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Abstract  
In this paper, a new three-parameter distribution, which is a member of the Alpha Power Transformed 

Family of distributions, is introduced. The new distribution is a generalization of the logistic model 

called the alpha power transformed logistic (APTL) distribution. Some mathematical properties of the 

new distribution like moments, quantile function, median, skewness, kurtosis, Rényi entropy, and order 

statistics are discussed. The parameters of the distribution are estimated using the maximum likelihood 

estimation method and a simulation study is performed to investigate the effectiveness of the estimates. 

The usefulness and flexibility of the APTL distribution in modelling financial data are investigated using 

two portfolio stock indices, namely the NASDAQ and New York stock indices, both from the United 

States stock market. Based on the model selection criteria, we are able to establish empirically that the 

APTL distribution is the best for modelling the two data sets, among the various distributions compared 

in the study. For each of the data, the quantile value-at-risk estimates for the APTL distribution give 

the smaller expected portfolio loss at high confidence levels in comparison to those of the other 

distributions.  

Keywords: Alpha power transformed family of distributions; logistic distribution; maximum likelihood 
estimation; portfolio investments; value-at-risk. 

 
Abstrak 

Pada artikel ini, diperkenalkan distribusi baru dengan tiga parameter yang merupakan anggota dari keluarga distribusi 

Alpha Power Transformed. Distribusi baru ini merupakan generalisasi dari model logistik yang disebut distribusi 

Alpha Power Transform Logistics (APTL). Selain itu, dibahas pula beberapa sifat matematika dari distribusi 

tersebut yaitu momen, fungsi kuantil, median, kemiringan, kurtosis, entropi Rényi, dan statistik terurut. Parameter 

distribusi diestimasi menggunakan metode maximum likelihood estimation dan studi simulasi dilakukan untuk 

menyelidiki keefektifan estimasi. Kegunaan dan fleksibilitas distribusi APTL dalam pemodelan data keuangan 

diselidiki menggunakan dua indeks saham portofolio dari pasar saham Amerika Serikat yaitu indeks saham 

NASDAQ dan New York. Berdasarkan kriteria pemilihan model, secara empiris, dihasilkan bahwa APTL adalah 

distribusi terbaik untuk memodelkan dua set data di antara berbagai distribusi yang dibandingkan pada penelitian ini. 

Untuk setiap data, estimasi kuantil value-at-risk untuk distribusi APTL memberikan kerugian portofolio yang 

diharapkan lebih kecil dengan tingkat kepercayaan tinggi dibandingkan dengan distribusi lainnya. 

Kata Kunci: distribusi dari keluarga Alpha power transformed; distribusi logistik; maximum likelihood 
estimation; investasi portofolio; value-at-risk. 
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1. INTRODUCTION 

Portfolio investments play an important role in meeting the financial needs of investors through 
the stock market. Efficient portfolio modelling and analysis attract more investment returns to 
individual investors, corporate planners, and government policymakers. It also leads to economic 
growth, mobilization of domestic savings as well as being a source of foreign investment to the country 
[1]. Financial data, such as portfolio assets price and returns, are mostly characterized by uncertainty 
[2][3][4]. Consequently, financial analysts use probability distributions to model asset prices and 
returns as well as in the estimation of the asset's risk. Value at Risk (VaR) is a financial metric that 
assists financial institutions and investors estimate the risk of an investment. It measures the amount 
of potential loss that could happen to a portfolio investment over a specified period of time. Financial 
institutions use VaR to determine the level of cash reserves in order to lower potential portfolio losses.  

Different probability distributions have been used in the literature to model portfolio stock 
returns as well as value at risk.  The logistic distribution is used in modelling financial stock data. In 
particular, they are used in the estimation of Value at Risk (VaR) due to their fat-tailed characteristic 
[7][8].  

The cumulative distribution function (cdf) and probability density function (pdf)  of a continuous 

random variable (𝑋) that follows the logistic distribution with location parameter 𝑐 ∈ ℝ and scale 

parameter 𝑘 > 0 are defined in (1) and (2) respectively [23].  
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A widely used approach to the computation of VaR is based on the quantile function [18]. Given 

;XF   as the distribution function of a random loss 𝑋, provided the inverse of the distribution function 

exists, the quantile-based value at risk at    a level of significance, as presented in [18], is obtained as

( ) ( )1

;;  1xVaR x F  −= − , where   is the distribution parameter or parameter vector, depending on 

whether the underlying distribution contains one parameter or more parameters. In the case of the 

logistic distribution,   ( , )c k =  the VaR according to [23] is given by  

𝐹−1(𝑞) = 𝑐 + 𝑘 𝑙𝑛 (
𝑞

1−𝑞
)  , 𝑞 ∈ (0,1). 

Despite the wide acceptability of logistic distribution in modelling stock data, it has a major 
limitation. It is well known that the distribution is symmetric and leptokurtic. However, it lacks the 
asymmetry property possessed by several stock data. In recent years, there have been generalizations 
of the logistic distribution by many researchers. These include the Skewed logistic distribution and the 
type I generalized logistic distribution proposed in [9], Alpha –Skewed generalized Logistic 
distribution of type III in [10], exponentiated-exponential Logistic distribution [11], Gamma-logistic 
distribution [5], transmuted type II generalized logistic distribution [6], among others. Certainly, these 
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generalizations have helped in achieving asymmetry, enhancing the flexibility of the concerned model, 
exploring tail properties, and improving the goodness of fit in several situations. 

Amidst the different methods that have been used in generalizing univariate distributions like the 
logistic distribution, the Alpha power transformation method introduced by [12] has shown to be very 
efficient in incorporating skewness and increasing the flexibility of the baseline distributions.  

For an arbitrary parent cumulative distribution function 𝐺(𝑥), the cdf of the Alpha Power 
Transformed – G family of distributions is given by 
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and its probability density function (pdf) is 
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In the literature, some univariate probability distributions have been generalized using this Alpha 
Power Transformation method. Some of these distributions include the Alpha power transformed 
(APT) Pareto distribution (see [13]), the APT Lindley distribution (see [14]), the APT Weibull-G family 
of distributions (see [15]), the APT inverse Lomax distribution (see [16]) and APT log-logistic 
distribution (see [17]). To the best of our knowledge, this alpha power transformation technique is yet 
to be used to generalize the logistic distribution. This article extends the logistic distribution through 
the alpha power transformation method. Fundamental properties of the new distribution are 
extensively emphasized while attention is given to its financial time series applications, especially the 
computation of the value at risk (VaR).   

The rest of this paper is designed as follows. Section 2 presents the Alpha power transformed 
logistic (APTL) distribution.  Moments and other properties of the distribution are derived in Section 
3. Section 4 is dedicated to the maximum likelihood estimation of the parameters of the distribution. 
A simulation study based on the model is carried out in Section 5. In Section 6, the distribution is 
applied to real data sets. Value-at-risk estimates of the distribution are obtained in section 7. The 
conclusion of this article is presented in Section 8. 

  
2. THE APTL DISTRIBUTION 

The random variable (r.v) 𝑋 is said to have an APTL distribution with three parameters 𝛼, 𝑐, and 

𝑘 if the cdf of 𝑋, for 𝑥 ∈ ℝ, is obtained by substituting (1) into (3), as presented in (5) 
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The pdf that corresponds to (5) is given by 
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Figure 1 contains the graphs of the pdf of APTL distributions for various values of its parameters. It 
follows that the distribution can be right-skewed and unimodal. 

Figure 1. Plots of the pdf of the APTL distribution for various values of its parameters. 
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If 𝑋 has an APTL distribution with the cdf and pdf stated in (5) and (6) respectively, we write 

~ ( , , ).X APTL c k For the APTL distribution, the survival function 𝑆(𝑥), and the hazard rate 

function ℎ(𝑥) are given by 
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In Figure 2, we have the plots of the hazard rate function (h(x)) corresponding to various values 
of the APTL distribution. So far, we can say that the hazard rate function for APTL distribution can 

be an increasing function of 𝑥. 

  
Figure 2. Plots of the hazard rate function of the APTL distribution for various values of its parameters 
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3. PROPERTIES OF THE APTL DISTRIBUTION 

This section deals with some statistical properties of the APTL distribution. 

3.1 Moments 

Theorem 1. Let 𝑋 be a random variable (r.v) from the APTL distribution, then the rth moment of X 
is  
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The pdf of APTL distribution in (6) is given as  
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The mean of the APTL distribution is obtained by putting r = 1. 
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The variance of the APTL distribution is given as 
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Figure 3 depicts the mean and variance of the APTL distribution based on the chosen values of 
the parameters. 

 

 

 

Figure 3. Plots of the mean and variance of the APTL distribution. 
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3.2  Quantile function and the related measures of skewness and kurtosis 

The quantile function ( qx ) of the APTL distribution is determined using (12).  
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Thus, the qth quantile function is given by 
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 The median can be obtained as  
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The analysis of the shape of the APTL distribution can be performed by the study of skewness 

and kurtosis. The skewness (𝑆𝑘) and kurtosis (K) of the APTL distribution are obtained using Bowley's 
coefficient of skewness and Moor’s coefficient of Kurtosis respectively as presented in [16]. They are 
given by 
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The plots of the skewness and kurtosis are presented in Figure 4. Consequently, the distribution can 
be left-skewed or right-skewed. For the plotted values, the graphical representation of the Moors’ 

kurtosis indicates that the APTL distribution can also be platykurtic. 

3.3 Rényi Entropy 

For a given pdf, the Rényi entropy is defined by 
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Figure 4. Bowley’s skewness and Moors’ kurtosis plots for APTL distribution for c = 1. 
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Applying the definite integral: 
0

1
   ,   0pxe dx p

p



− =  . 

Then, the Rényi entropy is  

 ( )
( )

( )
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 
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   − +
= +     − − +   

 .               (18) 

    
3.4  Order Statistics 

Let 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛 be a random sample from the APTL distribution with their respective order 

statistics 𝑋(1), 𝑋(2), 𝑋(3), … , 𝑋(𝑛). Then the pdf of the kth order statistic 𝑋(𝑘), is calculated as  

  ( )
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1 11
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where Ω 1

x c

ke

− 
− 
 = + .           

The pdfs of the first and nth-order statistics of the APTL distribution are respectively given as  

  ( )
( ) ( )
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and 

  ( )
( ) ( )

( ) ( )
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1 1
Ω

2 2

ln  Ω 1
1
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.

1 Ωn
n

n

x n

n
f x

n






− −

+

−
= −

− −
   (21) 

 
4. ESTIMATIONS 

This section discusses the parameter estimation of the APTL distribution using the maximum 
likelihood (ML) method. The ML method is widely used due to its desirable properties namely 
consistency, asymptotic efficiency, and invariance (see [18]). In addition, the ML method has been 
proven to outperform other methods of estimating parameters (see [16]). 

4.1   ML Estimation 

Let 𝑋1, 𝑋2, , … , 𝑋𝑛 be observed values from the APTL distribution. Given pdf  
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The likelihood function = ( ) ( )
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The maximum likelihood estimators (MLEs) of the proposed model parameters 𝑐, 𝑘 and 𝛼 are 
obtained using the log-likelihood function given 
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The derivatives of (23) with respect to 𝑐, 𝑘 and 𝛼 are given by 
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The ML estimators of the parameters ,   c k and α are obtained by equating (24), (25), and 26) to zero 

and solving simultaneously. At this point, it is obvious that only a numerical approach can be used to 
solve the equations. Interestingly, the R package is useful in obtaining the solution. 
 
5. SIMULATION STUDY 

In this section, the parameter estimates of the APTL distribution, the mean square error as well 
as the bias measure are computed using a simulation study. To achieve this, 1000 random samples 

from different sample sizes 𝑛 = 25, 50, 100, and  150 are generated from the APTL distribution. 

Two sets of parameters as assigned as follows; Set 1.  �̂� = 0.5, 𝑐̂ = 0.3, �̂� = 0.5 and Set 2. �̂� =

2, 𝑐̂ = 3, �̂� = 4.5. The average estimates, MSEs, and Bias for the different sample sizes for sets 1 
and 2 using the R package are presented in Table 1. 

 
Table 1.  Estimates, MSEs, and bias of APTL distribution for 2 sets of parameters. 

 

6. APPLICATION TO DATA 

This section shows how effective and flexible the APTL model is in modelling financial data 
when compared to some existing distributions. The log-returns of a portfolio of stock index are used 
in determining this. Two sets of portfolio stock indices, the New York Stock Index and the NASDAQ 
stock index are used. These two stock indices are used in this analysis because they were listed as the 
two most valuable stock indices in the world, by market capitalization, as of December 2020 by some 
leading stock investment websites such as www.caproasia.com, www.markets.businessinsider.com, 
and www.ig.com. Data of weekly opening stock prices of the New York Stock Index and NASDAQ 
stock index from 01/01/2007 to 31/12/2020 is collected from https://finance.yahoo.com. Each of 
the two data sets is converted into weekly log returns using the formula 

1log t
t

t

P
R

P

−
 

=  
 

, 

Set 1.   �̂� = 𝟎. 𝟓, �̂� = 𝟎. 𝟑, �̂� = 𝟎. 𝟓 

n Average Estimate MSEs Bias 

     �̂�                  �̂�                  �̂�     �̂�                �̂�                �̂�     �̂�              �̂�                   �̂� 

25 

50 

100 

150 

0.7949          0.2216          0.4420 

0.5356          0.4020          0.5117 

0.5703          0.4204          0.5084 

0.5017          0.4401          0.5145 

0.2020        0.1231         0.0012 

0.1840        0.0937         0.0012 

0.1788        0.8692         0.0043 

0.1651        0.8446         0.00 

0.2949      -0.0784        -0.0580 

0.0356      0.1020          0.0117 

0.0703      0.1204          0.0084 

0.0017      0.1401          0.0145 

 

Set 1.   �̂� = 𝟐, �̂� = 𝟑, �̂� = 𝟒. 𝟓  

n Average Estimate MSEs Bias 

     �̂�                  �̂�                  �̂�     �̂�                �̂�                �̂�     �̂�              �̂�                   �̂� 

25 

50 

100 

150 

0.7085          1.9432          4.1290 

0.2200          5.1081          4.6335 

0.3818          3.7061          4.5121 

0.3624          3.1486          4.5300 

0.4274        3.3505         0.4125 

0.1532        22.221         0.0891 

0.1920        16.4531       0.0048 

0.1532        0.9273         0.0329 

0.5085      -0.0568        -0.3710 

0.0200      2.1081          0.1335 

0.1818      0.7061          0.0121   

0.1624      0.1486          0.0300 

http://www.ig.com/
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where 
tP  is the closing price at period t. 

Table 2 contains descriptive statistics for the log-returns of the two data. It is crystal clear that 
the returns of both data are negatively skewed and leptokurtic. 

Table 2. Descriptive Statistics for log returns of NASDAQ and New York Data. 

Log Returns Mean Standard Deviation Skewness Kurtosis 

NASDAQ 0.0010 0.0124 -0.7094 7.0239 

New York Stock 0.0003 0.0120 -1.1696 13.1887 

 

Furthermore, we fit each of the APTL distribution, normal distribution, logistic distribution, 
Kumaraswamy logistic, odd Lindley logistic, and Cauchy distributions to each of the transformed data. 
In each case, we compare the fits of the distributions using the Akaike Information Criterion (AIC), 
Consistent Akaike Information criterion (CAIC), Hannan-Quinn Information criterion (HQIC), and 
Bayesian Information criterion (BIC). Using notations, according to [22], are given by 

 𝐴𝐼𝐶 = −2ℓ(𝜃) + 2𝑚,           (27) 

 B𝐼𝐶 = −2ℓ(𝜃) + 𝑚 × 𝑙𝑛(𝑛),          (28) 

 𝐶𝐴𝐼𝐶 = −2ℓ(𝜃) + 𝑚[𝑙𝑛(𝑛) + 1],         (29) 

 𝐻𝑄𝐼𝐶 = −2ℓ(𝜃) + 2𝑚 × 𝑙𝑛[𝑙𝑛(𝑛)],         (30) 

where  ℓ(𝜃) is the log-likelihood function, 𝑚 is the number of parameters and 𝑛 is the sample size. 
The ML estimates for the competitive distributions and the numerical results of some measures 

of goodness of fit for the log of returns of NASDAQ stock index data obtained using the R statistical 
software are shown in Table 3. Table 4 also presents the ML estimates and the numerical results for 
some measures of goodness of fit for all the competitive models for New York stock index data.  

 
Table 3. Estimated model parameters, LL, and goodness of fit measures for the NASDAQ stock index. 

   The Goodness of Fit Measures 

Distribution  Estimates                    AIC CAIC BIC HQIC 

APTL (𝛼, 𝑐, 𝑘) 0.0098 0.014 0.0074  2224.7 - 4443.4 -4426.6 - 4429.6 - 4438.0 

Cauchy (𝛼, 𝛽) 0.0022 0.0059   2160.9 - 4317.8 -4306.6 - 4308.6 - 4313.8 

Logistic (𝑏, 𝑐) 0.0016 0.0063   2213.9 - 4423.8 -4412.7 - 4414.7 - 4420.3 

Kumaraswamy 

Logistic (𝑎, 𝑏, 𝑐, 𝑑) 

0.0061 0.0062 0.795 1.2930 2220.7 - 4433.4 -4411.0 - 4415.0 - 4426.3 

Odd Lindley  

logistic (𝛼, 𝛽, 𝜃) 

21.59 0.0473 0.0133  2095.4 - 4184.7 -4168.0 - 4171.0 - 4179.4 

Normal (𝜇, 𝜎) 0.0010 0.0124   2166.1 - 4328.2 -4324.6 - 4319.0 - 4324.6 
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Table 4. Estimated model parameters, LL, and goodness of fit measures for the New York stock index. 

   The Goodness of Fit Measures 

Distribution  Estimates   AIC CAIC BIC HQIC 

APTL (𝛼, 𝑐, 𝑘) 0.0113  0.0123 0.0067  2290.1 - 4574.1 -4557.4 - 4560.4 - 4568.8 

Cauchy (𝛼, 𝛽) 0.0013  0.0048    2267.7 - 4531.3 -4520.1 - 4522.1 - 4527.8 

Logistic (𝑏, 𝑐) 0.0008 0.0058   2276.0 - 4548.0 -4536.8 - 4538.8 - 4544.5 

Kumaraswamy 

Logistic (𝑎, 𝑏, 𝑐, 𝑑) 

0.0046 0.0056 0.8093 1.2742  2282.0 - 4556.1 -4533.7 - 4537.9 - 4549.0 

Odd Lindley  

logistic (𝛼, 𝛽, 𝜃) 

21.57 0.0477 

 

0.0138 

 

 2095.9 - 4185.8 -4169.1 - 4172.1 - 4180.5 

Normal (𝜇, 𝜎) 0.0003 0.0120   2191.9 - 4379.9 -4368.7 - 4370.7 - 4376.3 

   

The lower the values of the AIC, BIC, CAIC, and HQIC the better the fit to the data. Based on 
the results in Tables 3 and 4, we can see that the APTL model has the smallest values of AIC, CAIC, 
HQIC, and BIC. According to these criteria, we conclude that the APTPL model is the best-fitted 
model compared to the other competitive models. Plots of the estimated densities and cdfs for 
NASDAQ and New York data are respectively given in Figures 5 and 6. The figures all indicate that 
the APTL distribution fits both data well. 

 
 

Figure 5. Plots of the estimated pdfs (left panel) and cdfs (right panel) for the log returns of NASDAQ data. 
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Figure 6.  Plots of the estimated pdfs (left panel) and cdfs (right panel) for the log returns of New York stock 
data. 

 
7. ESTIMATION OF QUANTILE-BASED VALUE AT RISK (VAR) 

We estimate the quantile-VaR for the APTL distribution and the other competing distributions 
by replacing their parameters with their respective maximum likelihood estimates obtained from the 
NASDAQ and New York (NY) stock data.  The 95%. 96%, 97%,98%, and 99% confidence levels 
quantile-based VaR estimates for the NASDAQ stock index data and New York stock index data are 
shown in Table 5. From Table 5, it is obvious that the higher the level of confidence (like 98% and 
99%), the lower the VaR estimate corresponding to the APTL distribution than those of normal, t, 
and Cauchy distributions for both the NY and NASDAQ stock indices. This implies the APTL 
distribution gives lower expected portfolio loss at higher confidence levels than the normal, t, and 
Cauchy distributions. Since financial institutions and regulators use VaR estimates based on a 99% 
confidence level [21], it is then evident that the APTL distribution is preferable for use by financial 
regulators in estimating value at risk compared to the logistic, Normal, and Cauchy distributions. So 
from the VaR estimates obtained, based on APTL distribution, we can say there is 99% confidence 
that the expected weekly loss for investing in the NASDAQ stock index and New York stock index 
will not exceed 2.01% and 1.72% respectively. Meanwhile, the VaR estimates also show that (VaR of 
0.0172) it is less risky to invest in the New York stock index (VaR of 0.0172) than the NASDAQ stock 
index (VaR of 0.0201).  
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Table 5. Quantile-based VaR estimates of distributions for NASDAQ and New York stock indexes. 

 NASDAQ stock index 

Distribution Quantile VaR estimates at different confident levels 

 99% confidence 

level 

98% confidence 

level 

97% confidence 

level 

96% confidence 

level 

95% confidence 

level 

APTL 0.0201 0.0248 0.0288 0.0324 0.0358 

Logistic 0.0305 0.0261 0.0235 0.0216 0.0201 

Normal 0.0298 0.0265 0.0243 0.0227 0.0214 

Cauchy 0.1899 0.0960 0.0646 0.0489 0.0395 

  

New York Stock index 

Distribution Quantile VaR estimates at different confident levels 

 99% confidence 

level 

98% confidence 

level 

97% confidence 

level 

96% confidence 

level 

95% confidence 

level 

APTL 0.0172 0.0211 0.0244 0.0275 0.0303 

Logistic 0.0275 0.0234 0.0210 0.0192 0.0179 

Normal 0.0282 0.0249 0.0229 0.0213 0.0200 

Cauchy 0.1540 0.0776 0.0521 0.0393 0.0316 

 

8. CONCLUSIONS 

In this research, we introduced and studied the alpha power transformed logistic distribution. 
Some mathematical properties of the APTL distribution are investigated. Estimation of the 
distribution parameters is done using the ML method of estimation and a simulation study is also 
performed to investigate the effectiveness of the estimates. Two portfolio stock indices, the NASDAQ 
and New York stock indices are used to show the flexibility of the APTL model, and the results show 
it is a better alternative than some familiar distributions like the Cauchy distribution, logistic 
distribution, Kumaraswamy logistic distribution, odd Lindley logistic distribution, and normal 
distributions used in literature to model stock portfolio data. The Value-at-risk estimates obtained also 
showed that the APTL distribution VaR estimates give lower expected maximum possible loss for 
both the NASDAQ and New York stock indices at higher confidence levels than those of the normal, 
logistic, and Cauchy distributions. It was also concluded, based on the VaR estimates, that it is less 

risky to invest in the New York stock index than the NASDAQ stock index.  
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