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Abstract  
Over the past few years, there has been a significant increase in air temperatures in regions such as 

South Sumatera, Riau, and Jambi, posing threats of drought, water resource crises, and erratic weather 

patterns. In response, developing air temperature forecasting techniques becomes imperative for 

effective climate change management. This study proposes implementing the Generalized Space Time 

Autoregressive (GSTAR) model as a practical approach for forecasting air temperatures in these regions 

using two weighting methods, i.e., inverse distance and normalized cross-correlation weighting. The 

GSTAR model, an extension of the Space Time Autoregressive (STAR) model, offers enhanced 

complexity by incorporating specific time and location factors, thereby increasing forecasting flexibility. 

The result reveals that GSTAR(1,1) with normalized cross-correlation weighting is the most optimal 

model, with a Root Mean Square Error (RMSE) value of 3.135, indicating high forecasting accuracy. 

The selection of this model is grounded in the geographical proximity and similarity of environmental 

characteristics of the three regions. This research contributes novel insights into the underlying 

mechanisms of air temperature dynamics in neighboring areas, providing a robust foundation for 

formulating effective policy and mitigation strategies in addressing climate change challenges.  

Keywords: Air temperatures, Normalized cross-correlation weighting, GSTAR(1,1), Inverse distance 
weighting. 

 
Abstrak 

Dalam beberapa tahun terakhir, suhu udara mengalami peningkatan signifikan di wilayah-wilayah seperti Sumatera 

Selatan, Riau, dan Jambi, yang mengancam kekeringan, krisis sumber daya air, dan perubahan pola cuaca yang tidak 

terduga. Menghadapi situasi tersebut, pengembangan teknik peramalan suhu udara diperlukan untuk mengantisipasi 

dan mengelola dampak ekstrem dari perubahan iklim. Studi ini mengusulkan implementasi model Generalized Space 

Time Autoregressive (GSTAR) sebagai pendekatan praktis untuk meramalkan suhu udara di wilayah-wilayah tersebut 

menggunakan dua metode pembobotan yaitu pembobotan invers jarak dan normali korelasi silang. Model GSTAR, 

sebagai perluasan dari model Space Time Autoregressive (STAR), menawarkan kompleksitas yang lebih baik dengan 

menggabungkan faktor-faktor waktu dan lokasi tertentu, sehingga meningkatkan fleksibilitas dalam ramalan. Hasil 

analisis menunjukkan bahwa GSTAR(1,1) dengan pemberian bobot normalisasi korelasi silang merupakan model 

yang paling optimal, dengan nilai Root Mean Square Error (RMSE) sebesar 3.135, menandakan tingkat akurasi 

yang tinggi. Pemilihan model ini didasarkan pada kedekatan geografis dan kesamaan karakteristik lingkungan dari 

ketiga wilayah tersebut. Penelitian ini memberikan wawasan baru dalam mekanisme dinamika suhu udara di wilayah-

wilayah yang berdekatan, serta memberikan dasar yang kuat bagi perumusan kebijakan dan strategi mitigasi yang 

efektif dalam menghadapi tantangan perubahan iklim. 

Kata Kunci: Bobot invers jarak, Bobot normalisasi korelasi silang, GSTAR(1,1), Suhu udara. 
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1. INTRODUCTION 

Indonesia is located near the equator, thus having a tropical climate renowned for its consistently 
high temperatures year-round. Its geographical position allows for high-intensity sunlight, leading to 
consistently high temperatures throughout the year. In Indonesia, air temperatures can significantly 
vary between day and night, especially during the dry season, ranging from an average of 23ºC to 38ºC 
[1]. There has been a consistent upward trend in air temperatures in recent years. Characteristic of the 
tropical climate, increasing temperatures coincide with heightened rainfall intensity due to high relative 
humidity (RH), signifying a higher presence of water vapor in the air and increased seawater 
evaporation [2]. The main consequences of rising temperatures encompass drought, water shortages, 
and alterations in weather patterns [3]. Elevated temperatures in regions such as South Sumatera, Riau, 
and Jambi provinces can increase the likelihood of forest and land fires. These effects are notably 
significant, particularly when high temperatures coincide with dry conditions and strong winds, 
making vegetation, such as plants and trees, highly susceptible to fire. Proper anticipation of 
temperature changes requires effective mitigation measures. The development of air temperature 
forecasting methods is a crucial issue that needs attention. Therefore, choosing a method that 
accurately and precisely forecasts air temperatures is essential in anticipating temperature changes and 
minimizing their adverse effects. 

Forecasting is a statistical analysis used to predict future events based on simultaneous 
observation data within the same time interval, known as time series data [4]. Forecasting methods are 
applied to univariate and multivariate time series data (involving one variable) and multivariate data 
(involving multiple variables). One method employed for forecasting multivariate time series data is 
the Vector Autoregressive (VAR) model. In the VAR model, variables within the dataset rely on their 
preceding values (lags) and other variables, allowing the model to capture dynamic relationships 
among the variables [5][6]. 

With advancements, research suggests that multivariate time series data are not only correlated 
with preceding periods but may also exhibit interconnections across different geographical locations. 
Geographically, the proximity of South Sumatera, Riau, and Jambi provinces allows for interrelated 
air temperature data across both time and location. Modeling multivariate time series data while 
considering linkages between time and location is commonly called a Space-Time model. One such 
model is the Space-Time Autoregressive (STAR) model introduced by Pfeifer and Deutsch (1980). 
However, the homogenous assumptions regarding autoregressive and spatial parameters across all 
locations in this model were addressed by Ruchjana (2002) through the development of the 
Generalized Space-Time Autoregressive (GSTAR) model [7][8]. 

The GSTAR model represents a significant advancement from the STAR model, providing 
enhanced realism in handling multivariate data encompassing diverse spatial and temporal variations 
across different locations. It enables the incorporation of heterogeneous autoregressive parameters 
specific to varying locations, thereby allowing for a more accurate representation of the 
interconnections between time and locations exhibiting different characteristics. These diverse 
parameters for distinct locations are presented as weight matrices [4]. Using weight matrices within 
the GSTAR model also facilitates improved spatial connections, leading to a more comprehensive 
understanding and improved forecasting of temperature fluctuations in regions characterized by 
diverse attributes. 
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The modeling using GSTAR follows the Box-Jenkins approach, encompassing model 
identification, parameter estimation, model diagnostic, and validation [9]. The application of the 
GSTAR model in multivariate time series data modeling has garnered significant attention due to its 
capacity to enhance forecasting accuracy. The GSTAR model offers a more flexible and realistic 
approach to addressing complex data with spatial and temporal interconnections, aiding in identifying 
trends and patterns that may emerge in the future [9]. An instance of the GSTAR model's application 
is found in the research conducted by Muzdhalifah, Tarno, and Kartikasari in 2022, where they 
forecasted domestic flights in three airports on Java Island. The accuracy achieved through the 
GSTAR method resulted in a MAPE value of <10% [10]. Similarly, a study by Ilmi, Aswi, and Aidid 

aimed at rainfall prediction in Makassar City yielded the GSTARIMA(1,0,0) (1,1,0)12  model with the 
smallest RMSE value of 132.9661 [11]. 

Based on the aforementioned research, our study aims to leverage the GSTAR methodology 
to derive an optimal GSTAR model utilizing air temperature datasets from the South Sumatera, 
Riau, and Jambi provinces. Innovatively, we integrate inverse distance weighting and normalized 
cross-correlation weighting methods to the GSTAR framework, aiming to enhance forecasting 
accuracy by minimizing the Root Mean Square Error (RMSE). This approach offers a 
comprehensive solution for addressing the challenges posed by climate change in the studied 
regions, equipping government agencies, research institutions, and other stakeholders with robust 
data to formulate effective plans for mitigating and adapting to ongoing temperature changes .  

2. METHOD 

2.1. GSTAR Model 

The general form of the GSTAR(𝑝, 𝜆𝑠) model, where p represents the time order (AR) and 

𝜆𝑠 represents the spatial order, is as follows [12]:  

𝑍(𝑡) =  ∑ (𝛷𝑘0 + ∑ 𝛷𝑘𝑙
𝜆𝑠
𝑙=1 𝑊(𝑙))𝑝

𝑘=1 𝑍(𝑡 − 𝑘) + 𝑒(𝑡)    𝑡 = 0 ± 1 ± 2, . . .,        (1) 

where, 𝑍(𝑡) denotes a matrix of time series variables at time t with a size of (𝑁 × 1). 𝑍(𝑡 − 𝑘) 

represents a matrix of size (𝑁 × 1) containing 𝑁 variables at time 𝑡 − 𝑖, 𝑖 = 1,2,…,N. 𝛷𝑘0 is the 

parameter autoregressive matrix 𝑑𝑖𝑎𝑔(𝛷𝑘0
1 , … , 𝛷𝑘0

𝑛 ). 𝛷𝑘𝑙 is the parameter autoregressive matrix 

𝑑𝑖𝑎𝑔(𝛷𝑘𝑙
1 , … , 𝛷𝑘𝑙

𝑛 ). 𝑊(𝑙) is the location weighting matrix for the lth location with a size of (𝑁 × 𝑁), 

and 𝑒(𝑡) represents the residual at time t with a size of (𝑁 × 1). 
The following is the general form of the GSTAR(1,1) model equation for the three locations. 

𝒁𝟏(𝒕) = 𝛷10(1)𝑍1(𝑡 − 1) + 𝛷11(1)𝑤12(1)𝑍2(𝑡 − 1) + 𝛷11(1)𝑤13(1)  𝑍3(𝑡 − 1) + 𝑒1(𝑡),        (2) 

𝒁𝟐(𝒕) = 𝛷10(2)𝑍2(𝑡 − 1) + 𝛷11(2)𝑤21(1)𝑍1(𝑡 − 1) + 𝛷11(2)𝑤23(1) 𝑍3(𝑡 − 1) + 𝑒2(𝑡),        (3) 

𝒁𝟑(𝒕) = 𝛷10(3)𝑍3(𝑡 − 1) + 𝛷11(3)𝑤31(1)𝑍1(𝑡 − 1) + 𝛷11(3)𝑤32(1) 𝑍2(𝑡 − 1) + 𝑒3(𝑡).        (4) 

 
2.2. Parameter Estimation of GSTAR Model 
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The significant parameters are estimated using the Ordinary Least Squares (OLS) method [13] 
when developing the GSTAR model. The GSTAR model equation for all locations can be expressed 
as follows. 

𝑍 = 𝑍∗𝛷 + 𝑒.       (5) 

Equation (2) yields the parameter estimation of the model for Φ as follows [14]. 

   �̂� =(𝑍∗′𝑍∗)−1(𝑍∗′𝑍),                        (6) 
where 

𝑍 =

[
 
 
 
 
 
 
 
 
𝑍1(1)

𝑍1(2)
⋮

𝑍1(𝑇)
⋮

𝑍1(𝑇)

𝑍2(𝑇)
⋮

𝑍𝑁(𝑇)]
 
 
 
 
 
 
 
 

 ,    𝑍∗ =

[
 
 
 
 
 
 
 
 
𝑍1(𝑇 − 𝑘) ⋯ 𝑉1(𝑇 − 𝑘) ⋯ 0 ⋯ 0

𝑍1(𝑇 − 𝑘) ⋯ 𝑉1(𝑇 − 𝑘) ⋯ 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑍1(𝑇 − 𝑘) ⋯ 𝑉1(𝑇 − 𝑘) ⋯ 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 ⋯ 𝑍𝑁(𝑇 − 𝑘) ⋯ 𝑉𝑁(𝑇 − 𝑘)

0 ⋯ 0 ⋯ 𝑍𝑁(𝑇 − 𝑘) ⋯ 𝑉𝑁(𝑇 − 𝑘)
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 ⋯ 𝑍𝑁(𝑇 − 𝑘) ⋯ 𝑉𝑁(𝑇 − 𝑘)]

 
 
 
 
 
 
 
 

 , 𝛷 =

[
 
 
 
 
 
 
 
 
 
𝛷𝑘0

1

𝛷𝑘0
2

⋮
𝛷𝑘0

𝑁

⋮
𝛷𝑘𝑙

1

𝛷𝑘𝑙
2

⋮
𝛷𝑘𝑙

𝑁 ]
 
 
 
 
 
 
 
 
 

 ,  𝑒 =

[
 
 
 
 
 
 
 
 
𝑒1(1)
𝑒1(2)

⋮
𝑒1(𝑇)

⋮
𝑒2(1)
𝑒2(2)

⋮
𝑒𝑁(𝑇)]

 
 
 
 
 
 
 
 

 .  

The equation 𝑉𝑖(𝑡) represents ∑ 𝑊𝑖𝑗(𝑘)𝑍𝑖(𝑡)
𝑝
𝑘−1 , where 𝑖 ≠ 𝑗. 

 
2.3. Weight Matrix for GSTAR Model 

In the GSTAR modeling, the interlocation relationships are paramount, necessitating the 
consideration of appropriate weighting factors incorporated into the GSTAR model through the 
weight matrix W [15]. Suhartono and Subanar (2006) proposed several methods for determining 
location weighting in the GSTAR model, such as uniform weighting, binary weighting, inverse distance 
weighting, and normalized cross-correlation weighting [16]. Uniform weighting is deemed unsuitable 
for GSTAR modeling due to the heterogeneous characteristics among locations [17]. Similarly, binary 
weighting is unfit for the GSTAR model as it is subjective, involving weight values adjusted according 
to the distances between time series variables [18]. Consequently, inverse distance weighting is often 
employed as a weighting mechanism in the GSTAR model. Inverse distance weighting results from 
the calculation of actual distances, considering geographic coordinates based on latitude and longitude, 
which are subsequently normalized. The inverse distance weighting can be expressed as follows [19].  

               𝑊𝑖𝑗 =
𝑤𝑖𝑗

∗

∑ 𝑤𝑖𝑘
∗𝑝

𝑘=1

.        (7) 

with, 

                                   𝑤𝑖𝑗
∗ = {

1

𝑑𝑖𝑗
 , 𝑖 ≠ 𝑗,

0,     𝑖 = 𝑗,
      (8) 

𝑑𝑖𝑗 = √(𝑢𝑖 − 𝑢𝑗)2 + (𝑣𝑖 − 𝑣𝑗)2.      (9) 

where 𝑑𝑖𝑗 represents the distance from location i to j, (𝑢𝑖, 𝑢𝑗) denotes the latitude coordinates, and 

(𝑣𝑖, 𝑣𝑗 ) represents the longitude coordinates. Besides inverse distance weighting, another alternative 

to consider as a weighting mechanism in the GSTAR model is the normalized cross-correlation 
weighting. This is because this weighting factor considers the correlation values of data that exhibit 
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both spatial and temporal effects. Generally, the formula for normalized cross-correlation weighting 
is expressed as follows [17]. 

𝑊𝑖𝑗(𝑘) =
𝑟𝑖𝑗(𝑘)

∑ |𝑟𝑖𝑗(𝑘)|𝑗≠𝑖
 ,          (10) 

where 𝑖 ≠ 𝑗 and ∑ |𝑊𝑖𝑗| = 1𝑗≠𝑖  , 𝑘 = 1,2, … , 𝑝, and the estimation of cross-correlation on the sample 

data is formulated as follows [7]. 

𝑟𝑖𝑗(𝑘) =
∑ [𝑍𝑖(𝑡)−�̅�𝑖][𝑍𝑗(𝑡−𝑘)−�̅�𝑗]

𝑛
𝑡=𝑘+1

√(∑ [𝑍𝑖(𝑡)−�̅�𝑖]
2)(∑ [𝑍𝑗(𝑡−𝑘)−𝑍𝑗]

2
)𝑛

𝑡=1
𝑛
𝑡=1

 ,         (11) 

where 𝑍𝑖(𝑡) represents the time-series data at time t in region i, 𝑍𝑗 represents the time-series data at 

time t in region j, and k is the time lag. 

2.4. Data Analysis 

The GSTAR model is a method used to estimate air temperature based on multivariate time series 
data, considering the spatial proximity and temporal dependencies between various locations. This 
approach integrates spatial and temporal aspects of the data to model the relationship between air 
temperature locations at different locations. There are four steps in the GSTAR method as follows. 

  
The first stage is model identification: 

a. Test the stationarity using the Augmented Dickey-Fuller (ADF) test. If hypotesis null failed to be 

rejected, it suggests the time series has a unit root, meaning it is non-stationary. It has some time 

dependent structure. 

b. Test the correlation between locations using the Pearson Product Moment test. If hypotesis null 

failed to be rejected, then spatial modeling cannot continue. 

c. Test the spatial heterogeneity using the Gini Index value. If 𝐺𝑛 = 0, modeling is limited to the 

Space Time Autoregressive (STAR) model because the expected value is 𝐺𝑛 ≥ 1; namely, spatial 

heterogeneity is met [20].  

d. Identify the order of the GSTAR model. The time order is determined based on the smallest AICC 
value [21].  

𝐴𝐼𝐶𝐶 = 𝑛 log(2𝜋) + 𝑛 log(�̂�2) + 𝑛 + 2
𝑛(𝑚+1)

𝑛−𝑚−2
,   (12) 

where �̂�2 is the estimated error variance, n is the number of observations, and m is the number of 
estimated parameters. Meanwhile, determining the spatial order of the GSTAR model is only 

limited to spatial order 1 (𝜆𝑠=1) because spatial orders of more than one are difficult to              
represent [22].  

e. Determines the general form of the GSTAR model. 
 
The second stage of model estimation: 

a. Calculate the weighted matrix using the inverse distance weighting and the normalized cross-

correlation weighting. 
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b. Estimate the model parameters using the OLS method, and their significance was tested based on 

the two location weights used. 

c. Determine the final model for the GSTAR based on the two weight methods.  

The third stage is model diagnostic: 

Model diagnostic testing uses residual data to determine the feasibility of the GSTAR model formed. 

It is carried out by testing white noise residuals using the Ljung Box-Pierce test and normally 

distributed residuals using the Kolmogorov-Smirnov test. 𝐻0 fails to be rejected if the p-value > 𝛼. 

It’s mean that the model is appropriate to use. 

 

The fourth stage is model validation: 

Determining the best GSTAR model based on the smallest RMSE value [23].  

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑍𝑡 − �̂�𝑡)

2𝑁
𝑡=1  .    (13) 

 

3. RESULTS AND DISCUSSION 

This research used secondary data regarding monthly air temperatures (℃) in South Sumatera, 
Riau, and Jambi provinces. The data were obtained from the Meteorology, Climatology, and 
Geophysics Agency (BMKG), available at https://www.bmkg.go.id/, totaling 288 datasets from January 
2015 to December 2022. Each variable in the study comprises 96 datasets divided into two parts: 95% 
training data used for GSTAR model formation and 5% testing data used for validating the most 
optimal GSTAR model. The dataset is depicted in Figure 1. 

 

 

Figure 1. Multivariate time series plot of air temperature (℃) in the South Sumatera, Riau, and Jambi 
Provinces. 

 

https://www.bmkg.go.id/
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3.1. Descriptive Statistics  

The initial step in forming the GSTAR model involves conducting descriptive statistics on the 
data. Descriptive statistical information is presented in Table 1. Based on Table 1, the highest average 

air temperature is recorded in South Sumatera Province, at 27.59℃, with a standard deviation of 

0.447℃, indicating a relatively wide range of variability in air temperatures in that province. 

Conversely, the lowest average air temperature is recorded in Jambi Province, at 27.06℃, with a 

standard deviation of 0.399℃, suggesting that the air temperature data cluster at the mean value. 

Table 1. Descriptive statistics of temperature in the South Sumatera, Riau, and Jambi Provinces. 

Location Average (℃) StDev (℃) Min (℃) Max(℃) 

South Sumatera 27.59 0.447 26.42 28.53 
Riau 27.27 0.495 25.92 28.34 
Jambi 27.06 0.399 26.03 27.94 

 

3.2. Identifying the Model 

The first step in this modelling is test the data stationarity. We use the ADF test to determine the 
stationarity in mean of the three locations. Based on the 5% significance level employed, the test 
indicates that the data of the three research locations have been stationary concerning the mean. 

Table 2. Results of ADF test for stationary of air temperature data  

Location P-value Decision about 𝐻0 

South Sumatera 0.01 Reject 𝐻0 
Riau 0.01 Reject 𝐻0 
Jambi 0.01 Reject 𝐻0 

 
The correlation test is conducted to determine the significant relationship among research 

locations. If the relationship among locations is not met, modeling using the space-time method 
cannot proceed. Based on the analysis of hypothesis testing using Pearson Product Moment with a 

significance level of 𝛼 = 5%, it is indicated that the three research locations exhibit a significant 
correlation with a wide range of relationships ranging from moderate to strong, as follows. 

Table 3. Results of Pearson Product Moment test 

Location South Sumatera Riau Jambi 

South Sumatera 
p-value 

1 
0.000 

0.516 
0.000 

0.752 
0.000 

Riau 
p-value 

0.516 
0.000 

1 
0.000 

0.763 
0.000 

Jambi 
p-value 

0.752 
0.000 

0.763 
0.000 

1 
0.000 

The spatial heterogeneity test using the Gini Index yielded results in Table 4 indicating that all 
three locations have fulfilled the assumption, allowing the continuation of GSTAR modeling. After 
fulfilling the spatial conditions, the next step is to identify the order of the GSTAR model. Table 5 
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show the AICC values for each lag period. Based on Table 5, it is evident that the smallest AICC value 

is found at lag 1, which is -7.1942. Therefore, the selected time order is 1 (𝑝 =  1). Additionally, the 

spatial order applied to the GSTAR model is 1 (𝜆𝑠 = 1), because spatial orders of more than 1 are 
difficult to represent [22]. Consequently, the formed GSTAR model is GSTAR (1,1). 

Table 4. Results of the Spatial Heterogeneity test 

Location Gini Indeks Decision about 𝐻0 

South Sumatera 1.00076313 Reject 𝐻0 
Riau 1. 00076313 Reject 𝐻0 
Jambi 1. 00076313 Reject 𝐻0 

Table 5. AICC values for each lag period 

Lag 1 2 3 4 

AICC -7.1942 -7.1727 -7.1057 -6.9929 

 
3.3. Location Weight Matrix 

Geographic coordinates in degrees of latitude and longitude of the research locations are 
presented in Table 6. 

Table 6. Geographic coordinates for the three provinces 

Location Latitude Longitude 

South Sumatera -2.92732 104.7720 

Riau 0.45924 101.4474 
Jambi -1.60190 103.4844 

 
Next, the inverse distance weighting matrix among three locations using equation (7) is 

𝑊 = [
0 0.280 0.720

0.379 0 0.621
0.611 0.389 0

].     (14) 

Based on 𝑊, if the distance is closer, the inverse distance weighting will be more significant, and vice 
versa. 

The results of normalized cross-correlation weighting among three provinces using equation (10) 
at corresponding time lags is 

𝑊 = [
0 0.541 0.459

0.397 0 0.603
0.370 0.630 0

].                  (15) 

 

3.4. Parameters Estimation of GSTAR (1,1) Model 

3.4.1. GSTAR (1,1) Model using Inverse Distance Weighting 
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At a significance level of 𝛼 = 5%, the estimation results of the GSTAR(1,1) model utilizing 
inverse distance weighting are presented in Table 7. Based on this table, the final form of the 
GSTAR(1,1) model using inverse distance weighting on equation (14) for each location is as follows: 

a. GSTAR(1,1) model for South Sumatera: 

𝒁𝟏(𝒕) = 0.43462 𝑍1(𝑡 − 1) + 0.161101 𝑍2(𝑡 − 1) +  0.414259 𝑍3(𝑡 − 1) + 𝑒1(𝑡).    (16) 
 

b. GSTAR(1,1) model for Riau: 

-𝒁𝟐(𝒕) = 0.790134 𝑍2(𝑡 − 1) + 𝑒2(𝑡).   _(17) 

c. GSTAR(1,1) model for Jambi: 

𝒁𝟑(𝒕) = 0.53526 𝑍3(𝑡 − 1) + 0.279880 𝑍1(𝑡 − 1) +  0.178189 𝑍2(𝑡 − 1)  𝑒3(𝑡).     (18) 
 

Table 7. Parameter estimation of GSTAR(1,1) model using Inverse Distance Weighting 

Parameter Parameter Estimation   𝒕 - Value 𝒑 - Value 

𝛷10(1) 0.434620 3.26  0.0016 

𝛷11(1) 0.575360 4.25 < 0.0001 

𝛷10(2) 0.790134 5.78 < 0.0001 

𝛷11(2) 0.210028 1.53 0.1284 

𝛷10(3) 0.535260 2.87 0.0052 

𝛷11(3) 0.458069 2.49 0.0146 

3.4.2.  GSTAR (1,1) Model using Normalized Cross-Correlation Weight 
Table 8 presents the estimated parameters of the GSTAR(1,1) modelusing the normalized cross-

correlation weights with a significance level of 𝛼 = 5%. 
 

Table 8. Parameter estimation of GSTAR(1,1) model using Normalized Cross-Correlation Weighting 

Parameter Parameter Estimation  𝒕 - value 𝒑 - value 

𝛷10(1) 0.484676 4.12 < 0.0001 

𝛷11(1) 0.523375 4.38 < 0.0001 

𝛷10(2) 0.790444 5.82 < 0.0001 

𝛷11(2) 0.209645 1.54 0.1264 

𝛷10(3) 0.420535 2.41 0.0181 

𝛷11(3) 0.572691 3.23 0.0013 
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Based on the significant parameter estimates in Table 8, the final form of the GSTAR(1,1) model 
obtained by applying normalized weights to the normalized cross-correlations on equation (15) of is 
as follows. 

a. GSTAR(1,1) model for South Sumatera: 

𝒁𝟏(𝒕) = 0.484676 𝑍1(𝑡 − 1) + 0.283010 𝑍2(𝑡 − 1) +  0.240365 𝑍3(𝑡 − 1) + 𝑒1(𝑡). (19) 
 

b. GSTAR(1, 1) model for Riau: 

𝒁𝟐(𝒕) = 0.790444 𝑍2(𝑡 − 1) + 𝑒2(𝑡).         (20) 

c. GSTAR(1, 1) model for Jambi: 

𝒁𝟑(𝒕) = 0.420535 𝑍3(𝑡 − 1) + 0.211970 𝑍1(𝑡 − 1) +  0.240365 𝑍2(𝑡 − 1) + 𝑒3(𝑡).  (21) 

 
3.5. Model Diagnostic  

Model diagnostic aims to determine whether the assumptions of white noise and multivariate 
normality of testing data residual data have been met. If the GSTAR(1,1) forecasting model, employing 
both location weights, satisfies the diagnostic assumptions, then the forecasting model is deemed 
suitable for air temperature forecasting. 

The residual white noise test aims to evaluate the possibility of correlation among residuals, as 
the expected nature of a GSTAR model involves independent residuals. With a significance level of 

𝛼 = 5%, the residual white noise test results conducted using the Ljung-Box-Pierce test are presented 

in Table 9. Based on this table, the p-value of both methods is greater than the 𝛼. Therefore, we 
concluded that the residual of the GSTAR(1,1) model with these two weights has satisfied the 
assumption of white noise. 

Table 9. Result of Ljung-Box-Pierce test  

Weighting Method P-Value 

Inverse Distance 0.0681 
Normalized Cross-Correlation 0.0677 

 
Based on the hypothesis testing conducted using the Kolmogorov-Smirnov test with a 

significance level of 𝛼 = 5%. The result as in Table 10. Based on this table, we concluded that the 
GSTAR(1,1) model employing both location weights has satisfied the assumption of multivariate 
normal distribution for residuals. Therefore, the GSTAR(1,1) model utilizing inverse distance 
weighting and the GSTAR(1,1) model employing normalized correlation weights have fulfilled the 
diagnostic assumptions of the model. Consequently, both models are deemed appropriate and ready 
to forecast the three research locations. 

Table 10. Result of Kolmogorov-Smirnov test  

Weighting Method P-Value 

Inverse Distance 0.1709 

Normalized Cross-Correlation 0.1652 
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3.6. Model Validation 

After the model's diagnostic assumptions are met, the next step is to obtain the best GSTAR(1,1) 
model based on the smallest value of the model's RMSE (Root Mean Square Error) calculated using 
equation (13). The best model will be used to forecast these three locations. The RMSE values 
calculated for the data are presented in Table 11. Based on ths table, it is evident that the GSTAR(1,1) 
model utilizing normalized cross-correlation weights yields an RMSE of 3.135 for forecasting air 
temperature data in the provinces of South Sumatera, Riau, and Jambi. Meanwhile, the GSTAR(1,1) 
model employing inverse distance weighting shows a higher RMSE value, precisely 3.141. Considering 
the comparison of these RMSE values, it can be concluded that the GSTAR(1,1) model using 
normalized cross-correlation weights is the most appropriate for forecasting air temperature data in 
the provinces of South Sumatera, Riau, and Jambi. 

Table 11. RMSE for GSTAR(1,1) model 

Weighting Method RMSE 

Inverse Distance 3.141 

Normalized Cross-Correlation 3.135 

3.7. Result Analysis  

In previous research, [12] predicted air temperature using ARIMA and multiple regression in East 
Kalimantan. Then, [13] used Extreme Value Theory to predict air temperature in Central Java. 
However, no research explicitly focuses on forecasting air temperature for South Sumatera, Riau, and 
Jambi provinces using the GSTAR model. 

This research showed that using the GSTAR(1,1) model effectively forecasted air temperature 
patterns in the provinces of South Sumatera, Riau, and Jambi. Using secondary data from BMKG, 
this research illustrates a robust approach to weather data analysis and modeling. Careful diagnostic 
steps, such as tests for stationarity, correlation, and spatial heterogeneity, ensure the suitability of the 
GSTAR model for the dataset used. These results are essential to understanding the region's air 
temperature data. 

This study emphasizes the importance of considering spatial proximity and temporal relationships 
in modeling. Using inverse distance and normalized cross-correlation weighting show that taking these 
two aspects into account can improve forecasting accuracy. 

Only significant parameters are used to form the GSTAR(1,1) model. Parameter estimates from 
the GSTAR(1,1) model indicate the existence of significant spatial and temporal dependencies in air 
temperature at the study location. The significant coefficients for the lagged variables in this model 
illustrate the importance of including these two dimensions in the analysis. These findings strengthen 
the model's reliability in forecasting future air temperature patterns. 

Model diagnostic, including tests for residual white noise and multivariate normality, show that 
the GSTAR(1,1) model proposed in this study meets the assumptions necessary for accurate 
forecasting. Thus, the research results provide a deeper understanding of air temperature variability at 
this location, make a valuable contribution to the field of climatology, and can be used to support 
data-based decision-making in the face of future climate change. 

 
4. CONCLUSIONS 
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This study proposes implementing the GSTAR model as a practical approach for modeling air 
temperature in South Sumatra, Riau, and Jambi Provinces, and the appropriate model is GSTAR(1,1). 
We use two weighted matrices, i.e., inverse distance and normalized cross-correlation weighting. Based 
on the smallest RMSE, the normalized cross-correlation weighting is more effective in forecasting the 
air temperature in these three provinces. The choice of model and location weighting matrix can 
significantly impact the accuracy of air temperature forecasting. This forecasting model can serve as a 
solid foundation for government, research institutions, and other stakeholders to make informed 
decisions regarding management and strategic planning for mitigating and adapting to temperature 
changes in the region. 
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