
is expressed as -2LL or -2 Log Likelihood, while AIC is [26]: 

𝐴𝐼𝐶 = −2𝐿𝐿 + 2𝑝,        (4) 

where 𝑝 is the number of parameters estimated by Maximum Likelihood Estimation (MLE). 
Schwartz's BIC is calculated using [23]: 

𝐵𝐼𝐶 = −2𝐿𝐿 + 𝑝 ln(𝑁), (5) 
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where 𝑁 is the sample size at level 1. AIC and BIC give a penalty on the number of covariance 
parameters estimated. These three criteria are used to select a model with a better fit, the model with 
the smallest value, even close to zero. 

2.2.  Simulation Data 

In this study, we generate simulation data from the LatenRI model, which is a model that only 
includes the random effect of the latent intercept at level 2. A 2-level model was used to examine how 
stable the model is against the sample size and the correlation between the observed variables. The 
response variables in this model were six observed variables. The parameter values are determined 
based on actual data, considering the correlation between the observed variables generated. The 
following is the simulation data-generating procedure that was carried out: 
1. Specify the nSEM model on the data to be generated, namely with the p-th observed response 

variable (𝑝 = 1,2,… , 6) on the 𝑖-th individual (𝑖 = 1,2,… , 𝑛) for each j-th environment (𝑗 =
1,2,… ,𝑚). The nSEM model specification is expressed in graphical and scalar forms in equations 
(1) or (2). 

2. Determine the values of the parameters to be estimated, namely: 
A. Level 1 Single factor: Level 1 factor loadings and intercepts 
  

𝚲1,1 =

[
 
 
 
 
 
 
 𝜆1,1

1,1

𝜆2,1
1,1

𝜆3,1
1,1

𝜆4,1
1,1

𝜆5,1
1,1

𝜆6,1
1,1

]
 
 
 
 
 
 
 

=

[
 
 
 
 
 

1
1,5
1,0
1,0
0,8
0,7]

 
 
 
 
 

 and 𝛎𝟏 =

[
 
 
 
 
 
50
50
50
50
50
50]

 
 
 
 
 

, 

B. The structural error variance of the i(j)-th latent factor at level 1: 𝛏𝑖(𝑗)
1 ~𝑁(0,𝜓1,1

1,1), with 

𝚿1,1 = 𝜓1,1
1,1 = 25, 

C. The variance-covariance matrix of the observed residuals at level 1: 𝛆1~𝑁(𝟎, 𝚯1,1) 

𝚯1,1 =

[
 
 
 
 
 
 
 𝜃1,1

1,1 𝜃1,2
1,1 𝜃1,3

1,1 𝜃1,4
1,1 𝜃1,5

1,1 𝜃1,6
1,1

𝜃2,1
1,1 𝜃2,2

1,1 𝜃2,3
1,1 𝜃2,4

1,1 𝜃2,5
1,1 𝜃2,6

1,1

𝜃3,1
1,1 𝜃3,2

1,1 𝜃3,3
1,1 𝜃3,4

1,1 𝜃3,5
1,1 𝜃3,6

1,1

𝜃4,1
1,1 𝜃4,2

1,1 𝜃4,3
1,1 𝜃4,4

1,1 𝜃4,5
1,1 𝜃4,6

1,1

𝜃5,1
1,1 𝜃5,2

1,1 𝜃5,3
1,1 𝜃5,4

1,1 𝜃5,5
1,1 𝜃5,6

1,1

𝜃6,1
1,1 𝜃6,2

1,1 𝜃6,3
1,1 𝜃6,4

1,1 𝜃6,5
1,1 𝜃6,6

1,1
]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
20 5 5 5 5 5
5 20 5 5 5 5
5 5 20 5 5 5
5 5 5 20 5 5
5 5 5 5 20 5
5 5 5 5 5 20]

 
 
 
 
 

, 

D. Across-Level Model (level 2 → level 1): Latent factor regression coefficients 
 

𝚪1,2 = [𝛾1,1
1,2] = [1], 
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E. The variance of the latent environmental factors at level 2: 𝚿2,2 = 𝜓1,1
2,2 = 30, 

3. Generate 𝑚 times data of a single latent factor at level 2: 𝛈1
2~𝑁(0,𝜓1,1

2,2), 

4. Generate 𝑚 × 𝑛 times data with a latent factor error 𝛏1~𝑁(0,𝜓1,1
1,1) at level 1, 

5. Generate 𝑚 × 𝑛 times data with measurement errors at level 1, 𝛆1~𝐍(0,𝚯1,1) for each 𝑝 

variables, 𝑝 = 1,2,… , 6, 

6. Substitute the result from steps 2 to 5 into the observed response variable 𝑦𝑝𝑖𝑗
1  in equation (1). 

2.3.  Simulation Design 

Simulation design to study the LatenRI Model on Complex Data. The simulation design aimed 
to investigate the LatenRI model on complex data, where the model includes random components 
from both individuals and environments. The specific objectives of this simulation were: 

1. To determine whether the number of environments (𝑚) affects the estimation results of factor 
loadings and environmental variance produced by the model. 

2. To determine whether the environment size (𝑛) affects the estimation results of factor loadings 
and individual variance. 

We propose a method as follows: 

1. Generate sample data, namely steps 3-6 (sub-chapter 2.2) on both models with 𝑚 environments 

and 𝑛 sample sizes per environment for a 300-data set. 
2. Generate simulation data using several variations to investigate the effect of increasing sample 

size. At this stage, there are 4 combinations of 𝑚 = (10, 25) and 𝑛 = (30, 100). 
3. Perform an nSEM analysis that includes random components of each simulated data set, resulting 

in 300 sets of parameter estimates. 
4. Evaluate the performance of the nSEM model to determine the goodness of the model's 

performance. We evaluate model using the bias and Mean Square Error (MSE) as follows: 

𝐵𝑖𝑎𝑠 = 𝐸(𝜃 − 𝜃) =
1

𝑆
∑ (𝜃 − 𝜃𝑠)

300
𝑠=1 , (4) 

and 

𝑀𝑆𝐸 = 𝐸(𝜃 − 𝜃)
2

=
1

𝑆
∑ (𝜃 − 𝜃𝑠)

2300
𝑠=1 . (5) 

2.4. The Actual Data  

We use the actual data to illustrate the LatentRI model, explicitly focusing on the motivation of 
mathematics students in Depok. The data had previously been analyzed by [27] to investigate the 
random effects of teachers on students' mathematics learning motivation. The data analysis employed 
the LatentRI model, which included the influence of random intercepts only, and LatentRI, which 
encompassed both random intercepts and coefficients. The study involved three key variables: the 
teachers' ability factor (a single endogenous variable), teacher competence (an exogenous variable at 
the teacher level), and student motivation (another endogenous variable). Two questionnaires were 
utilized as research instruments to evaluate teachers' competence and students' learning motivation. 
The study employed a stratified random sampling technique in three specific districts in Depok, 
namely Sawangan, Bojong Sari, and Limo, encompassing 11, 7, and 6 schools, respectively. The 
research utilized this sampling method to ensure that the selected sample was representative of the 
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population. Out of the 24 schools selected, 32 math teachers and 768 students participated as 
respondents.      

3. RESULTS 

Model identification in nSEM is generally similar to SEM; that is, it is based on applicable theory. 
nSEM modeling also requires initial values that affect the convergence of the resulting model. If the 
initial values we input are far from the actual parameters, the resulting parameter estimates may not 
converge. Thus, the determination of initial values is essential in this case. In addition, the sample size 
must also be considered to determine the initial value. So, it is essential to study the appropriate sample 
size to estimate the parameters of the nSEM model.  

Sample size can affect the goodness of the resulting model. Table 1 presents the goodness of fit 
for the nSEM model with various sample sizes. Based on this table, the deviance increases as the 
sample size increases. This is because the deviation calculation depends on the sample size. 

Table 1. Deviance of LatenRI model for each sample size 

Sample Size Deviance 

300 10803.335 

750 27041.469 

1000 36006.145 

2500 90049.843 

 

3.1. Fixed Effect Parameter 

The bias and MSE for the nSEM fixed parameter estimator are presented in Figure 6. Both bias 
and MSE for all fixed parameters were small or close to 0. Most of the biases produce negative values 
(underestimates). The range of bias in the parameter estimates produced was quite large for small 
numbers of observations (nj = 30) in both numbers of environments. However, the differences 
between the four sample sizes were insignificant and only ranged from -0.0056 to 0.0008. In addition, 
there was a decrease in MSE as the sample size increased for each parameter estimator. At each 
environment size, it showed good performance as the number of environments increased. This finding 
indicated that nSEM was very good at estimating the fixed parameters of the model. 

 

 

Figure 2. Graph of bias and MSE for the nSEM fixed estimator 
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3.2. Random Effect Parameter 

The performance of random parameter estimation in the nSEM model was studied based on bias 
and MSE values. Both values are presented in Figure 3. Twenty-one random measurement error 
parameters and two random structural error parameters were studied in this section. The comparison 
of bias and MSE results for each random parameter estimate showed different results than the 
previous fixed parameter estimates. The magnitude of the bias produced for all measurement error 

parameters was negative at environment size 𝑛 = 100, while for 𝑛 = 30, the bias was positive. The 
trend pattern of bias and MSE is illustrated in Figure 3(a) - (d). 

 
(a) 

 
(b) 

 
 

 
(c) 

 
(d) 

 

Figure 3. Bias and MSE for the nSEM fixed estimator (a) Bias of measurement error, (b) MSE of 

measurement error, (c) Bias of structural error, and (d) MSE of structural error 

Figure 3(a)-(b) showed that the variance-covariance matrix of measurement errors (𝚯1,1, θ𝑝𝑞 =

𝜃𝑝,𝑞
1,1

, 𝑝, 𝑞 = 1,2,… , 6 for the observed variable produces a larger bias and MSE compared to other 

variance-covariance matrices of measurement errors. In addition, the MSE for 750 sample size with 

𝑛 = 25 and 𝑚 = 30 had the smallest value among other sample sizes, while the bias was relatively 
the same. More negligible bias and MSE indicated better estimation performance. Therefore, this 
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sample size could be said to be quite optimal in estimating the variance-covariance matrix of 
measurement errors. In addition, the larger the sample, the better nSEM estimates measurement 
errors. 

The structural error variance of the second-level latent variable was also essential to examine. 

Figure 3(c) showed that the bias of these two parameters (𝜓11 = 𝜓1,1
1,1, 𝜓22 = 𝜓1,1

2,2) was relatively 

small, ranging from -1.5837 to 2.9066 for all sample sizes. The structural variance parameter at level 2 
showed a more stable bias pattern than the structural variance at level 1. Conversely, the structural 
variance parameter at level 1 showed a more stable MSE graph than the structural variance at level 2 
(Figure 3(d)). The structural variance at level 2 was quite large, ranging from 16.5418 to 240.2847. A 

sizeable individual sample size (𝑛 = 100) produced a superior MSE compared to 𝑛 = 30. 
 

3.3. Analysis of the Actual Data  

We apply the LatenRI model to the actual data about student mathematics learning motivation, 
and the analysis is shown in Table 2. This table show the random effect estimator for LatenRI model to 

actual data with sample size of 768 and 𝑚 = 32 (unbalanced environment sizes). Based on the 
simulation results, the sample size for actual data was still entirely accurate in estimating both fixed 
and random parameters. Both models produced relatively similar and significant analysis results for 
fixed and random effect parameters, except for the random coefficient estimator of teacher 
competence (95% confidence interval includes 0) [27]. Furthermore, the LatenRI model produced a 
smaller goodness-of-fit measure than the LatenRI with random coefficients. An ICC of 4.77% was 
quite good in measuring Education [10]. 

Table 2. Random effect estimator for LatenRI model 

Parameter LatentRI Model 
LatenRI Model with random 

coefficient 

 Estimate 
Confidence interval 

(CI) 95% 
Estimate 

Confidence interval 
(CI) 95% 

Fixed Effects     

Student     

Relevance (𝜆2;1
1;1) 1.360* [1.218; 1.523] 1.358* [1.216; 1.521] 

Confidence (𝜆3;1
1;1) 1.666* [1.483; 1.875] 1.669* [1.486; 1.879] 

Satisfaction (𝜆4;1
1;1) 0.743* [0.588; 0.908] 0.744* [0.589; 0.909] 

Teacher     

Personality (𝜆2;1
2;2) - - 0.477* [0.120; 0.861] 

Social (𝜆2;1
2;2) - - 1.003* [0.649; 1.417] 

Professional (𝜆2;1
2;2) - - 1.132* [0.8165; 1.5146] 

Competence (𝛽12
22) - - -0.070 [-0.0697; 0.0296] 

Random Effects     

Motivation (𝜓55
11) 0.0598 [0.049; 0.072] 00597 [0.049; 0.072] 

Teacher (𝜓11
22) 0.0030 [0.001; 0.007] 0.0027 [0.001; 0.007] 

Teacher comp. (𝜓22
22) - - 0.0943 [0.052; 0.170] 
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Table 2. (continued) 

Goodness of fit     

Latent-ICC 4.77%   

Deviance 2985.744 3017.808 

AIC 3011.744 3069.808 

BIC 3090.135 3227.652 

 

4. DISCUSSION 

The SEM research focuses on fixed effect parameters (factor loadings) to see how observed 
variables contribute to building latent factors. The contribution of observed variables also reflects the 
measurement method used to generate observed data [28]. The chosen sample size does not explicitly 
affect the performance of nSEM factor loadings. This meant that the fixed parameter estimators 
produced by nSEM were accurate and efficient for various sample size variations. However, observed 
variables with factor loadings greater than 1.0 tend to perform poorly in estimating the variance-
covariance matrix of measurement errors at the individual level. 

The bias performance was relatively small, as shown in the estimation of random parameters of 
the model at both the lowest and highest levels. However, MSE was quite strict in assessing the 
accuracy of the model. This was seen in the poor performance of nSEM under conditions of small 
sample sizes at both levels. The TEM parameter estimation process becomes more sensitive if the 
sample size is larger. The larger the number of environments, the greater the computing power 
required. Setting the initial value in nSEM, further away from the actual parameter, prevents the model 
parameter estimation from converging. Therefore, nSEM computing still needs to be developed, one 
of which is determining the initial value in its modeling. 

The sample size in LatenRI was divided into two categories: the number of environments and the 
environment size. The larger the number of environments, the more accurate it was in distinguishing 
between individuals and environments. However, in many environments, most measurement error 
parameter estimators perform poorly as the size of the environment increases. In addition, the size of 
the environment gave different results on the model's performance in distinguishing between 
individuals and environments. The larger the size of the environment, the more accurate it was in 
determining the environment, but on the contrary, it was less accurate in distinguishing individuals. 

LatenRI was used to distinguish groups accurately. The limitation of this study was that the 
number of environments evaluated was moderate. However, these findings provided enough 
information that a sufficiently large number of environments, or 25, gives more accurate results in 
distinguishing groups. This was because the size of the environment has a more significant influence 
on the performance of the nSEM model. The nSEM model with a large environment size showed 
better performance. This was also revealed by [6], who showed that the effect of sample size at the 
individual level was generally greater than the effect of sample size at the environmental level. This 
meant that increasing the individual sample size had a greater impact on the accuracy of estimation, 
detection power, and generalization of results than increasing the group sample size. With a larger 
sample size, nSEM could better detect smaller effects with higher precision. [29] revealed that the 
main problem with between-group models is producing inaccurate and inefficient parameter 
estimates, which occurs when the number of environments is small (<50) while the ICC is low. This 
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problem was overcome at least with the number of environments 100. [30] revealed that a relatively 
simple MSEM, at least 60 environments were needed to detect structural influences at the highest 
level.  

The simulation results, which emphasized the importance of sufficient sample sizes and 
environment numbers for accurate model performance, are supported by applying the LatenRI model 
to student mathematics learning motivation data. In this real-world scenario, a sample size of 768 with 
32 environments (although unbalanced) proved accurate in estimating both fixed and random 
parameters. It aligns with the simulation findings that larger sample sizes generally lead to better 
parameter estimation accuracy. Applying the LatenRI model to actual student data reinforces the 
findings from the simulation studies and demonstrates its practical utility in educational research. The 
results highlight the importance of considering both sample size and environmental numbers when 
applying LatenRI models to real-world data and suggest that simpler models might sometimes be 
preferable. 

5. CONCLUSIONS 

The number of environments and the size of the environment did not affect the performance of 
fixed parameter estimation in the nSEM model because the bias and MSE of the fixed parameter 
estimator were close to 0. However, if the factor loading was large or > 1.0, the model performance 
deteriorated in estimating the variance-covariance matrix of measurement errors at the lowest level. 
In estimating environmental variance, nSEM showed excellent performance when the number of 
environments grew. Conversely, increasing the size of the environment made the performance of 
estimating individual variance parameters worse. 

The study of MSEM in the nSEM framework still needs to be evaluated for a large number of 
environments, at least 50, while the environment size was more than 100. The nSEM framework for 
simple models (LatenRI) performs well when increasing sample sizes. For further research, we suggest 
analyzing how nSEM performs for simple and complex models. 
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