
InPrime: Indonesian Journal of Pure and Applied Mathematics 
Vol. 6, No. 1 (2024), pp. 38 – 51, doi: 10.15408/inprime.v6i1.37158 
p-ISSN 2686-5335, e-ISSN: 2716-2478 
 

* Corresponding author 
Submitted January 2nd, 2024, Revised May 20th, 2024,  
Accepted for publication May 22nd, 2024, Published Online May 31st, 2024 
©2024 The Author(s). This is an open-access article under CC-BY-SA license (https://creativecommons.org/licence/by-sa/4.0/)  

   

 
Anayo Charles Iwuji1, Ben Ifeanyichukwu Oruh2, Joy Chioma Nwabueze3, and  

Emmanuel Wilfred Okereke4 
1,3,4Department of Statistics, College of Physical and Applied Sciences,  

Michael Okpara University of Agriculture, Umudike, Nigeria 
2Department of Mathematics, College of Physical and Applied Sciences,  

Michael Okpara University of Agriculture, Umudike, Nigeria 
Email: iwuji.charles@mouau.edu.ng  

 
 

Abstract  
This study explores the joint distribution of bivariate financial returns on DJIA-S&P500 and SSE-SZSE, 
employing copulas and model selection criteria to identify the most suitable distribution. The aim is to 
estimate Conditional Tail Value at Risk (C-TVaR) at various confidence levels for portfolio risk 
management. Unlike previous studies, which typically focus on univariate analysis, this research 
examines into the joint distribution of bivariate financial returns. Additionally, it introduces the 
application of copulas and model selection criteria to determine the optimal joint distribution for 
portfolio risk assessment, offering valuable insights for financial decision-makers. Several copulas and 
model selection criteria are employed to assess the joint distribution of bivariate financial returns. By 
evaluating the minimum values of model selection criteria such as Akaike Information Criterion (AIC) 
and Bayesian Information Criterion (BIC), the Student’s t copula is identified as the most appropriate 
copula. C-TVaR estimates are then obtained at different confidence levels using the selected copula and 
various combinations of marginal distributions, namely, normal, Student's t, Cauchy, and alpha power 
transformed logistic (APTL) marginal distributions. Empirical results demonstrate that Student's t 
copula models with APTL-Student's t and APTL-APTL marginals gave the smallest expected portfolio 
losses for the DJIA-S&P500 and SSE-SZSE portfolios, respectively. These insights contribute to 
enhancing portfolio risk management strategies, particularly in assessing tail risk at different confidence 
levels. 
Keywords: Alpha power transformed logistic distribution, Bivariate copula, C-TVaR, Model selection 
criteria, Portfolio loses. 

 
Abstrak 

Studi ini mengeksplorasi distribusi bersama dari keuntungan finansial pada DJIA-S&P500 dan SSE-SZSE, dengan 

menggunakan kopula dan kriteria pemilihan model untuk mengidentifikasi distribusi yang paling cocok. Tujuannya 

adalah untuk memperkirakan Conditional Tail Value at Risk (C-TVaR) pada berbagai tingkat kepercayaan untuk 

manajemen risiko portofolio. Berbeda dengan penelitian sebelumnya, yang umumnya berfokus pada analisis univariat, 

penelitian ini menyelidiki distribusi bersama dari keuntungan finansial. Selain itu, penelitian ini memperkenalkan 

aplikasi kopula dan kriteria pemilihan model untuk menentukan distribusi bersama optimal untuk penilaian risiko 

portofolio, memberikan wawasan berharga bagi pengambil keputusan finansial. Beberapa kopula dan kriteria pemilihan 

model digunakan untuk menilai distribusi bersama dari keuntungan finansial. Dengan mengevaluasi nilai minimum 

dari kriteria pemilihan model seperti Akaike Information Criterion (AIC) dan Bayesian Information Criterion (BIC), 

kopula Student’s t diidentifikasi sebagai kopula yang paling cocok. Estimasi C-TVaR kemudian diperoleh pada tingkat 

kepercayaan yang berbeda menggunakan kopula yang dipilih dan berbagai kombinasi distribusi marginal, yaitu distribusi 

marginal normal, Student's t, Cauchy, dan alpha power transformed logistic (APTL). Hasil empiris menunjukkan 

bahwa model kopula Student's t dengan distribusi marginal APTL-Student's t dan APTL-APTL memberikan 

ekspetasi kerugian portofolio terkecil untuk masing-masing portofolio DJIA-S&P500 dan SSE-SZSETemuan ini 
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berkontribusi untuk meningkatkan strategi manajemen risiko portofolio, khususnya dalam menilai risiko ekor pada 

tingkat kepercayaan yang berbeda. 

Kata Kunci: Distribusi Alpha power transformed logistic, Kopula bivariat, C-TVaR, Kriteria pemilihan model, 
Kehilangan portofolio. 
 
2020MSC: 62H05  
 

1. INTRODUCTION 

Stock portfolio risk management is a challenge faced by financial analysts in stock portfolio 
investment. The well-known value-at-risk (VaR) and tail value-at-risk (TVaR) metrics are valuable risk 
measures stock investment analysts use. They provide the requisite information about the maximum 
expected loss for any investment in a stock index based on a given confidence level. Though different 
authors have applied the VaR and TVaR risk measures, the TVaR measure has an edge over VaR as 
it provides the expected maximum portfolio loss beyond VaR. These VaR and TVaR risk measures 
have been applied for single stock index investment and in cases of portfolio of stock investment. But 
financial analysts, however, encourage stock portfolio investment rather than for a single stock. This 
is because by spreading investment across different assets in a portfolio, the investors can diversify 
their investments and are less likely to have their portfolio wiped out like an adverse event would 
affect a single asset.  

Many researchers have modeled and estimated the TVaR of stock portfolio investment. Simulated 
TVaR estimates based on Monte Carlo for some companies listed in the LQ45 stock index at 70%, 
80%, and 90% confidence levels were proposed by [1]. Shen et al. [2] established empirical likelihood-
based estimation with high-order precision for TVaR [3] and compared the performance of 

nonparametric estimators of TVaR for varying 𝑝. They compared the empirical estimator, kernel-
based estimator, Brazauskas et al.’s estimator, tail-trimmed estimator and the filtered historical 
method. The nonparametric kernel methods were combined with extreme-value statistics to find the 
estimator for TVaR by [4]. Castaner et al. [5] estimated VaR and TVaR of insurance and financial 
companies using the normal power approximation. The precision of the approximations was checked 
with the exponential, Pareto, and lognormal distributions. The TVaR of several insurance portfolios 
consisting of several lines of risk linked by the FGM copula with exponential marginal was estimated 
by [6]. Brazauskas et al. [7] and Kaiser et al. [8] proposed point and interval estimators for TVaR and 
proved the consistency of the point estimator. Several extensions of TVaR have also been developed 
and modified by introducing a fixed boundary, instead of infinity, for values beyond the quantile (see 

[9], [10], and [11]). The works of [1] − [11] did not apply copula in the estimation of the TVaR which 
will allow the investigation of tail dependencies of the data 

Copula has been applied extensively in the modeling of stock market data because of its ability to 
combine univariate volatility models into flexible multivariate distributions of portfolio returns. It 
allows the investigation of tail dependencies, which is particularly interesting in financial data risk 
estimation. In Syuhada et al. [12], the Dependent value-at-risk measure (DTVaR) model was proposed, 
and parameter estimates of DTVaR using Farlie-Gumbel-Morgenstern (FGM) copula with Pareto 
marginal were studied. However, the DTVaR estimates with Pareto marginal were not compared with 
those of other probability distributions to determine the distribution that gives the least dependent 
tail-value-at-risk. Dutta and Suparna [13] used the Gaussian, Student's t, Clayton, Gumbel, and Frank 
copulas to estimate the value at risk and tail value at risk of returns of Novartis(NVS) and Pfizer(PFE) 
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stock portfolio from the United States market using normal and Student's t distributions as marginals 
for the univariate stock return series. However, the copula tail-value-at-risk with the symmetric 
marginal (normal and Student's t distribution) was not compared to an asymmetric distribution.  

This work estimates the TVaR for bivariate stock data using copula. The C-TVaR estimates with 
symmetric marginal distributions like normal, Student's t, Cauchy, and logistic distributions for both 
bivariate stock data are compared with the asymmetric APTL distributions proposed by [14]. These 
are also compared with C-TVaR estimates with combinations of symmetric-asymmetric combinations 
marginals (like APTL-Student’s t and APTL-logistic). This is to determine the marginal distribution(s) 
that gives the minimum expected loss for investment of the bivariate stock portfolio. This innovative 
approach not only contributes to advancing the understanding of risk estimation in financial markets 
but also offers practical insights for portfolio managers and investors seeking to optimize risk-return 
profiles. By incorporating copula theory and exploring a diverse range of marginal distributions, this 
study aims to enhance the accuracy and reliability of TVaR estimation, thereby enabling more 
informed decision-making in portfolio management.  

The remainder of the paper is organized as follows. Section 2 explains the TVaR estimation, 
copula functions and families, and the copula-TVaR model. Section 3 shows data application of the 
C-TVaR model on some sock portfolios. Finally, Section 4 concludes the paper.  

2. METHOD 

2.1. Copula Functions 

Copulas are functions that enable the separation of the marginal distributions from the 

dependency structure of a given multivariate distribution [15]. Put differently; a copula helps isolate 

the joint or marginal probabilities of a pair of variables entangled in a more complex multivariate 

system. Sklar [16] introduced the application of copulas in multivariate modelling when he 

demonstrated that copulas can link the decomposition of multivariate distributions into marginal 

distributions. A 𝑝-dimensional copula 𝐶(𝑢1, … , 𝑢𝑝) is a multivariate distribution with uniform 𝑈(0,1) 

marginal distribution. So every joint distribution 𝐹(𝑥1, … , 𝑥𝑝) whose marginal are given 

𝐹1(𝑥1),… , 𝐹𝑝(𝑥𝑝) can be written as 

𝐹(𝑥1, … , 𝑥𝑝) = 𝐶{𝐹1(𝑥1),… , 𝐹𝑝(𝑥𝑝)}.    (2) 

2.1.1. Bivariate Copula Modeling  
According to [17], the basic definition of a bivariate copula is a bivariate probability distribution 

function on [0, 1], for which the two univariate marginal distribution functions are uniform on [0, 1]. 

If the marginal distribution function of the continuous random vectors (𝑋, 𝑌) are 𝐹𝑋 and 𝐹𝑌, the 

copula bivariate probability distribution function can be expressed as 

 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦); 𝜃 ) = 𝐶(𝑢1, 𝑢2),   (3) 

for marginal probabilities 

 𝑢1 = 𝐹𝑋(𝑥), 𝑢2 = 𝐹𝑌(𝑦),     (4) 



Bivariate Distributions and Copula-Tvar Estimates:  A Comparative Study Based on The Selected Financial Returns…  

41 | InPrime: Indonesian Journal of Pure and Applied Mathematics 
 

where 𝐶 is a copula, 𝜃 is the copula parameter that measures the degree of association between two 

univariate CDFs (i.e., summarizes their dependence structure) , and 𝑥 and 𝑦 are the realizations of 𝑋 

and 𝑌.  

Families of copulas regularly used in multivariate dependence include the Elliptical and 

Archimedean copulas. The Elliptical copulas are derived from multivariate elliptical distributions, and 

the most critical copulas of this family are the Gaussian copula and the Student's t copula. On the 

other hand, some of the widely applied Archimedean copulas include the Clayton, Gumbel, and Frank 

copulas.  

2.1.1.1. Elliptical Copula 
The Gaussian and Student’s t copulas are the most commonly applied bivariate copula in 

finance ( [18], [19], [20], [21] and [22]). According to [22], the bivariate copula distribution function 

of the Gaussian family is expressed as follows 

 𝐶(𝑢, 𝑣) = ∫ ∫
1

2𝜋(1−𝜌2)

Φ−1(𝑣)

−∞

Φ−1(𝑢)

−∞
𝑒𝑥𝑝 [− 

𝑠2−2𝜌𝑠𝑡+𝑢2
2

𝑣(1−𝜌2)
] 𝑑𝑠𝑑𝑡,                (5) 

where 𝜌 is the correlation coefficient between the variables and, Φ−1(𝑢) and Φ−1(𝑣) represent the 

inverse of CDF of the standard normal variates, and 𝑇𝑣
−1 denotes the quantile function associated 

with the univariate distribution. 

On the other hand, the Student’s t copula incorporates the tail dependence at both the lower and 

upper tails. The degree of freedom parameter, 𝑣, affects the strength of the tail dependence. As 𝑣 

approaches infinity, the Student’s t multivariate data converges to the Gaussian copula distribution. 

The function for the Student's t copula, as presented in Ferreira et al., 2016), is given by 

𝐶𝜌,𝑣(𝑢, 𝑣) = ∫ ∫
1

2𝜋(1−𝜌2)
1
2⁄

𝑡𝑣
−1

−∞

𝑡𝑣
−1

−∞
𝑒𝑥𝑝 [1 + (

𝑥2−2𝜌𝑥𝑦+𝑦2

𝑣(1−𝜌2)
)
−(

𝑣+2

2
)

] 𝑑𝑥𝑑𝑦.              (6) 

The Student's t copula is often regarded as dominant in modeling non-linear and non-normal 

dependencies.  

2.1.1.2. Archimedean Copula 
Archimedean copulas are used to model asymmetric dependence structures. Some of the major 

copulas in the Archimedean family used in modeling financial data include the Clayton, Frank, and 

Gumbel copulas. Their copula function and joint density function, as presented in [23], are given 

below. 

Clayton copula 

The Clayton copula is asymmetric and measures dependence on the negative (left) tail. The 

Clayton copula function is given by  

 𝐶𝜆(𝑢, 𝑣) = (𝑢−𝜆 + 𝑣−𝜆 − 1)
−(

1

𝜆
)
   , 𝜆 ∈ [−1,∞] 𝑎𝑛𝑑 𝛼 ≠ 0,     (7) 
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where 𝑢 = 𝐹𝑥1(𝑥1), 𝑣 = 𝐹𝑥2(𝑥2), 𝜆 is the parameter of the generating function 𝜑(𝑡) =
(𝑡)−𝜆−1

𝜆
, 𝜆 ∈

[−1,∞] that controls the dependence, 𝜆 → ∞ entails perfect dependence, while 𝜆 → 0 implies 

independence between the two random variables. So, the Clayton copula has more weight on the left 

tail. The generator uniquely defines the Gumbel copula, and t is a uniformly distributed random 

variable that varies from 0 to 1 regardless of whether it is equal to 𝑢 or 𝑣    

Gumbel copula 

This copula is asymmetric and is sensitive to the right tail. So, the Gumbel copula measures 

dependency on the positive (right) tail. The function defines the Gumbel copula   

 𝐶𝛽(𝑢, 𝑣) = exp〈−[(−ln (𝑢))𝛽 + (−ln (𝑣))𝛽]〉
1

𝛽    , 𝛽 ∈ [1,∞],       (8) 

where 𝑢 = 𝐹𝑥1(𝑥1), 𝑣 = 𝐹𝑥2(𝑥2), 𝛽 is the parameter of the generating function  

𝜑(𝑡) = (−ln (𝑡))𝛽 , 0 < 𝑡 < 1.            (9) 

Frank copula 

The function defines the Frank copula,  

 𝐶𝜃(𝑢, 𝑣) = −
1

𝜃
𝑙𝑛 (1 +

(𝑒−𝜃𝑢−1)(𝑒−𝜃𝑣−1)

𝑒−𝜃−1
)    , 𝜃 ∈ [−∞,∞].  (10) 

where 𝑢 = 𝐹𝑥1(𝑥1), 𝑣 = 𝐹𝑥2(𝑥2), 𝜃 is the parameter of the generating function 

 𝜑(𝑥) = −𝑙𝑛 (
𝑒−(𝜃𝑡)−1

𝑒−(𝜃)−1
) , 0 < 𝑡 < 1.                  (11) 

 

2.2. Bivariate Copula-TVaR Model 

This section presents the C-TVaR model for estimating the maximum loss expected for equally 

weighted bi-index stock portfolio investment at certain confidence levels over a specified period. 

Computing TVaR estimates is important because researchers have advised that computing VaR should 

not be enough as the losses beyond the given confidence level are not captured in VaR estimates. 

Given random losses X and Y of a bi-index portfolio, the bivariate C-TVaR model at a confidence 

level α for an equally weighted bi-index stock portfolio investment problem can be formulated as 

follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑇𝑉𝑎𝑅𝛾,𝛿(𝑋, 𝑌),    (12) 

                                                     𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤𝑋 = 𝑤𝑌,          (13) 

where   

𝑇𝑉𝑎𝑅𝛾,𝛿(𝑋, 𝑌) = 𝐶 (
1

1−𝛼
∫ 𝑥𝑓(𝑥)𝑑𝑥 ,

1

1−𝛼
∫ 𝑦𝑓(𝑦)𝑑𝑦 ; 𝜃 
−𝑉𝑎𝑅𝛿
−∞

 
−𝑉𝑎𝑅𝛾
−∞

),  (14) 

is the copula tail-value-at-risk of the portfolio at 𝛼  level of significance from the univariate TVaR 

model in [24]. 𝑤𝑋 and 𝑤𝑌 are the weights of risk of investment for stock indices X and Y, respectively, 
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in the portfolio. 𝑉𝑎𝑅𝛾(𝑥, 𝛾) and 𝑉𝑎𝑅𝛾(𝑥, 𝛾) are the values at risk for each stock asset in the bi-index 

portfolio, with VaR given as  𝑉𝑎𝑅𝛾(𝑥, 𝛾) = 𝐹𝑥,𝛾
−1(1 − 𝛼) 𝑎𝑛𝑑 𝑉𝑎𝑅𝛿(𝑦, 𝛿) = 𝐹𝑦,𝛿

−1(1 − 𝛼). 𝐹𝑋
−1(1 −

𝛼) and 𝐹𝑌
−1(1 − 𝛼) are the inverse of the distribution function of the random losses 𝑋 and 𝑌 for 

stock indexes 1 and 2 in the portfolio.  𝛾 and 𝛿 are the distribution parameters for index 1 and 2 return 

distributions in the portfolio. 𝐶 is the copula function.  is the copula parameter that measures the 

degree of association between two univariate CDFs (i.e summarizes their dependence structure).  

To compute the copula-TVaR estimates using the bivariate copula model, the Gaussian, Student's 

t, Gumbel, Clayton, and Frank copulas are used to determine the best-fitted copula among them. The 

copulas are fitted on a bi-index stock portfolio, and the most suitable copula among them is 

determined using the AIC and BIC model selection criteria. The best-fitted copula model was then 

used to model the TVaR estimates of the portfolios with APTL marginal distribution and its 

combinations. This is then compared to TVaR models with normal, Student's t, Cauchy, and logistic 

distributions to determine if the APTL marginal estimates a smaller expected loss than the models 

with normal, Student's t, Cauchy, and logistic distributions. In copula-TVaR estimation, the marginal 

distribution or combination of distributions that estimates the smaller expected maximum loss at given 

confidence levels is considered the better distribution portfolio risk measurement (see [25]). 

Distributions that provide less risk of loss in an investment with unknown risk are preferable for risk-

averse investors and risk manager use.  

The distribution function of the APTL distribution proposed by [14] with parameters , c and k, 

for 𝑥 ∈ ℝ, is  given by 

𝐹(𝑥) =

{
 

 𝛼
1
1+exp(−

𝑥−𝑐
𝑘
)⁄
−1

𝛼−1
, 𝑖𝑓 𝛼 > 0, 𝛼 ≠ 1, 𝑐 > 0, 𝑘 > 0,

1

1+exp(−
𝑥−𝑐

𝑘
)
,     𝑖𝑓 𝛼 = 1.

             (15) 

On the other hand, for a random variable x, the distribution function, 𝐹(𝑥), of the normal, Student's 

t, Cauchy, and logistic distributions that have been used in modeling the univariate distribution of 

returns of the stock index is given as follows.  

Normal distribution:   

( )
1

1
2 2

x
F x erf





 − 
= +  

  
,      (16) 

where erf (z) = Gauss error function 
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑧

0
w.  

Student’s t distribution:   

𝐹(𝑥) =
1

2
+ 𝑥Γ (

𝑣+1

2
) ×

2𝐹1(
1

2
,
𝑣+1

2
;
3

2
;
𝑥2

𝑣
)

√𝜋𝑣 Γ(
𝑣

2
)

,           (17) 

where 𝑣 is degrees of freedom. 
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Cauchy distribution:    

( )
1 1

2

x
F x arctan



 

 −
= + 

 
,        (18) 

where 𝛼 is the location parameter, and 𝛽 is the scale parameter and  

( )
1

1  

F x
x

exp
s


=

− 
+ − 

 

,                (19) 

where location parameter 𝜇 ∈ ℝ and scale parameter 𝑠 > 0. 

 
3. APPLICATIONS, EMPIRICAL RESULTS, AND DISCUSSION 

In this section, we investigate the flexibility of the APTL marginal distribution in bivariate C-
TVaR estimation of financial portfolio data. This C-TVaR estimate for APTL marginal is compared 
to those with normal, Student's t, Cauchy, and logistic marginals. Some of the biggest stock indices in 
the world’s top two biggest economies, the U.S. and China, are used. These include the Dow Jones 
Industrial Average (DJIA) index and Standard & Poor's 500 (S&P 500) Index in the United States of 
America and then the Shanghai Stock Exchange (SSE) and the Shenzhen Stock Exchange (SZSE) in 
China. The weekly price index of the DJIA and S&P500, SSE, and SZSE  stock indices is collected 
from January 2007 to December 2022 from https://finance.yahoo.com. 

The return series of each of the stock indices is obtained from their weekly price index and is log-

transformed into their weekly log returns, 𝑅𝑡, using the formula 

𝑅𝑡 = ln (
𝑃𝑡−1

𝑃𝑡
),            (20) 

where 𝑃𝑡 is the opening price at period t and 𝑃𝑡−1 is the opening price of the previous week. The log-

returns of the stock indices are used to obtain the parameters of each stock index's parameters and 

derive the copula-TVaR estimates of the DJIA-S&P500 and SSE-SZSE portfolios using the TVaR 

model in section 2.3. 

Table 1 presents the descriptive statistics of the DJIA, S&P500, SSE, and SZSE stock Indices. 

The skewness values of each stock index show that they are all negatively skewed. This indicates that 

all the indices had many small gains and fewer extreme losses (or negative returns) over the period 

under consideration.   

Table 1. Univariate statistics of the DJIA, S&P500, SSE, and SZSE stock indices 

 STATISTICS 

 SSE SZSE DJIA S&P 

Mean 0.03975 0.000585 0.001196 0.001176 
Median 0.06026 0.001815 0.002722 0.002923 
Std. Deviation 0.01455 0.03994 0.02542 0.025070 
Minimum -0.9243 -0.17150 -0.18440 -0.198700 
Maximum 0.6225 0.12790 0.11070 0.130400 
Skewness -0.4779 -0.30140 -0.75570 -0.953200 
Kurtosis 1.9478 1.51220 6.10690 9.786000 

https://www.investopedia.com/terms/s/sp500.asp
https://finance.yahoo.com/
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The SSE and SZSE stock Indices' kurtosis is less than 3. This indicates that the distribution of 

both SSE and SZSE stock indices is platykurtic. So, they have a flatter peak compared to the normal 

distribution. Meanwhile, the DJIA and S&P500 indices have kurtosis above 3. This indicates that the 

distribution of DJIA and S&P500 stock indices is leptokurtic. They are implying that there have been 

many price fluctuations in the past (positive or negative) away from the average price of the stocks. 

An investor might experience extreme price fluctuations for each of these stock indices.  

3.1. Maximum Likelihood Estimates and Goodness of Fit 

The Maximum Likelihood estimates and model selection of APTL distribution compared to the 

normal, student t, Cauchy, and logistic distributions are obtained for the DJIA, S&P500, SSE, and 

SZSE stock indices. The R statistical software is used, and the results are presented in Tables 2 and 3. 

The AIC and BIC model selection tests are carried out to determine which distribution best fits the 

returns of the different stock indices and are more suitable for the prediction of the return values. The 

AIC and BIC values for the DJIA, S&P500, SSE, and SZSE stock indices are shown in Table 2 and 

Table 3.    

Table 2.  Estimated model parameters and model selection criteria for DJIA and S&P500 

Distribution 
DJIA stock index Model selection  

Estimates AIC BIC 

APTL (𝛼, 𝑐, 𝑘) 0.01268 0.02746 0.01476 -3909.9 -3895.7 

Normal (μ, σ) 0.001196 0.02540  -3755.6 -3746.1 

Student t (a, c /df = 𝑣) 0.002430 0.01858 𝑣 = 5.6107  -3907.1 -3892.9 

Cauchy (α , β) 0.003607 0.01130  -3803.9 -3794.5 
Logistic (b, c ) 0.002262 0.01281  -3886.4 -3876.9 

 
Distribution 

S&P stock index Model selection  

Estimates AIC BIC 

APTL (𝛼, 𝑐, 𝑘) 0.015430 0.02552 0.01420 -3961.2 -3947.0 

Normal (μ, σ) 0.011760 0.02505  -3778.9 -3769.5 

Student t (a, c / df = 𝑣) 0.002136 0.01788 𝑣 = 5.5943 -3969.0 -3954.9 

Cauchy (α , β) 0.002975 0.01105  -3859.3 -3849.9 
Logistic (b, c ) 0.002005 0.01239  -3941.1 -3931.6 

 

From Table 2, the APTL distribution has the smallest AIC and BIC values, but it is the second 

most appropriate for modeling the S&P-500 index, as the Student's t distribution has the smallest AIC 

and BIC values. This means the APTL distribution is the most suitable for modelling the DJIA stock 

index and predicting its return values. In contrast, the Student's t distribution is more appropriate for 

the S&P-500 index.  

Table 3 shows the distribution best fitting the SSE and SZSE data using AIC and BIC model 

selection criteria. The result indicates that the APTL distribution has a significantly smaller AIC for 

the SSE index data than the normal, student t, Cauchy, and logistic distributions, but with the Logistic 

distribution having a smaller BIC value than APT, though not significant (since the difference is less 

than two units). Based on the AIC, it implies that the APTL distribution is significantly more 

appropriate for predicting the stock return values of SSE than the other distributions. On the other 
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hand, based on the BIC, the logistic distribution is considered better for capturing the goodness of fit 

for the SSE index than APTL. Similarly, in the model selection of SZSE data, APTL has a significantly 

smaller AIC value than the other distributions but with a significantly bigger BIC than the Logistic 

distribution. This also implies that APTL will be significantly more appropriate in predicting the stock 

return values of SZSE while the logistic is a better goodness of fit distribution for SZSE. Hence, due 

to the discrepancies between the AIC and BIC, which is not usually the case, there is a need to 

investigate further if the APTL distribution will be better in predicting the maximum expected loss 

for equally weighted investment in the DJIA-S&P500 and SSE-SZSE portfolios at certain confidence 

levels. This is investigated by computing Copula-TVaR estimates for the DJIA-S&P500 and SSE-

SZSE portfolios for different marginal. The marginals considered for the bivariate C-TVaR risk 

measurement model include the APTL-APTL, APTL-student’s t, APTL-logistic, normal-normal, 

Student's t-student's t, Cauchy-Cauchy and logistic-logistic marginal distributions. Hence, it is 

necessary to estimate C-TVaR if the AIC and BIC of a given distribution, as seen in Table 3, are not 

both lower than those of other comparative distributions. 

Table 3. Estimated model parameters and model selection criteria for SSE and SZSE 

Distribution  
SSE stock index Model selection  

Estimates AIC BIC 

APTL (𝛼, 𝑐, 𝑘) 0.046470 0.01190 0.008580 -4649.1 -4635.0 

Normal (μ, σ) 0.039730 0.19680  -4590.7 -4581.3 

Student t (a, c/df = 𝑣) 0.000470 0.01137 𝑣 = 5.0604 -4648.2 -4634.0 

Cauchy (α , β) 0.0007819 0.007532  -4475.6 -4466.2 
Logistic (b, c ) 0.0004095 0.007779  -4645.3 -4635.8 

 
Distribution  

 
SZSE stock index 

 
Model selection 

Estimates AIC BIC 

APTL (𝛼, 𝑐, 𝑘) 0.0528800 0.03198 0.02366 -2985.7 -2971.6 

Normal (μ, σ) 0.0005855 0.03992  -2940.5 -2931.0 

Student t (a, c/df = 𝑣) 0.0014880 0.03186 𝑣 = 5.2542 -2982.4 -2968.3 

Cauchy (α , β) 0.0028330 0.02089  -2799.8 -2790.3 
Logistic (b, c ) 0.0013370 0.02161  -2983.0 -2973.6 

 

3.2. C-TVaR Estimation for Bi-Index Stock Portfolio Investment 

In this section, we estimate the C-TVaR values of equally weighted risk bi-index portfolio 

investments using the model presented in section 2.3. This implies we are estimating the expected 

investment loss at the given confidence levels of the portfolio. We will use the DJIA-S&P500 and 

SSE-SZSE portfolio bi-index portfolios for this illustration. The Gaussian, Student's t, Gumbel, 

Clayton, and Frank copulas are used in modeling the DJIA-S&P500 and SSE-SZSE portfolios to 

determine the most suitable copula. The most suitable copula is then used to estimate the C-TVaR 

values of the portfolios with APTL marginal distributions. This also compares C-TVaR values with 

normal, Student's t, Cauchy, and logistic marginal distributions. The parameter estimates of the 

different copula models for the DJIA-S&P500 and SSE-SZSE portfolios, together with their AIC and 

BIC model selection values obtained using R statistical software, are presented in Table 4.  
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The results in Table 4 indicate that the estimate of the parameter of the Gaussian copula is 

positive. Consequently, the DJIA stock index is positively correlated with the S&P500 stock index. 

The table by the Gaussian copula also shows that the SSE and SZSE stock indices are strongly and 

positively correlated. Similar conclusions can be drawn based on the Student's t copula, as the 

associated parameter estimate is 0.9293. Again, the Student's t copula corresponds to the minimum 

AIC and BIC values among all the copulas considered in Table, implying that it is the best copula for 

modeling both the DJIA-S&P500 and SSE-SZSE stock portfolios among all the copulas under 

consideration. This makes it more suitable to model the dependence between the extreme value of 

asset returns for the DJIA-S&P500 and  SSE-SZSE stock portfolios.  

From the tail dependence for the different copulas presented in Table 5, the Gaussian and Frank 

copulas give zero as lower and upper tail dependence values. This is because neither copula captures 

tail dependence. The student-t copula captures the portfolio returns' upper and lower tail properties, 

with lower and upper tail values of 0.7560 and 0.6956 for the DJIA-S&P500 and SSE-SZSE portfolios, 

respectively. This can be one of the reasons the Student’s t copula best fits the portfolio return data, 

as none of the other copulas captures both upper and lower tail dependence for the portfolio return. 

The estimate of the upper tail parameter for the Gumbel copula is 0.8050. As expected, the Gumbel 

copula assigns a higher probability to joint extreme positive events (upper tail dependence) on 

portfolio data. 

Table 4. Parameters sstimates, AIC, and BIC of the copulas for the portfolios 

DJIA – S&P500 portfolio 
Copulas Parameter estimates Log-likelihood AIC BIC 

Gaussian  0.9234 777.2 -1552.5 -1547.7 
Student-t 0.9293/df=3.7226 821.6 -1639.1 -1629.7 
Gumbel  3.89 766.5 -1531.0 -1526.3 
Clayton  4.074 659.2 -1316.4 -1311.7 
Frank  14.96 744.5 -1486.9 -1482.2 

 
SSE – SZSE portfolio 

Copulas  Parameter estimates Log-likelihood AIC BIC 

Gaussian  0.9234 777.2 -1552.5 -1547.7 
Student-t 0.9293/df=3.7226 821.6 -1639.1 -1629.7 
Gumbel  3.89 766.5 -1531.0 -1526.3 
Clayton  4.074 659.2 -1316.4 -1311.7 
Frank  14.96 744.5 -1486.9 -1482.2 

 
Table 5. Tail dependence for the copulas 

Copulas 

DJIA – S&P500 portfolio SSE – SZSE portfolio 

Lower Tail 
dependence 

upper Tail 
dependence 

Lower Tail 
dependence 

upper Tail 
dependence 

Gaussian  0.0000 0.0000 0.000 0.000 
Student-t 0.7560 0.7560 0.6956 0.6956 
Gumbel  0.0000 0.8526 0.000 0.8050 
Clayton  0.8948 0.0000 0.8435 0.000 
Frank  0.0000 0.0000 0.000 0.000 
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On the other hand, we can see the Clayton copula having a lower tail value of 0.8435. So, the 

Clayton copula, when used in modeling the dependence of the SSE-SZSE stock portfolio, assigns a 

higher probability to joint extreme negative events (lower tail dependence). However, even though 

both estimates of Clayton and Gumbel copula are positive, the value of the Clayton copula is slightly 

higher than that of the Gumbel copula. This suggests a higher dependency during extreme losses and 

market crises than during a market boom. So, the SSE-SZSE stock index reacts similarly during crises 

and bear markets than during bull markets (market gains).    

The copula tail value-at-risk estimates of the DJIA-S&P500 and SSE-SZSE portfolios are 

obtained using the most suitable copula for the bi-index stock portfolio, which is the Student's t 

copula. The marginal probability distributions used in C-TVaR estimation of the DJIA-S&P500 and 

SSE-SZSE bi-index portfolios include APTL/APTL, APTL/student-t, APTL/logistic, 

normal/normal, Student’s t/student’s t, Cauchy/Cauchy and logistic/logistic bivariate distributions. 

The C-TVaR estimates for these bivariate marginal are estimated at 99%, 99.5%, and 99.9% 

confidence levels, as also used in the work by Byun and Song(2021) and Bouye (2000). Emphasis will 

be placed on estimated values at a 99.9 % confidence level in making conclusions for each portfolio 

since it is the highest confidence level. This is because financial analysts recommend estimating 

portfolio risk at a very high level of confidence to ensure minimal significance, which provides optimal 

portfolio investment. The TVaR estimates for the DJIA-S&P500 and SSE-SZSE portfolios, for equal 

weights of investments, are obtained using the R statistics software as presented in Table 6. 

The results of the copula tail-value-at-risk estimation for the DJIA-S&P500 portfolio show that 

the Student's t copula model with APTL-Student’s t bivariate marginals gives the smallest tail value at 

risk for equally weighted investment in the DJIA-S&P500 portfolio. The estimates are 0.0948, 0.1058, 

and 0.1313 at the 99%, 99.5%, and 99.9% confidence levels, respectively. Taking the forecast at a 

99.9% confidence level, it can concluded that for an equally weighted risky investment in the DJIA-

S&P500 portfolio using the Student's t bivariate copula TVaR model with APTL-Student's t  

marginals, there is a 99.9% chance that the maximum expected weekly loss will not be more than 

0.1313% of the invested amount due to the movement of market price. This means that 99.9% of the 

time, the maximum expected loss will be lower than 0.1313% of the investment value. 

Meanwhile, for the SSE-SZSE portfolio, the Student’s t bivariate copula TVaR model with 

APTL-APTL  marginal gives the smallest expected losses of investment as 0.1235, 0.1391, and 0.1773  

across the 99%, 99.5%, and 99.9% confidence levels respectively. So, based on the 99.9% confidence 

level, it can be concluded that using Student's t bivariate copula TVaR model with APTL-APTL 

marginals for an equally weighted risky investment in the SSE-SZSE portfolio, there is a 99.9% chance 

that the maximum expected weekly loss will not be more than 0.1773% of investment due to the 

movement of the market price. This means that 99.9% of the time, the maximum expected loss will 

be lower than 0.1773% of the investment value. The bivariate TVaR estimates of the DJIA-S&P500 

and SSE-SZSE portfolios obtained in Table 6 will be challenging to get without the use of copula as 

the bivariate APTL, bivariate APTL-Student's t and APTL-Logistic distributions will be difficult to 

derive. 
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Table 6. C-TVaR estimates of S&P-DJIA and SSE-SZSE portfolios 

DJIA-S&P500 

Copula Marginal Distribution 
Confidence levels 

99% 99.5% 99.9% 

Student-t 

APTL-APTL 0.0951 0.1066 0.1352 
APTL-student’s t 0.0948** 0.1058** 0.1313** 
APTL-logistic 0.1441 0.1628 0.2075 
Normal -Normal 0.1317 0.1430 0.1676 
Student’s t-Student’s t 0.1473 0.1724 0.2437 
Cauchy - Cauchy  7.5660 14.1195 58.8804 
Logistic - Logistic 0.1364 0.1538 0.1954 

 
SSE-SZSE 

Copulae  Marginal Distribution 
Confidence levels 

99% 99.5% 99.9% 

Student-t 
 

APTL-APTL 0.1235** 0.1391** 0.1773** 
APTL-Student’s t 0.1243 0.1865 0.2327 
APTL-logistic 0.1243 0.1404 0.1801 
Normal -Normal 0.1442 0.1566 0.1812 
Student’s t-Student’s t 0.1860 0.2185 0.3059 
Cauchy - Cauchy  10.0703 18.8041 78.3888 
Logistic - Logistic 0.1626 0.1830 0.2280 

 

The comparison of the maximum expected loss for equally weighted investments in the DJIA-

S&P500 portfolio and the SSE-SZSE portfolio based on 99.9% confidence level is presented in     

Table 7. This table shows that, at a 99.9% confidence level, the maximum expected loss for investing 

in an equally weighted DJIA-S&P500 portfolio is smaller than for the SSE-SZSE portfolio. Thus, it is 

slightly less risky to invest in the DJIA-S&P500 portfolio than in the SSE-SZSE portfolio.      

Table 7. Comparison of TVaR Estimates Between DJIA-S&P500 and SSE-SZSE Portfolios 

 PORTFOLIO 

 DJIA-S&P500 SSE-SZSE 

Copula-TVaR 0.1313 0.1773 

 

4. CONCLUSION  

In this study, TVaR estimates for equally weighted risky bi-index portfolios were obtained using 

the Student's t bivariate copula model with APTL- APTL marginal compared to other combinations 

of marginal distributions. The APTL distribution, which has been used to estimate the value-at-risk 

of individual stock indices and provided better goodness of fit as well as smaller risk estimate than the 

normal, Student's t, Cauchy, and logistic distributions, is at this moment applied on portfolio C-TVaR 

estimates. Two of the largest stock indices in the world's top two economies – the DJIA and S&P500 

stock indices in the U.S. and the SSE and SZSE stock indices in China are used for the illustration. 

The model selection results showed that the APTL distribution is more suitable for predicting stock 

returns of the DJIA, SSE, and SZSE stock index data stock returns than the normal, Student's t, 

Cauchy, and logistic distributions based on the AIC values. The Gaussian, Student's t, Gumbel, 
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Clayton and Frank copulas were fitted to the bi-index portfolios – DJIA-S&P500 and SSE-SZSE. The 

copula model selection results showed that the Student's t copula, with the smallest AIC and BIC, is 

more suitable in both stock portfolios than the other copulas. Estimation of the tail-value-at-risk of 

the portfolios using the Student's t copula with APTL marginals and different combinations of 

marginals for the bi-index portfolio is carried out. Results obtained using the R software show that 

the expected maximum loss for an equally weighted investment in the DJIA-S&P500 at the 99%, 

99.5%, and 99.9% confidence levels is smaller for APTL-student’s t marginal than for the model with 

normal Student's t, Cauchy and logistic distributions. Meanwhile, the Student’s t copula model with 

APTL-APTL marginals gives the smaller expected maximum loss for equally weighted investment in 

the SSE-SZSE portfolio beyond the 99%, 99.5%, and 99.9% confidence levels when compared to 

normal, Student's t, Cauchy and logistic distributions. From the results obtained, we can conclude that 

the APTL distribution or its combination with Student's t distribution presents a smaller expected loss 

of investment at given confidence levels than the normal, Student's t, Cauchy, and logistic distributions 

for DJIA-S&P500 and SSE-SZSE stock portfolios. 
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