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Abstract

This study discusses the behavioral analysis model of the Susceptible-Infected-Recovered (SIR)
epidemic of the spread of measles based on age structure. The total population of measles is grouped
into four age groups, namely the first age group (0-4 years), the second age group (5-9 years), the third
age group (10-14 years) and the fourth age group (> 15 years). The steps in modeling behavior can be
done by determining the equilibrium point, and the basic reproduction number and performing a global
stability analysis by building the Lyapunov function. This research contributes to providing information
both to the government and the community.
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Abstrak

Penelitian ini membabas model analisis perilakn epidemi Susceptible-Infected-Recovered (SIR) penyebaran campark
berdasarkan struktnr umnr. Jumlah pendudnfk yang terkena campak dikelompokan menjadi empat kelompok nmnr,
yaitu kelompok umunr pertama (04 tabun), kelompok unmr kedna (5-9 tahun), kelompok nmur ketiga (10-14 tabun)
dan kelompok nmur keempat. (> 15 tabun). Langkab-langkal dalam pemodelan perilakn dapat dilakukan dengan
menentukan titik ekuilibrium, bilangan reprodufksi dasar dan melaknkan analisis stabilitas global dengan membangun
Jfungsi Lyapunov. Penelitian ini memberikan kontribusi untnk memberikan informasi baik kepada pemerintal maupun
masyarakat.

Kata Kunci: Model Epidensi; PAK; fungsi Lyapunov; Campak.

2020MSC: 00A71.

1. INTRODUCTION

The SIR (Susceptible-Infected-Recovered) Epidemic Model was first introduced by Kermack &
McKendrick in 1927. The model was developed to describe the rate of spread and extinction of disease
in an area in a closed population. This model is one of the mathematical models that can be described
in a differential equation [1], which includes linear differential equations [2] and nonlinear equations
[3]. This epidemic model contains three subclasses in an equation system, namely Swusceptible which is
a subclass of susceptible individuals in a group, znfected which is a subclass of individuals who have
been infected in a group, and Recovered is a subclass of individuals who have recovered in a group.

The SIR distribution model can be used to describe the current phenomenon, one of which is
the spread of measles. Measles is a disease caused by a virus belonging to the family Paramyxuviridae,
genus Morbillivirus. The measles virus can be spread through air contaminated with secretions from
an infected person, [4], [5], [6]. This disease is a disease that causes the main death that attacks toddlers

* Corresponding author

Submitted May 17%, 2023, Revised November 13%, 2023,

Accepted for publication November 16%, 2023, Published Online November 30%, 2023

©2023 The Author(s). This is an open-access article under CC-BY-SA license (https://creativecommons.org/licence/by-sa/4.0/)



https://creativecommons.org/licence/by-sa/4.0/

Global Stability Analysis of Susceptible, Infected, Recovered (S, I, R) Model Measles Vaccination Based on Age

and children. In the spread of measles, age distribution is one of the factors that can accelerate the
rate of spread of the disease where individuals of different ages have different levels of immunity to
infectious diseases. These differences can affect the age-specific mortality rate and the individual's
recovery rate from infection. According to the Agency for Disease Control and Prevention [7], ninety
percent of people who have interacted or made direct contact with sufferers can be infected if each
individual does not have an immune system against measles. Preferably, an individual will be immune
if they have been vaccinated or have been infected with the virus before. In a disease spread in a
population, vaccination is an effective effort to prevent and reduce the spread of measles.

In previous studies, models of the spread of measles have been constructed with different
problem constraints using various approaches [8], [9], [10], [11]. The World is in a vulnerable state in
disease spreading, facing a great loss of lives and socioeconomic aspects also. That is why ( [12]
propose a potential mathematical model with data analysis to predict and control the outcome of this
pandemic. [13] construct quadratic and logarithmic Lyapunov functions to establish the global
asymptotic stability of the two steady states. [14] Develop a stochastic model of measles transmission
dynamics with double-dose vaccination. The qualitative behavior of the model, like conditions for
positivity of solutions, invariant region of the solution, the existence of equilibrium points of the model
and their stability, and also sensitivity analysis of the model were analyzed. This model is expressed in
the form of a 6th order differential equation with state variables as follows susceptible, exposed,
infected, quarantine, recovered, and vaccination. The analysis shows that varicella dynamic behavior
depends on the basic reproduction number (Rg) [15]. The effect of vaccination on the dengue fever
epidemic described by an age-structured modified SIR (Susceptible-Infected-Retired) model is studied
using standard stability analysis. [16] Analyze the mathematical dynamics SIR transmission model of
the epidemic. To prevent this viral disease, children must receive an MMR (measles, mumps, and
rubella) vaccine twice. Based on the biological behavior of rubella disease, the SVPEIRS (susceptible,
vaccinated, protected, exposed, infected, recovered) deterministic mathematical model of rubella
disease dynamics is proposed [14]. Other influential work includes [17]. In this study, the researchers
completed research [11] that constructed a measles distribution model based on the age structure, the
researchers divided into four age groups as follows: (1) Group 1 (0-4 years); (2) Group 2 (5-9 years);
(3) Group 3 (10-14 years); (4) Group 4 (above 15 years). The mathematical model of the spread of the
measles virus explains the process of infection of an individual due to direct interaction with
individuals infected with the measles virus who will then be given treatment so that a population has
a good immune system or recovers. Parameters used in the model include vaccination effectiveness
(6k), average vaccination coverage (0y), birth rate (Ay), natural death rate (dy), death rate due to
disease (g ), as well as the rate of change in susceptible individuals becoming an infected individual
due to interactions with previously infected individuals with the rate (), and the rate of change of
infected individuals into recovered individuals (¥ ). with k = 1,2,3,4. In this study, the researcher
focuses on analyzing the global stability of the SIR epidemic model by building the Lyapunov function.
In search of global stability analysis described in [18].

2. METHOD

The research methods are

1. Analysis of the Global Stability of Equilibrium on the Dynamics of the Spread of Measles by
Age. This section will explain the global dynamic behavior analysis of the mathematical model,
namely:
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a. Analyzed the SIR model of the spread of measles using equilibrium points. Analyze the SIR
model of measles spread using equilibrium points. Two equilibrium points were obtained,
namely the disease-free equilibrium point and the endemic equilibrium point. The disease-
free equilibrium point can be obtained by assuming I = 0, while the endemic equilibrium
point can be obtained by assuming I # 0.

b. Conduct model sensitivity analysis of the basic reproduction number. The basic reproduction
number (Ry) can be determined using the next-generation matrix method

C. Analyzing the global stability of the equilibrium points of the model for the spread of measles
based on age in measles vaccination. Stability analysis can be done by constructing the
Lyapunov Function. To find out the value of the basic reproduction number (Ry) in the first,
second, third, and fourth groups, you can linearize the infected subsystem at the disease-free
equilibrium point, in the model the infected subsystem is Iy, I, I3, I4. Due to the absence of
interaction between each group, the basic reproduction number from groups I-IV is the
product of the basic reproduction number of each group.

2. Numerical simulation of behavior analysis/global stability using ODE45.

3. RESULTS AND DISCUSSION

3.1. Model Solution Limit

3.1.1. Age Group Model Solution Limit I
The dynamics model of the spread of measles group I will determine the solution limit, because
Nl =Sl+11+R1,SO

dN ds dl dR
o w Tatw A aN-mh -, W

Then, from equation (1), if the population is free from disease then

dNy

? + lel + alsl = A. (2)
The solution to the equation (2)is N;(t) = . _:; 5 + Ce~(@1*r@SDt If e substitute the initial
1 1°1
conditions, N(0) = Nywe get a special solution
N,(t) = Nje~@itasSt o  — (1 — p=(ditas Sty
(®) = Ny e )

If tit enlarges then it gets tlim N,(t) = . So it can be explained the number of human

dl +(X151

populations in the long term towards the limit capacity, namely . Furthermore, it is assumed

d1+a151

that the number of human population in the age group I (0-4 years), N; < , for each t = 0.

dl +a1$1
So model solution (1) can be defined in the area I'; with
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L, ={,,R)}ERY:S5, =>0;;, 20;R;, =0;S;, + [, + R, < ———.
1= 1S 1, Ry) + o1 1 1 A e A

3.1.2. Age Group II Model Solution Limit
The dynamics model of the spread of measles group 11 will determine the solution limit, because
Nz =Sz+12+R2,SO
dN, _ dS, | dl; | dR,

at  at + dt + a Sy — dy Ny — pply, — aS;. 3)

Then, from equation (3), if the population is free from disease then

dN,

? + dZNZ + azsz = 0(151. (4)
The solution to the equation (4) is N,(t) = % + Ce~(d2+@252)t Tf we substitute the initial
2 292
conditions, N(0) = N, we get a special solution
o157
N, () =N e—(d2+a252)t +— (1- e—(d2+a252)t .
015y

If tit enlarges then it gets tlim N,(t) = . So it can be explained the number of human

dy+a,S;

populations in the long term towards the limit capacity, namely . Furthermore, it is assumed

d2+a252

that the number of human population in age group II N, < ” (:1515 , for each t = 0. So model
2 292

solution (2) can be defined in the area I, with
o157

L={(S,I,,R)}ERY : S, >0, [, =0;R, 2 0;S, + [, + R < ——.
2 ={(S2, 12, Ry)} + 092 2 2 2T 12 2= 0+ 4,8,
3.1.3. Age Group Model Solution Limit ITI

The dynamics model of the spread of group III measles will determine the limit of the solution,

because N3 = S3 + I3 + R3, so:

dN as: al dR
o = a ta T T T %Se — daNs — psls — asSs. ©)

Then, from equation (5), if the population is free from the disease then

d

% + d3N3 + CZ3S3 = 0(252. (6)
The solution to the equation (6) is N3(t) = " izjzs + Ce~(@3+@353)t  If we substitute the initial

3 393
conditions N(0) = Ny, we get a special solution
Nz(t) = N, e—(dz+azS3)t +a2—5‘2(1 _ e—(d3+a353)t)_
If tit enlarges then it gets lim N5(t) =a2—52. So it can be explained the number of human
t—oo d3+a353
. . . . oS .o

populations in the long term towards the limit capacity, namely d3+2a253' Furthermore, it is assumed
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that the number of human population in age group III, N3 < - ‘12525 , for each t = 0. So model
3 393

solution (3) can be defined in the area I'; with
oS,

T3 ={(S3,15,R3)} ER3 : S; > 0;1; > 0; Ry = 0;S; + I; + Ry < ————.
3 3,13 3 + 3 3 3 3 3 3 d3+a353

3.1.4. Age Group Model Solution Limit IV

The dynamics model of the spread of measles group IV will determine the solution limit, because
N4_=S4_+I4_+R4_,SO

ds | dRy

dN. as.
kil g s ST +?= (X3S3 —d4N4—‘Ll4I4. (7)

dt ~ dt = dt
Then, from equation (7), if the population is free from the disease then

ANy
dat
The solution to the equation (8) is N,(t) =

+ d4N4 = (X3S3. (8)

o3S — . .o ..
; 3 4+ Ce~ %t If we substitute the initial conditions,
4

N(0) = N, we get a special solution

a3S
N4(t) = Noe_d4't + ; 3

(1 — e~ %b),

4

a253. So it can be explained the number of human populations
4

If t it enlarges then it gets tlLrg N,(t) =
o353
ds
., for each t = 0. So model solution (4) can be

in the long term towards the limit capacity, namely . Furthermore, it is assumed that the number

of human population in age group IV, N, < 0353
4

defined in the area Iy with

a3S3
dy

I, ={(S4 1y ROIERS : S, >0;1,>0;R, =>0;S,+1, + R, <

3.2. Global Stability Analysis

To simplify the calculation of the stability analysis, a stability analysis of each group will be sought
because there is no interaction between each group and other groups that can transmit the disease. In
analyzing the global stability of the disease-free equilibrium point and the endemic equilibrium point,
we can construct the Lyapunov function. Where the disease-free equilibrium point, the endemic
equilibrium point, and the basic reproduction number are referred to [11].

Theorem 5 [Global stability of the disease-free equilibrium point] The disease-free equilibrium point
is E%globally asymptotically stable if Ry < 1 and vice versa [19].

Theorem 6 [Global stability of the endemic equilibrium point] The global asymptotically stable Ry >
1 disease-free equilibrium point if E*and vice versa [19]

3.2.1. Group I Global Stability Analysis
A. Disease-free Global Stability Analysis
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Theorem 5 The disease-free equilibrium point in group T (EY) of the globally asymptotically stable
SIR model if R} < 1.

Proof:
Defined V;: Ty € R3 - R and
Vi (51; Iy, R1) = 1. )

The function V; can be called a Lyapunov function with the condition that [20]
1. The function V; is continuous and the first partial derivative is continuous on I7.
2. The first derivative of the function V; with respect to time is obtained
dv; dl
dt  dt
= (B1S? — (d1 + g +yDI)

B A(1 —6,07)
= (31 (W) —(dy+py + Y1)> I

~ (ﬁlA(l —6,0,)

d, + a, - (d1 +u + Y1)> I
p1A(1 — 6,09)
= (dy +py + ( - 1)1
(di+p+71) (dy +ay) (dy +py + 1) !

= (dy +p, + Y1)(R% - DI,.

When R} < 1,it causes % =(dy +u +y)(RE— 1)1, <0. So, % < 0, provided that

R} < 1.
3. §= {11 S % = 0} & S={l, €T |l =1}, the set S contains only equilibrium
points EJ.
avy; dl
dt — dt

= (B1SY — (dy + s +vDh)
A(l1-06
= (/31 (¥> —(dy +u + V1)) I

di +a,

_ (/31/\(1 — 6,0,

d, + —(dy +py + V1)) I

_ p1A(1 — 6,09

= it +r) <(d1 +ay) (dy + g +v1) - 1> b
= (dy+u + V1)(R% - 1) (0)

=0

Because the set S does not contain any other solutions.
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Then based on the principle of Invariant La Salle [21] the disease-free equilibrium point in age group
I E? is globally asymptotically stable.

B. Endemic Global Stability Analysis
In determining the global stability analysis, the left-hand endemic equilibrium point is made equal
to zero, so it can be written as follows:

0=(1-6y0)A— BySiI{ —d;S] — a7 (10)
0=p51 —(di +m +y)ly (11)

Theorem 6 The endemic equilibrium point in group I E; is globally asymptotically stable if Ry > 1.
Proof:

Defined V;:T; € R3 - R and
Vi(Sy1) =[Sy = S{n (i—i)] + ¢ [ — I In (j—i)] (13)

where ¢; and ¢, are positive constants and Iy = {(S3,1;) € I/S; > 0,1; > 0}.
The function V; can be called a Lyapunov function with the condition that [20]

1. 'The function V] is continuous and the first partial derivative is continuous at [5.
2. The first derivative of the function V" with respect to time is obtained

Vi(S,1) =c|S;—Sin (j—i)] + ¢ [ — I In (j—i)]
dvy(S,L) _dVvy ds; dV; dl

dt - ds, dt dI, dt
S*
=G [1 - 5_1 [((1 = 6,00)A = B;S11; — d;S; — a1 54]
1
I*
+C; [1 - i] (1815 — di1y — pa ]y — v114] (14)

Based on equations (14) and (15), we get

0=(~1-6y0)A— pySiI] — d;S] — a; 57,
(1-6101)A %
S;fo-l - Blll - al = dl’ (15)
and
0=pS117 —diIf — Iy —v1ly,
p1S1 —uy —v1 = d;. (16)

Then equations (15) and (16) can be substituted into partial derivatives (14) so we get

av; Sy
— = C1 [1 -2 [((1 = 6,00)A — 1S, — ;S — dy 4]
dt S1
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I*
+C; [1 - i] (1511 — w1y — 11y — dyi 1]
Sy (1-06,0)A
=0 [1 - 5_1] [(1 — 0100)A— By 511 — Sy — <<%> = BiIi — a1> 51]
1 1

I
+C; [1 - 1_1] (815111 — paly —yviIy — (B1ST — g — v 4]
1

*

[ Sl Sl * * Tx
=0 -(1- 6’101)/\ -1+ F + S_ — 1) = B1S1hi + 15117 — B1S114
1 1

+ c2[B1S1hh — PiSTh — .31S1£f + ,31521;]

—S:S7+ 857+ (S7)°— 5,57
= _(1_0101)/\( 121 155(* 1) 191

I 191
+ ¢ (815111 — B1SiTy — B1S117 + BiSTIT]
[S; — S71° ) -
=c |—(1 - 6’1‘71)/\7 = P1S111 + B1S11T — B1S1 L
I 121
+ c[B1S1 — B1STL — B1S1IT + B1STIT]

> = B1Sily + By S, I — .315f1fl

[S; = S11? ) )
= —-(1-6,01)A¢, TS + Bi(c; — e[S = Si1lL — I7]
191
For ¢, = ¢; = 1, so we get
dvy (S, 1) [S, — S1]?
—ar —(1-6,0))A TS; <0
av*(Sy,ly)

5o 5={synern [ ool o 5={(s enls, =5}

Because the set S does not contain other solutions or only contains equilibrium points E7.

So based on the La Salle Invariant principle, [21] the endemic equilibrium point in Group I is globally
asymptotically stable in the interior I}.

3.2.2. Group II Global Stability Analysis

A. Disease-free Global Stability Analysis
Theorem 5 The disease-free equilibrium point in group II (ES) of the globally asymptotically stable
SIR model if R§ < 1. In the same way as the previous group, it can be proven as follows

Proof:
Defined V,: T, € R® - R and
V, (52» I, Rz) = I, (17)

The function V, can be called a Lyapunov function with the condition that [20]

1. The function V;, is continuous and the first partial derivative is continuous on [.
2. The first derivative of the function V, with respect to time is obtained
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dv, _ dl,
dt  dt
= (,3253 —(dy + +E2)123 (1—0,0,)
1011 — 007
= (dy + i, + ( 2 - 1)1
(d> + 12 +72) (dy + ay) (dy + py +v2) 2
= (dy+py + Yz)(Rg - DI,

When RZ < 1,it causes % = (d, + 1, +v2)(R3 — 1)1, < 0. So, (%2 < 0, provided that
R3 < 1.

3. §= {Iz el % = O} & S ={l, €T} |l = I}, the set S contains only equilibrium points
EZ.
dV, _ dl,
dt  dt

= (3253 — (dy + uy +v2)hh)
= (dy+pu, + Yz)(Rg - 1)(0)
=0

Because the set S does not contain any other solutions.

Salle Invariant principle [21], the disease-free equilibrium point in age group 1T ESis globally
asymptotically stable.

B. Endemic Global Stability Analysis
In determining the global stability analysis, the left-hand endemic equilibrium point is made equal
to zero, so it can be written as follows:

0=(1-0,0)0,S5; — B,S;I; — d,S; — a,S; (18)
0 =B,81; — (dy + up +v2)I; (19)
0 = (6202)451 +v21; — d2R; (20)

Theorem 6 The endemic equilibrium point in group IT E; is globally asymptotically stable if R§ = 1.
Proof:
Defined V;: T, € R3® - R, and

V5 (S 15) = ¢, [S, — 5 In (Sg)] +¢ |l — ;I (15)], 1)
where ¢jand cjare positive constants andl, = {(S,, I,) € I,/S, > 0,1, > 0}.

As in the previous calculation, the function V, can be called a Lyapunov function with the condition
that [20]

1. The function V; is continuous and the first partial derivative is continuous at I',.
2. 'The first derivative of the function V3 with respect to time is obtained
av;(S,, 1) _dV, dS, N dv, dlI,
dt ~ds, dt = dl, dt
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S*
= [1 - S_z] [(1 = 6,0,) 0,81 — 25,1, — dyS, — a,S,]
2

I
+C; [1 - i] (82521, — daly — ppl, — vols]. (22)

Based on equations (18) and (19), we get

(1-60307)a15;

o = B2l; —a, = d,, (23)
2

and
B2S; — Uy — V2 = dy. (24)

Then from equations (23) and (24), it can be substituted into the partial derivative (22) so that

vy

Sz
dt

=c |1 =
Cl[ S,
I*
+C; [1 - i] [ﬁzszlz — Ul — vl — dzlz]

[S2—55]? _ _ C* 7
.5t + ,82(02 c)IS, 52][12 Iz]-
292

[(1 = 6,0,) 0,81 — 25,1, — S, — d,S,]

= -(1- 6’2‘72)0(151 1

For ¢, = ¢; = 1, so we get

avy(Sala) 4 [S2—=S3]°
— = (1-06,0,)0,S, 55 <0.
3. S = {5‘2,12 e, |%5;2'12) = 0} o S =1{S, €,|S, =5;}. Because the set S contains no

other solutions or only contains equilibrium points E.

So based on the La Salle Invariant principle, [21] the endemic equilibrium point in group II is globally
asymptotically stable in the interior I’

3.2.3. Group III Global Stability Analysis
A. Disease-free Global Stability Analysis

Theorem 5 Disease-free equilibrium point in group IT T (EY) from the global asymptotically stable
SIR model if R} < 1.

Proof:
Defined V3: T3 € R3® - R and
Vs (53' I3, R3) =I5 (25)

In the same way as the previous group, the function V3 can be called a Lyapunov function with the
condition that [20]

1. The function V3 is continuous and the first partial derivative is continuous on I3.
2. The first derivative of the function V3 with respect to time is obtained
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dv, dl,
dt  dt
= (B3S3 — (d3 + us + v3)1I3)

252
= (:33 (m) —(ds +us + )’3)) I3

= (d3 + s +v3)(R — DIs.
When R3 < 1, it causes
av.
- = s+ + ¥3)(R§ — DI < 0.
80,2 < 0, provided that R§ < 1.
avs

. =13 €l3 [—= = S5 = U3 € 13 |[j = I35, the set 5 contains only equilibrium
3. S I I o 0 S={I I |1 I3}, th S i ly equilibri

points E3. . "
S8 =S8 = (dy + 3 +3) (R — 1)(0) = 0.

Because the set S does not contain any other solutions.

Salle Invariant principle [21], the disease-free equilibrium point in age group III EY is globally
asymptotically stable.

B. Endemic Global Stability Analysis
In determining the global stability analysis, the left-hand endemic equilibrium point is made equal
to zero, so it can be written as follows:

0 = ayS; — P3S313 — (d3 + a3)S;3 (26)
0 =p38313 — (ds + us +v3)l3 27)
0 =y3l3 —d3R; (28)

Theorem 6 The endemic equilibrium point in group TIT Ej is globally asymptotically stable if R§ >
1.

Proof:
Defined V5: T3 € R3 - R and

Vi (Ss,15) = ¢, [S; — $51n (53*)] + 6|l — 5 In (13)] 29)
where ¢; and ¢, are positive constants and I3 = {(S3, I3) € [3/S; > 0,13 > 0}.

As in the previous calculation, the function V3 can be called a Lyapunov function with the condition
that [20]

1. The function V3 is continuous and the first partial detivative is continuous at I's.
2. 'The first derivative of the function V3 with respect to time is obtained
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dVg*(Sg, 13) _ dV3 ng n dV3 dI3

dt ds, dt ' dl; dt
S3
=G [1 - S_] [azS; — B3S5l5 — d3S3 — a;3Ss]
3
5
t+c; [1 - i] [B3Ssl5 — dsl3 — psls — y313]. (30)
Based on equations (26) and (27), we get
S *
a;*z — B3Iz —az = ds, (31)
and
B3S3 — 3 —vs =ds. 32)

Then equations (31) and (32) can be substituted into the partial derivative (30) so we get

avy S3
— =0 [1 - _] [ayS; — B3S313 — a3S; — d3Ss]
dt S3

I3
+C; [1 - I_] [B3S313 — uslz — y3l5 — dsls]
3

S3—53 2 * *
S5 4 B3(c; — c)[S5 — S31[1s — I3].

S3S3
For ¢, = ¢, = 1, so we get

= —0,5; ¢

* _¢*2
dV3 (53'13) — _azsz [S3 Sf] < 0.
dt S3S%
5 S={SyLen; [ = 0} o5 =(s; eT3lS, = 53}

Because the set S contains no other solutions or only contains equilibrium points E3.

So based on the La Salle Invariant principle, [21] the endemic equilibrium point in group III is globally
asymptotically stable in the interior [73.

3.2.4. Global Stability Analysis Group IV

A. Disease-free Global Stability Analysis
Theorem 5 Disease-free equilibrium point in group IV (Ef) from the global asymptotically stable
SIR model if R§ < 1.

Proof:
Defined V,:T, € R®> - R and
V4(54' Iy, R4) = 1. (33)

In the same way as the previous group, the function V, can be called a Lyapunov function with the
condition that [20]

1. The function Vj is continuous and the first partial derivative is continuous on I'y.
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2. 'The first derivative of the function V, with respect to time is obtained
dVv, _ dl,
dt — dt .
= (B4aSs — (dsy + ps +7a)1s)

S
=Qﬁ@33)—uyuu+nﬁu=<m+ufumam—nu

(dy)
When R < 1, it causes
av,
d—: = (dy + pa + ¥a)(Rg — DI, <0.

S0, =% < 0, provided that R§ < 1.

3. §= {14 er, Z—V: = O} & S={l, €T, |l =1}, the set Scontains only equilibrium
points ng.
% = i—lt = (d4 + pa +v2)(Rs — 1)(0) = 0.

Because the set S does not contain any other solutions. Salle Invariant principle [21], the
disease-free equilibrium point in the E{ global asymptotically stable age group IV.

B. Endemic Global Stability Analysis
In determining the global stability analysis, the left-hand endemic equilibrium point in the
equation (4) model is made equal to zero, so it can be written as follows:

0 = a5S; — BySil; — dsS; (34)
0 =4Sl — (dy + g +va)ly (35)
0 =yly — duRy (30)

Theorem 6 The endemic equilibrium point in group IV Ej is globally asymptotically stable if R§ = 1.
Proof:
Defined V,": T, € R?® > R and

Vi(Su L) = e[Sy =Sim ()| + e [t = 13 (7). (37)

where ¢jand cjare positive constants and [y = {(S,, 1) € T,/S, > 0,1, > 0}.

As in the previous calculation, the function V, can be called a Lyapunov function with the condition
that [20]

1. The function V" is continuous and the first partial detivative is continuous at I.
2. 'The first derivative of the function V" with respect to time is obtained

dVy (Ss, 1) _ dV, dS, N av, di,
dt -~ dS, dt dl, dt

S*
=G [1 - 5—4] [03S3 — B4Saly — dyS4]
4
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I*
+c; [1 - i] [BaSals — daly — paly — Valul. (38)
Based on equations (34) and (35), we get
S *
22— Buli = da, (39)
4
and
BaSs — Ha — Vs = dy. (40)
Then equations ( 39) and (40) can be substituted into partial derivatives (38) so we get
avy Si
dr €1 [1 - 5_4 [a5S3 — BaSals — dyS4l

*

Iy
+cC; [1 - I_] [345414 — Ualy — Valy — d414]
4

[Sa—54]? _ _C* _
.St + ,34(02 c1)[S, 54][14 14]-
494

For ¢, = ¢; = 1, so we get

= —0353 ¢y

* _¢*x]2
dV4 (54114) — _a3s3 [54 Sl:] < 0.
dt S48}
5 S={s,ler, [ = o} o 5= (s, eT,lS, = 55}

Because the set S contains no other solutions or only contains equilibrium points Ej.
So based on the La Salle Invariant principle, [21]the endemic equilibrium point in group IV is globally
asymptotically stable in the interior ['.

3.3. Numerical Simulation

To understand more clearly will be illustrated the numerical solution of the equation model (1),
(2), (3), and (4) with parameter values [10], [11]which differ from t = 0 week to t = 500 week. To
get a clear picture of the SIR model of the spread of measles based on the age structure.

A. The SIR Epidemic Model when Ry*** < 1
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Based on Figure 1, visualize a comparison chart of infection cases in each age group. The pink
graph is a graph of the infection population in the first group with vaccination parameters of 85% and
vaccination effectiveness of 85%. The yellow graph is a graph of the infection population in the second
group with vaccination parameters of 95% and vaccination effectiveness of 80%. The blue graph
shows the graph of the infection population in the third group, while the light blue graph shows the
graph of the infection population in the fourth group.

14000

e (Group 1 Infection Population
Group 2 Infection Population | -
e Group 3 Infection Population
Group 4 Infection Population

12000

10000

8000

6000

Fopulation

4000

2000

2000 L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500

Time t (week)

Figure 1 SIR Epidemic Model when Ré‘2’3’4 <1

Figure 1 is a graph depicting the dynamics model of the spread of measles in groups I, 11, 111, and
IV when Ry < 1or Ry < 1,R3 < 1, R} < 1, R¢ < 1. The basic reproduction number is obtained
by substituting the parameter values as follows:
Ry = R§ X R3 x R3 x R§ = (0.018002)(0.005272)(0.011594)(0.57) = 0.6272 X 107¢ <
1.

Based on Figure 1, it can be explained that the infected population in each age group is close to zero.
This means that Ry < 1 there are no infected individuals at any age.

B. SIR Epidemic Model Ry?** > 1

Based on Figure 2, visualize a comparison chart of infection cases in each age group. The purple graph
is a graph of the infection population in group I with vaccination parameters of 85% and vaccination
effectiveness of 85%. The yellow graph is a graph of the infection population in group II with
vaccination parameters of 95% and vaccination effectiveness of 80% infection in group III, while the
light blue graph shows a graph of the population of infections in group IV.
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Group 1 Infection Population
Group 2 Infection Population
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Figure 2 SIR Epidemic Model when Ry** > 1.

Figure 2 is a graph illustrating the dynamics model of the spread of measles in groups I, 11, 111, and
IV when Ré’2’3’4 > 1. The basic reproduction number is obtained by substituting the parameter values
as follows:

Ry = Ry X R3 X R3 x R¢ = (180.051)(52.72936)(11.59422)(573.178) = 63092696 > 1.

Based on Figure 2, it can be explained that the infected population in groups I, I1, III, and IV tends
to reach the endemic equilibrium point, which means that in groups I, II, III, and IV measles has
spread. The infected population in each group experienced asymptotic stability with the population
reaching a value, namely:

A B160101—AB+d?+u d{+yidi+adi+aiui+a
[ = —AbSatArditnditnditediteiiitans _ 468120 6,
(d1+uq1+y1) b1
1-60,05)01S1 B2 —(d3+dylup+da Vo +azdy +iaar +Yaa
I; _ (1-6205)015:1 82— (d3+dzpa+daY2+Qada +HaQa+Y22) _ 8217.082,
B2(d2+uz+v2)
a8, Bz —(d3+dspus+dsys+azds+asus+a
Iy = GSeBam(Brdsmstdsystasdstasustasys) _ 46676 03
B3(ds+usz+vysz)
a3S3Bs—(d3+daus+d
I = GSPalditdaatdan) _ 600370 4,
Ba(da+ug+ys)

Based on the results, it is known that in the group of 0-4 years of age, 468,120 people were infected
with measles. Then, in group II there was a drastic decrease of 8,217 people infected with measles.
This decrease was because, at the age of 5 — 9 years, children had received measles vaccination. Then
in the third age group, there was another increase because there was no vaccination in age groups I1I
and IV, so each person has their immune system.

4. CONCLUSIONS
In the SIR model, by defining V: T, € R® — R, the Lyapunov function that can be used is that
it can be concluded, that the V; (Sy, Ik, R) = I}, global asymptotically stable [ disease-free

159 | InPrime: Indonesian Journal of Pure and Applied Mathematics



Juhari, Olivia Karinina, Abdul Aziz, Evawati Alisah

equilibrium point E ,8 atk = 1,2,3,4 if Ry < 1, which means that in a long time the population in an
area will be free from disease as long as the number of individuals in the population of each group is
infected. New arrivals from one infected individual in all groups of susceptible individuals are worth

less than one or equal to one (Ry < 1). Then, by defining V;: T}, € R® — R, the Lyapunov function
used, it can be concluded that the Vy (Sg, Ix) = ¢y [Sk —Seln (i—k)] + ¢, [Ik —I;zIn (;—k)] global
Kk !

asymptotically stable [, endemic equilibrium point is Ejat k = 1,2,3,4if Ry = 1, which means that
in a sufficiently long period, the population in an area will cause a disease outbreak if the number of
individuals in the newly infected population comes from infected individuals. in all susceptible
individuals more than one (Ry > 1).
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