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Abstract  
Dengue fever is one of the most infectious diseases in the world, according to data issued by the World 

Health Organization in 2014. It is responsible for a huge number of deaths each year around the world, 

particularly in tropical nations. The dengue virus (DENV) causes dengue fever, which is spread by the 

female Aedes aegypti mosquito. We provide a mathematical model of dengue fever transmission 

through hospitalization with optimal management in this paper. Before being simulated in MATLAB, 

this optimum control problem is numerically resolved. Vaccination, pesticide use, and prevention are 

all examples of optimal control in this study. The simulation results demonstrate that dengue infection 

can be considerably reduced by vaccination, pesticide use, and prevention.  

Keywords: Dengue fever; Mathematical modelling; Optimal control. 

 
Abstrak 

Demam berdarah adalah salah satu penyakit paling menular di dunia, menurut data yang dikeluarkan oleh Organisasi 

Kesehatan Dunia pada tahun 2014. Penyakit ini menyebabkan banyak kematian setiap tahun di seluruh dunia, 

terutama di negara-negara tropis. Virus dengue (DENV) menyebabkan demam berdarah, yang disebarkan oleh 

nyamuk Aedes aegypti betina. Kami menyediakan model matematis penularan demam berdarah melalui rawat inap 

dengan penatalaksanaan optimal dalam makalah ini. Masalah kontrol optimal ini diselesaikan secara numerik sebelum 

disimulasikan di MATLAB. Vaksinasi, penggunaan pestisida, dan pencegahan merupakan contoh pengendalian yang 

optimal dalam penelitian ini. Hasil simulasi menunjukkan bahwa infeksi dengue dapat dikurangi dengan vaksinasi, 

penggunaan pestisida, dan pencegahan. 

Kata Kunci: Demam berdarah; Pemodelan matematika; Kontrol optimal. 
 
2020MSC: 00A71, 92B05.  
 
 

1. INTRODUCTION 

Dengue fever is transmitted to humans by female Aedes aegypti and Aedes albopictus 
mosquitoes, according to WHO (World Health Organization) data from 2012 [1]. When a person is 
afflicted with dengue fever, the virus is carried in his body and transmitted to uninfected mosquitoes 
when the insect bites the human. Once a mosquito has been infected with dengue fever, it can spread 
the disease for the rest of its life. This is owing to mosquitoes' relatively short lifespan (1-2 months 
[2]). The dengue virus can be transferred vertically through birth with a 75 percent likelihood [3], in 
addition to a mosquito that can be infected by biting an infected human. 

DENV-1, DENV-2, DENV-3, and DENV-4 are the four known dengue viruses. Although 
recovery from dengue fever caused by one of the above viruses can provide lifelong immunity to that 
virus, it does not provide lifelong protection to the other three. A second infection by a different virus 
may put victims at increased risk [1]. The dengue virus is the primary cause of dengue fever, also 
known as vector-borne illness.  The main mode of transmission to the human population is through 
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mosquito bites carrying the dengue virus (female mosquito) [4]. The virus is spread by infected 
mosquitoes who take a blood meal from an affected person and then pass it on to other healthy 
people. Furthermore, recovery from one DENV serotype makes a person immune to the other 
serotypes permanently and partially or temporarily [5]. 

Vaccination is one of the treatments available for the dengue virus. Dengue fever vaccinations 
have been licensed for use in preventing dengue transmission with efficacy ranging from 54 to 77 
percent [6]. The vaccine's effectiveness is strongly reliant on the age group and transmission level [7]. 
In places with high transmission rates, Ferguson et al.[7] discovered that immunization benefited all 
groups (seronegative and seropositive). Secondary infections may be more common in locations with 
low and moderate transmission rates. Furthermore, Zheng et al.[8] conducted a cost-benefit study of 
dengue vaccine use and discovered that widespread vaccination would cut annual disease costs in Latin 
American and Asian countries by roughly 22-23 percent. 

In the literature [9][10] and references therein, there exist different mathematical models that 
address dengue dynamics. In [11] is a list of current research publications that have reported on dengue 
infection using real data. Many studies involving more components, such as age structure factors [12], 
human population variables [13][14], and models of dengue fever in the human body involving 
multiple strains, have been inspired by [14][15]. Dengue modeling is briefly treated in [16], both in a 
deterministic and stochastic sense. In addition to showing the pattern of dengue fever spread, whether 
in a closed community or not, mathematical models have been widely employed to develop techniques 
for preventing dengue fever. Many of these studies have centered on mosquito population 
management. Laboratory research [17][18][19] preceded these studies, which were followed by the 
development of mathematical models that could be used to forecast the long-term dynamics of dengue 
fever [20][21] while taking human intervention into account. Dengue fever is a mosquito-borne 
disease. To determine the most efficient preventative approach, several mathematical models were 
developed as a preliminary study [22][23]. In [24] investigates a hybrid technique for predicting dengue 
fever. In [25], the dynamics of dengue fever are proposed in the context of temperature and mosquito 
control, as well as human migration. In [26] the dengue model using human instances has been 
reported. Researchers have applied the optimal control technique to a range of issues [27][28]. For 
example, in [27], the authors used the spectral linear filter approach to solve stochastic optimum 
control problems and presented their findings. In [29] investigated the dynamics of dengue fever in 
asymptomatic carriers, as well as the use of appropriate control techniques. In [28] considers a SIR 
epidemic model with the best impulse control. In [11] consider a mathematical model of dengue in 
East Java, Indonesia, where in this study only two optimal controls were given. 

The authors are encouraged to undertake a study on the mathematical model of dengue disease 
by proposing three optimal controls in the form of prevention, pesticide, and immunization based on 
these investigations. Based on the literature review, the state of the art from this study is a 
mathematical model of dengue fever with three optimal controls, which will be solved numerically 
and simulated using MATLAB software. This control is expected to offer information to readers, 
particularly the government in the field of health, to make decisions about dengue fever cases in 
Indonesia, as well as researchers in the field of applied mathematics as a reference for the creation of 
future research. 
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2. METHODS 

This section describes a host-vector paradigm for mosquito-borne diseases. Five human (host) 

populations, recovered (𝑅𝑚), hospitalized and/or notified infectious (𝑃𝑚), infectious (𝐼𝑚), exposed 

(𝐸𝑚), susceptible (𝑆𝑚) and three mosquito populations, infectious (𝐼𝑛), exposed (𝐸𝑛), susceptible 

(𝑆𝑛), and make up the host-vector model. As a result, 𝑁𝑚 = 𝑆𝑚 + 𝐸𝑚 + 𝐼𝑚 + 𝑃𝑚 + 𝑅𝑚 denotes the 
whole human population. Here, we address a new class of persons known as hospitalized individuals 

who have been alerted of an infection, as demonstrated by 𝑃𝑚. The participants in 𝑃𝑚 class are thought 
to be those who have been registered at the hospital and have been identified as confirmed dengue 

sufferers. We believe, however, that the population in 𝐼𝑚 class can recover without entering 𝑃𝑚 class. 

All human hosts in the 𝑃𝑚(𝑡) class are completely protected, meaning they do not transmit disease to 
mosquitos or contribute to disease transmission. The dynamics of host-vector dengue fever are 
described by a dynamic function of differential human mathematical formulas, that is provided as [11]: 

𝑑𝑆𝑛

𝑑𝑡
= 𝛬𝑛 − 𝛽𝛼𝑛𝑆𝑛

𝐼𝑚

𝑁𝑚
− 𝜇𝑛𝑆𝑛 ,                                                   (1) 

𝑑𝐸𝑛

𝑑𝑡
= 𝛽𝛼𝑛𝑆𝑛

𝐼𝑚

𝑁𝑚
− (𝛾𝑛 + 𝜇𝑛)𝐸𝑛,                                                 (2) 

𝑑𝐼𝑛

𝑑𝑡
= 𝛾𝑛𝐸𝑛 − 𝜇𝑛𝐼𝑛 ,                                                        (3) 

𝑑𝑆𝑚

𝑑𝑡
= Λ𝑚 − 𝛽𝛼𝑚𝐼𝑛

𝑆𝑚

𝑁𝑚
− 𝜇𝑚𝑆𝑚,                                                 (4) 

𝑑𝐸𝑚

𝑑𝑡
= 𝛽𝛼𝑚𝐼𝑛

𝑆𝑚

𝑁𝑚
− (𝛾𝑚 + 𝜇𝑚)𝐸𝑚,                                               (5) 

𝑑𝐼𝑚

𝑑𝑡
= 𝛾𝑚𝐸𝑚 − (𝜂 + 𝑞1 + 𝜇𝑚)𝐼𝑚,                                               (6) 

𝑑𝑃𝑚

𝑑𝑡
= 𝜂𝐼𝑚 − (𝛿 + 𝑞2 + 𝜇𝑚)𝑃𝑚,                                                (7) 

𝑑𝑅𝑚

𝑑𝑡
= 𝑞1𝐼𝑚 + 𝑞2𝑃𝑚 − 𝜇𝑚𝑅𝑚.                                                 (8) 

Initially 𝑆𝑛(0) = 𝑆𝑛0 ≥ 0,𝐸𝑛(0) = 𝐸𝑛0 ≥ 0, 𝐼𝑛(0) = 𝐼𝑛0 ≥ 0, 𝑆𝑚(0) = 𝑆𝑚0 ≥ 0, 𝐸𝑚(0) =
𝐸𝑚0 ≥ 0, 𝐼𝑚(0) = 𝐼𝑚0 ≥ 0, 𝑃𝑚(0) = 𝑃𝑚0 ≥ 0,𝑅𝑚(0) = 𝑅𝑚0 ≥ 0. 

The recruitment rates of the vector Λ𝑛 and Λ𝑚  host are given by vand and h in the above model, 

respectively (see Figure 1). The biting rate of mosquitos is the variable 𝛽. 𝛼𝑛 depicts the chance of 

transmission between infected humans and mosquitos. Humans have a natural death rate of 𝜇𝑚, 

whereas mosquitos have a rate of 𝜇𝑛. The parameter 𝛾𝑛 denotes the mosquito population's incubation 

period, while 𝛾𝑚 denotes the human incubation period. 𝛼𝑚 is the chance of transmission between 
infected mosquitos and susceptible people. The confirmed dengue-infected cases that have been 

notified or hospitalized are displayed 𝜂. The natural recovery of infected persons is provided by 𝑞1, 

whereas confirmed dengue patients are recovered at a rate of 𝑞2. 𝛿 demonstrates the fatalities caused 
by dengue fever infection. Table 1 summarizes the comprehensive definitions including the input 
variables to model (1)-(8). 
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Figure 1. Social hierarchy-structured dengue model. 
 

3. RESULTS AND DISCUSSION 

3.1 Model Analysis 

In this part, we examine the stability findings for the model that was suggested at the disease-free 

equilibrium (DFE) 𝐸0. The following expressions are produced when we put the right side of the 

dengue model (1)-(8) equal to zero. 

𝐸0 = (𝑆𝑛
0, 0,0, 𝑆𝑚

0 , 0,0,0,0) = (
Λ𝑛

𝜇𝑛
, 0,0,

Λ𝑚

𝜇𝑚
, 0,0,0,0). 

For the dengue model, we use the next-generation matrix technique to get the fundamental 

reproduction number or r. Take into consideration that the dengue model’s (1)-(8) infected 

compartments are 𝑃𝑚 , 𝐼𝑚, 𝐸𝑚 , 𝐼𝑛 ,  𝐸𝑛. By following the directions provided in [31] and applying them 

in [32, 33], the following matrices were produced: 

𝐹 =

(

  
 

0 0
𝛽𝛼𝑛𝜇𝑚Λ𝑛

Λ𝑚𝜇𝑛
0 0

0 0 0 0 0
0 𝛽𝛼𝑚 0 0 0
0 0 0 0 0
0 0 0 0 0)

  
 

,  𝑉 =

(

 
 

𝑘1 0 0 0 0
−𝛾𝑛 𝜇𝑛 0 0 0
0 0 𝑘2 0 0
0 0 −𝛾𝑚 𝑘3 0
0 0 0 −𝜂 𝑘4)

 
 

, 

𝑘1 = (𝛾𝑛 + 𝜇𝑛), 𝑘2 = (𝛾𝑚 + 𝜇𝑚), 𝑘3 = (𝜂 + 𝑞1 + 𝜇𝑚), 𝑘4 = (𝛿 + 𝑞2 + 𝜇𝑚). The spectral radius 

of the matrix ℛ0 = 𝜌(𝐹𝑉−1), which can be obtained by the formula that follows, can be used to 

derive the basic reproduction that is necessary for the given model ℛ0
2 =

𝛽2𝛼𝑚𝛾𝑚𝜇𝑚𝛼𝑛𝛾𝑛Λ𝑛

𝑘1𝑘2𝑘3Λ𝑚𝜇𝑛
2 . 

The virus will propagate across the population if ℛ0 > 1; otherwise, it won't when ℛ0 < 1 for 

biological modelling. In general, it is more difficult to contain an epidemic when the value of ℛ0 is 

high. The following examples show the disease-free equilibrium's (DFE) local stability at 𝐸0. 
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Theorem 1. When 0 > 1, the DFE 𝐸0 is a locally stable asymptotically equilibrium for the system 

(1)-(8). 

 

Proof. We must evaluate model (1)-(8) at the DFE 𝐸0 to obtain the Jacobian matrix, and we have 

to do this to establish the provided theorem. 

𝒥(𝐸0) =

(

 
 
 
 
 
 
 

−𝜇𝑛 0 0 0 0 −
𝛽𝛼𝑛𝜇𝑚Λ𝑛

Λ𝑚𝜇𝑛
0 0

0 𝑘1 0 0 0
𝛽𝛼𝑛𝜇𝑚Λ𝑛

Λ𝑚𝜇𝑛
0 0

0 𝛾𝑛 −𝜇𝑛 0 0 0 0 0
0 0 −𝛽𝛼𝑚 −𝜇𝑚 0 0 0 0
0 0 𝛽𝛼𝑚 0 −𝑘2 0 0 0
0 0 0 0 𝛾𝑚 −𝑘3 0 0
0 0 0 0 0 𝜂 −𝑘4 0
0 0 0 0 0 𝑞1 𝑞2 −𝜇𝑚)

 
 
 
 
 
 
 

. 

The eigenvalues −𝑘4, −𝜇𝑚 , −𝜇𝑚 , −𝜇𝑛  of the preceding matrix 𝐽(𝐸0) are negative, but the other 

four eigenvalues with negative real portions can be found by solving the equations that follow: 

𝜆4 + (𝑘1 + 𝑘2 + 𝑘3 + 𝜇𝑛)𝜆3 + (𝑘3𝜇𝑛 + 𝑘2(𝑘3 + 𝜇𝑛) + 𝑘1(𝑘2 + 𝑘3 + 𝜇𝑛))𝜆2 +

(𝑘2𝑘3𝜇𝑛 + 𝑘1(𝑘3𝜇𝑛 + 𝑘2(𝑘3 + 𝜇𝑛))) 𝜆 + (𝑘1𝑘2𝑘3𝜇𝑛(1 − ℛ0
2)) = 0. 

For the given circumstances, the coefficient should meet the Rough-Hurtwiz requirements, which can 

be done with ease. This criteria is met and provided through,  

ℶ = 𝑘1
2(𝑘2 + 𝑘3 + 𝜇𝑛)[𝑘2(2𝑘3(1 + ℛ0

2)𝜇𝑛 + 𝑘3
2 + 𝜇𝑛

2) + 𝑘2
2(𝑘3 + 𝜇𝑛) + 𝑘3𝜇𝑛(𝑘3 + 𝜇𝑛)]

+ 𝑘1
3[𝑘2(𝑘3(2 + ℛ0

2)𝜇𝑛 + 𝑘3
2 + 𝜇𝑛

2) + 𝑘2
2(𝑘3 + 𝜇𝑛) + 𝑘3𝜇𝑛(𝑘3 + 𝜇𝑛)]

+ 𝑘1(𝑘2
3(𝑘3(2 + ℛ0

2)𝜇𝑛 + 𝑘3
2 + 𝜇𝑛

2) + 𝑘3𝑘2(2 + ℛ0
2)𝜇𝑛(𝑘3 + 𝜇𝑛)2

+ 𝑘3
2𝜇𝑛

2(𝑘3 + 𝜇𝑛)) + 𝑘1𝑘2
2(𝑘3 + 𝜇𝑛)(𝑘3(2ℛ0

2 + 3)𝜇𝑛 + 𝑘3
2 + 𝜇𝑛

2)

+ 𝑘2𝑘3(𝑘2 + 𝑘3)𝜇𝑛(𝑘2 + 𝜇𝑛)(𝑘3 + 𝜇𝑛). 

The dengue model provided by (1)-(8) is thus guaranteed to be locally asymptotically stable at the 

DFE 𝐸0 under the Rough-Hurtwiz criterion. 

 

3.2  Controllability Analysis 

The optimal control problem solution may not be obtained if the system is not controlled. So it 

is necessary to analyze the controllability of the system. 

Theorem 2. If there is a state matrix equation as follows: ẋ(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 𝑦(𝑡) = 𝐶𝑥(𝑡). 

The necessary and sufficient conditions for a system to be said to be controlled are: The matrix 𝑀𝑐 =

[𝐵|𝐴𝐵|𝐴2𝐵|⋯ |𝐴𝑛−1𝐵] has a rank equal to 𝑛 [11]. 
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Proof. To carry out controllability analysis in the tuberculosis disease model, a matrix 𝐵 will be 

formed with the following steps. With 𝑥̅ = (�̅�, �̅�, 𝐿̅̅, 𝐼̅, 𝑇̅), then the matrix 𝐵 is separated to obtain the 

following matrix 𝐴 and 𝐵: 

𝐴 =

[
 
 
 
 
 
 
 
 −(1 − 𝜍1)𝛽𝛼𝑛

𝐼𝑚

𝑁𝑚
− 𝜇𝑛 − 𝑏𝜍2

(1 − 𝜍1)𝛽𝛼𝑛𝑆𝑛
𝐼𝑚

𝑁𝑚

0
0
0
0
0
0

0
−(𝛾𝑛 + 𝜇𝑛)𝐸𝑛 − 𝑏𝜍2𝐸𝑛

𝛾𝑛𝐸𝑛

0
0
0
0
0

0
0

−𝜇𝑛𝐼𝑛 − 𝑏𝜍2𝐼𝑛

−(1 − 𝜍1)𝛽𝛼𝑚𝐼𝑛
𝑆𝑚

𝑁𝑚

(1 − 𝜍1)𝛽𝛼𝑚𝐼𝑛
𝑆𝑚

𝑁𝑚

0
0
0

0
0
0

−(1 − 𝜍1)𝛽𝛼𝑚𝐼𝑛
𝑆𝑚

𝑁𝑚
− 𝜇𝑚𝑆𝑚 − 𝜍3𝑆𝑚

(1 − 𝜍1)𝛽𝛼𝑚𝐼𝑛
𝑆𝑚

𝑁𝑚

0
0
𝜍3

0
0
0
0

−(𝛾𝑚 + 𝜇𝑚)
𝛾𝑚

0
0

−(1 − 𝜍1)𝛽𝛼𝑛𝑆𝑛
1

𝑁𝑚

(1 − 𝜍1)𝛽𝛼𝑛𝑆𝑛
𝐼𝑚

𝑁𝑚

0
0
0

−(𝜂 + 𝑞1 + 𝜇𝑚)
𝜂
𝑞1

0
0
0
0
0
0

−(𝛿 + 𝑞2 + 𝜇𝑚)
𝑞2

0
0
0
0
0
0
0

−𝜇𝑚
]
 
 
 
 
 
 
 
 

, 

𝐵 =

[
 
 
 
 
 
 
 
𝑏1 0 0
𝑏2 𝑏3 0
0 𝑏4 0
𝑏5 0 𝑏6

𝑏7 0 0
0 0 0
0 0 0
0 0 𝑏8]

 
 
 
 
 
 
 

,  𝑀𝑐 = [𝐵|𝐴𝐵|𝐴2𝐵|𝐴3𝐵|𝐴4𝐵|𝐴5𝐵|𝐴6𝐵|𝐴7𝐵], 

by using Matlab software it was found that rank 𝑀𝑐 = 8 so it can be concluded that the system is 

controlled. 

 

3.3  Analysis of Global Sensitivity 

To identify the most significant variable that influences the fundamental reproduction number 0, 

we conducted the global sensitivity analysis utilizing the partial rank correlation coefficient (PRRC). 

𝜇𝑛 is the most sensitive parameter, with, 𝛼𝑚 , Λm, Λn, β, etc. Being the remaining sensitive parameters. 

Dengue infection can be decreased by raising the mosquito mortality rate. Additionally, using an air 

conditioner to regulate the temperature of the location and locking the doors while entering will lessen 

the likelihood of a mosquito bite. Eliminating superfluous container habitats that gather water (such 

as plastic jars, bottles, cans, tires, and buckets) where Aedes aegyptians lay eggs to hatch is a realistic 

and advised environmental management method. By utilizing a bed net and other required 

precautions, the bite of the mosquito can be minimized. 

The population of sick and hospitalized persons is reduced by lowering the mosquito population's 

rate through the use of bed nets and other preventative strategies. The long-term impact of sensitive 

parameters such as 𝜇𝑛 ,  𝛼𝑚 , 𝛽, can reduce the number of infected and hospitalized people. The value 

𝜇𝑛 , which measures how quickly the virus spreads among sick and hospitalized people, and the 

parameter 𝛼𝑚, which indicates the likelihood of transmission within susceptible and infected humans, 

work in the same way. 
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3.4  Mathematical Model Formulation with Optimal Control 

Applying suitable control measures to detect the disease's possible elimination from society is the 

epidemic model with the optimal control strategy. The models of epidemics and their prevention were 

already developed in mathematical biology when addressing various diseases [11][30][31]. Through 

this section, we give a dengue model (1)-(8) extension with control variables to create an optimization 

approach for the examined model (1)-(8). In the model as control variables, we include three 

intervention strategies: preventive (𝜍1), pesticide (𝜍2), and vaccine (𝜍3). Mosquito nets, DEET-based 

mosquito repellent, and repellent-treated clothing are among the preventative measures, while 

insecticides include mosquito spraying and fogging. The controlled model is described by a system of 

differential equations expressed as, 

𝑑𝑆𝑛

𝑑𝑡
= 𝛬𝑛 − (1 − 𝜍1)𝛽𝛼𝑛𝑆𝑛

𝐼𝑚

𝑁𝑚
− 𝜇𝑛𝑆𝑛 − 𝑏𝜍2𝑆𝑛,                                         (9) 

𝑑𝐸𝑛

𝑑𝑡
= (1 − 𝜍1)𝛽𝛼𝑛𝑆𝑛

𝐼𝑚

𝑁𝑚
− (𝛾𝑛 + 𝜇𝑛)𝐸𝑛 − 𝑏𝜍2𝐸𝑛 ,                                      (10) 

𝑑𝐼𝑛

𝑑𝑡
= 𝛾𝑛𝐸𝑛 − 𝜇𝑛𝐼𝑛 − 𝑏𝜍2𝐼𝑛 ,                                                  (11) 

𝑑𝑆𝑚

𝑑𝑡
= Λ𝑚 − (1 − 𝜍1)𝛽𝛼𝑚𝐼𝑛

𝑆𝑚

𝑁𝑚
− 𝜇𝑚𝑆𝑚 − 𝜍3𝑆𝑚 ,                                       (12) 

𝑑𝐸𝑚

𝑑𝑡
= (1 − 𝜍1)𝛽𝛼𝑚𝐼𝑛

𝑆𝑚

𝑁𝑚
− (𝛾𝑚 + 𝜇𝑚)𝐸𝑚,                                             (13) 

𝑑𝐼𝑚

𝑑𝑡
= 𝛾𝑚𝐸𝑚 − (𝜂 + 𝑞1 + 𝜇𝑚)𝐼𝑚,                                                (14) 

𝑑𝑃𝑚

𝑑𝑡
= 𝜂𝐼𝑚 − (𝛿 + 𝑞2 + 𝜇𝑚)𝑃𝑚,                                                  (15) 

𝑑𝑅𝑚

𝑑𝑡
= 𝑞1𝐼𝑚 + 𝑞2𝑃𝑚 − 𝜇𝑚𝑅𝑚 + 𝜍3𝑆𝑚.                                              (16) 

The goal of the research is to lower the number of disease hosts and vectors even though retaining 

control 𝜍1, 𝜍2,  𝜍3 expenditures is low. The following objective function can be used to express this 

goal: 

𝐽(𝜍1, 𝜍2, 𝜍3) = ∫ (𝐸𝑛 + 𝐼𝑛 + 𝑆𝑚 + 𝐸𝑚 + 𝐼𝑚 +
𝐴1

2
𝜍1

2 +
𝐴2

2
𝜍2

2 +
𝐴3

2
𝜍3

2) 𝑑𝑡
𝑡𝑓
0

,         (17) 

𝐴1, 𝐴2, 𝐴3 are positive weights, while 𝑡𝑓 is the final time. 

We utilize a quadratic objective function that determines responsibilities effectively in this study 

because the expenses upon the treatment are nonlinear. The hypothesis is predicated on the rationale 

that for infective populations, there is no linear link between intervention outcomes and intervention 

costs; writers have commonly used quadratic costs, see [32][33]. See [34][35][36] and the references 

therein for a more relevant paper in which the researchers tackled the nonlinear objective leads to 

efficiency. The terms 𝜍1
2, 𝜍2

2,  𝑎𝑛𝑑 𝜍3
2 describe the cost of preventative, pesticide, and vaccine control 

measures, respectively. 

The goal of this study is to discover the best control combination 𝜍1
∗, 𝜍2

∗, 𝜍3
∗ such that 
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𝐽(𝜍1
∗, 𝜍2

∗, 𝜍3
∗) = 𝑚𝑖𝑛⏟

𝜏

𝐽(𝜍1, 𝜍2, 𝜍3),                                                (18) 

which 𝜏 = (𝜍1, 𝜍2, 𝜍3)|0 ≤ 𝜍1 ≤ 𝜍1
∗, 0 ≤ 𝜍2 ≤ 𝜍2

∗, 0 ≤ 𝜍3 ≤ 𝜍3
∗. 

3.2 Existence of The Optimal Control 

We prove the existence of an optimal control with an initial condition of 𝑡 = 0 in this section by 

stating and proving the following theorem and studying the properties of the model (9)-(16) with all 

non-negative initial circumstances 𝑡 > 0. We'll also utilize model (9)-(16) to examine if there's an 

optimal control that meets all of Pontryagin's Maximum Principle's requirements [37]–[41]. By using 

Pontryagin's Maximum Principle, Eqs. (9)-(18) can be transformed into a problem of minimizing the 

Lagrange point, 𝐿̅, with regard to 𝜍1, 𝜍2, 𝜍3. The control problem's Lagrangian is provided by 

𝐿̅ = 𝐸𝑛 + 𝐼𝑛 + 𝐸𝑚 + 𝐼𝑚 + 𝑆𝑚 +
𝐴1

2
𝜍1

2 +
𝐴2

2
𝜍2

2 +
𝐴3

2
𝜍3

2,                               (19) 

The Pontryagin Maximum Principle [37] will be used to find the requirements needed to establish 

the optimal control 𝜍1
∗, 𝜍2

∗, 𝜍3
∗ that fulfills condition (18) with the constraint model (9)-(16). Equations 

(9)-(16), (17), and (18) are transformed into problems of minimizing the Hamiltonian function, 

pointing to the (𝜍1, 𝜍2, 𝜍3), that is, 

𝐻 = 𝐿̅ + ∑ 𝜗𝑖𝑔𝑖,
8
𝑖=1                                                       (20) 

where 𝑔𝑖 signifies the model's right side (9)-(16). The adjoint variable 𝜗𝑖 fulfills the following co-state 

system for 𝑖 = 1, 2, … , 8. Equation (19) and model (9)-(16) are substituted into equation (20), so that 

𝐻 = 𝐸𝑛 + 𝐼𝑛 + 𝐸𝑚 + 𝐼𝑚 + 𝑆𝑚 +
𝐴1

2
𝜍1

2 +
𝐴2

2
𝜍2

2 +
𝐴3

2
𝜍3

2 + 𝜗_1 (𝛬𝑛 − (1 − 𝜍1)𝛽𝛼𝑛𝑆𝑛
𝐼𝑚

𝑁𝑚
−

𝜇𝑛𝑆𝑛 − 𝑏𝜍2𝑆𝑛) + 𝜗_2 ((1 − 𝜍1)𝛽𝛼𝑛𝑆𝑛
𝐼𝑚

𝑁𝑚
− (𝛾𝑛 + 𝜇𝑛)𝐸𝑛 − 𝑏𝜍2𝐸𝑛) + 𝜗_3(𝛾𝑛𝐸𝑛 − 𝜇𝑛𝐼𝑛 −

𝑏𝜍2𝐼𝑛) + 𝜗_4(Λ𝑚 − (1 − 𝜍1)𝛽𝛼𝑚𝐼𝑛
𝑆𝑚

𝑁𝑚
− 𝜇𝑚𝑆𝑚 − 𝜍3𝑆𝑚) + 𝜗_5 ((1 − 𝜍1)𝛽𝛼𝑚𝐼𝑛

𝑆𝑚

𝑁𝑚
−

(𝛾𝑚 + 𝜇𝑚)𝐸𝑚) + 𝜗_6(𝛾𝑚𝐸𝑚 − (𝜂 + 𝑞1 + 𝜇𝑚)𝐼𝑚) + 𝜗_7(𝜂𝐼𝑚 − (𝛿 + 𝑞2 + 𝜇𝑚)𝑃𝑚) +

𝜗_8(𝑞1𝐼𝑚 + 𝑞2𝑃𝑚 − 𝜇𝑚𝑅𝑚 + 𝜍3𝑆𝑚).                                                                      (21) 

The theorem would be used to determine whether the model (9)-(16) has optimal control. 

 

Theorem 3. There exists an optimal control 𝜍∗ = (𝜍1
∗, 𝜍2

∗, 𝜍3
∗) ∈ 𝜏 such that; the control model 

(9)-(16) with initial conditions at 𝑡 = 0 and 

𝐽(𝜍1
∗, 𝜍2

∗, 𝜍3
∗) = 𝑚𝑖𝑛⏟

𝜏

𝐽(𝜍1, 𝜍2, 𝜍3).                                                 (22) 

Proof. The model's state and control variables are both positive, and the control set is small and 

convex. The integrand of the objective function 𝐽 given in model (9)-(16) is thus a convex function of 
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(𝜍1, 𝜍2, 𝜍3) on the control set 𝜏. The Lipschitz property of the state system with regard to the state 

variables is satisfied because the state solutions are bounded. Positive numbers 𝜀1, 𝜀2 and a constant 

𝜖 > 1 can also be interpreted as follows: 

𝐽(𝜍1, 𝜍2, 𝜍3) ≥ 𝜀1(|𝜍1|
2|𝜍2|

2|𝜍3|
2)𝜖/2 − 𝜀2.                                         (23) 

As a result, the state variables are bounded, indicating that the model (9)-(16) has optimal control. 

3.3 The Optimal Control's Uniqueness 

The necessary conditions for this optimal control are revealed using Pontryagin's Maximum 

Principle. This is due to the availability of an optimal control when minimizing the cost functional in 

eq. (17) subject to the model (9)-(16). If (𝑥, 𝑢) is an optimal solution of an optimal control problem, 

then a non-trivial vector function 𝜗 = (𝜗1, 𝜗2, 𝜗3, 𝜗4, 𝜗5 , 𝜗6, 𝜗7, 𝜗8) must satisfy the following 

equations, according to [42][43]. 

𝑑𝑥

𝑑𝑡
=

𝜕𝐻(𝑡,𝑥,𝜍,𝜗)

𝜕𝜗
,                                                            (24) 

0 =
𝜕𝐻(𝑡,𝑥,𝜍,𝜗)

𝜕𝜍
,                                                             (25) 

�̇� =
𝜕𝐻(𝑡,𝑥,𝜍,𝜗)

𝜕𝑥
.                                                             (26) 

As a result, the requisite conditions can now be applied to the Hamiltonian, 𝐻, in eq (21). 

Theorem 4. For the optimal control issue in model (9)-(16). 𝑆𝑛
∗ , 𝐸𝑛

∗ , 𝐼𝑛
∗ , 𝑆𝑚

∗ , 𝐸𝑚
∗ , 𝐼𝑚

∗ , 𝑃𝑚
∗ , 𝑅𝑚

∗   be 

optimal state solutions associated with optimal control (𝝇𝟏
∗ , 𝝇𝟐

∗ , 𝝇𝟑
∗ ). There are co-states that prove 

with the transversality criteria 𝜗𝑖(𝑡𝑓) = 0 for 𝑖 = 1, 2, 3, 4, 5,6,7,8 and the control variables 

(𝝇𝟏
∗ , 𝝇𝟐

∗ , 𝝇𝟑
∗ ). 

Proof. Differentiate Hamiltonian, 𝐻, with respect to 𝑆𝑛 , 𝐸𝑛 , 𝐼𝑛 , 𝑆𝑚 , 𝐸𝑚 , 𝐼𝑚 , 𝑃𝑚 , 𝑅𝑚 to get eq.(21). 

We can also consider the state variables: 

𝜗1̇ = 𝜗1 (
(1−𝜍1)𝛽𝛼𝑛𝐼𝑚

𝑁𝑚
+ 𝜇𝑚 + 𝑏𝜍2) −

𝜗2(1−𝜍1)𝛽𝛼𝑛𝐼𝑚

𝑁𝑚
,                                     (27) 

𝜗2̇ = −1 + 𝜗2(𝑏𝜍2 + 𝛾𝑛 + 𝜇𝑚) + 𝜗3𝛾𝑛,                                           (28) 

𝜗3̇ = −1 + 𝜗3(𝑏𝜍2 + 𝜇𝑛) +
𝜗4(1−𝜍1)𝛽𝛼𝑚𝑆𝑚

𝑁𝑚
−

𝜗5(1−𝜍1)𝛽𝛼𝑚𝑆𝑚

𝑁𝑚
,                                (29) 

𝜗4̇ = (𝜗2 − 𝜗1)
(1−𝜍1)𝛽𝛼𝑛𝑆𝑛𝐼𝑚

𝑁𝑚
2 + (𝜗4 − 𝜗5)

(1−𝜍1)𝛽𝛼𝑚𝐼𝑛

𝑁𝑚
+ (𝜗5 − 𝜗4)

(1−𝜍1)𝛽𝛼𝑚𝐼𝑛𝑆𝑚

𝑁𝑚
2 +

           𝜗4(𝜇𝑚 + 𝑆𝑚) − 𝜗8𝑆𝑚,                                                                             (30) 

𝜗5̇ = −1 + (𝜗2 − 𝜗1)
(1−𝜍1)𝛽𝛼𝑛𝑆𝑛𝐼𝑚

𝑁𝑚
2 + (𝜗5 − 𝜗4)

(1−𝜍1)𝛽𝛼𝑚𝐼𝑛𝑆𝑚

𝑁𝑚
2 + (𝜗5 − 𝜗6)𝛾𝑚 + 𝜇𝑚𝜗5,  (31) 
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𝜗6̇ = −1 + (𝜗1 − 𝜗2)
(1−𝜍1)𝛽𝛼𝑛𝑆𝑛

𝑁𝑚
+ (𝜗2 − 𝜗1)

(1−𝜍1)𝛽𝛼𝑛𝑆𝑛𝐼𝑚

𝑁𝑚
2 + (𝜗5 − 𝜗4)

(1−𝜍1)𝛽𝛼𝑚𝐼𝑛𝑆𝑚

𝑁𝑚
2 −

           𝜗7𝜂 − 𝜗8𝑞1 + 𝜗6(𝜂 + 𝑞1 + 𝜇ℎ),                                                                                 (32) 

𝜗7̇ = (𝜗2 − 𝜗1)
(1−𝜍1)𝛽𝛼𝑛𝑆𝑛𝐼𝑚

𝑁𝑚
2 + (𝜗5 − 𝜗4)

(1−𝜍1)𝛽𝛼𝑚𝐼𝑛𝑆𝑚

𝑁𝑚
2 + 𝜗7(𝛿 + 𝑞2 + 𝜇𝑚) − 𝜗8𝑞2,    (33) 

𝜗8̇ = (𝜗2 − 𝜗1)
(1−𝜍1)𝛽𝛼𝑛𝑆𝑛𝐼𝑚

𝑁𝑚
2 + (𝜗5 − 𝜗4)

(1−𝜍1)𝛽𝛼𝑛𝑆𝑛𝐼𝑚

𝑁𝑚
2 + 𝜗8𝜇𝑚 ,                     (34) 

under the conditions of transversality, 𝜗1(𝑡𝑓) = 𝜗2(𝑡𝑓) = 𝜗3(𝑡𝑓) = 𝜗4(𝑡𝑓) = 𝜗5(𝑡𝑓) = 𝜗6(𝑡𝑓) =

𝜗7(𝑡𝑓) = 𝜗8(𝑡𝑓) = 0. 

To determine the control variable set's optimal control, where 𝜍𝑖 = (1,2,3). Differentiate the 

Hamiltonian in the second equation., 𝐻, in eq.(7) with regard to control variables 𝜍1, 𝜍2, 𝜍3 to get 𝑆𝑛 =

𝑆𝑛
∗ , 𝐸𝑛 = 𝐸𝑛

∗ , 𝐼𝑛 = 𝐼𝑛
∗ , 𝑆𝑚 = 𝑆𝑚

∗ , 𝐸𝑚 = 𝐸𝑚
∗ , 𝐼𝑚 = 𝐼𝑚

∗ , 𝑃𝑚 = 𝑃𝑚
∗ , 𝑅𝑚 = 𝑅𝑚

∗ . 

𝜕𝐻

𝜕𝜍1
= 0,                                                                      (35) 

𝜕𝐻

𝜕𝜍2
= 0,                                                                      (36) 

𝜕𝐻

𝜕𝜍3
= 0,                                                                      (37) 

to derive 𝜍𝑖
∗ for 𝑖 = 1, 2, 3 topic of formula 

𝜍1
∗ = (

(𝜗1−𝜗2)𝛽𝛼𝑛𝑆𝑛𝐼𝑚+(𝜗5−𝜗4)𝛽𝛼𝑚𝐼𝑛𝑆𝑚

𝐴1𝑁𝑚
),                                           (38) 

𝜍2
∗ = (

𝑏(𝜗1𝑆𝑛+𝜗2𝐸𝑛+𝜗3𝐼𝑛

𝐴2
),                                                     (39) 

𝜍3
∗ = ((𝜗8 − 𝜗4)𝑆𝑚),                                                        (40) 

𝜍1
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (𝜍1

𝑚𝑎𝑥 ,
(𝜗1−𝜗2)𝛽𝛼𝑛𝑆𝑛𝐼𝑚+(𝜗5−𝜗4)𝛽𝛼𝑚𝐼𝑛𝑆𝑚

𝐴1𝑁𝑚
)},                        (41) 

𝜍2
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (𝜍2

𝑚𝑎𝑥 ,
𝑏(𝜗1𝑆𝑛+𝜗2𝐸𝑛+𝜗3𝐼𝑛

𝐴2
)},                                  (42) 

𝜍3
∗ = 𝑚𝑎𝑥{0,𝑚𝑖𝑛 ((𝜗8 − 𝜗4)𝑆𝑚)}.                                           (43) 

This demonstrates that for small 𝑡𝑓, the model's optimal control is unique due to the state variables' 

prior boundedness as well as the adjoint variables' prior boundedness. The use of the Lipschitz 

property of ordinary differential equations allows for this. 

3.4 Numerical Solution 

The simulation's initial variables, are based on the population of East Java province in 2018 in 

[11] The initial conditions we used in [11]. The state variables and optimal control can be computed 

using this optimality system. By substituting 𝜍𝑖
∗ for model (9)-(16), we get: 
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𝑑𝑆𝑛

𝑑𝑡
= 𝛬𝑛 − (1 − (𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (𝜍1

𝑚𝑎𝑥 ,
(𝜗1−𝜗2)𝛽𝛼𝑛𝑆𝑛𝐼𝑚+(𝜗5−𝜗4)𝛽𝛼𝑚𝐼𝑛𝑆𝑚

𝐴1𝑁𝑚
)}))𝛽𝛼𝑛𝑆𝑛

𝐼𝑚

𝑁𝑚
− 𝜇𝑛𝑆𝑛 −

𝑏 (𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (𝜍2
𝑚𝑎𝑥 ,

𝑏(𝜗1𝑆𝑛+𝜗2𝐸𝑛+𝜗3𝐼𝑛

𝐴2
)})𝑆𝑛 ,                                              (44) 

𝑑𝐸𝑛

𝑑𝑡
= (1 − (𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (𝜍1

𝑚𝑎𝑥 ,
(𝜗1−𝜗2)𝛽𝛼𝑛𝑆𝑛𝐼𝑚+(𝜗5−𝜗4)𝛽𝛼𝑚𝐼𝑛𝑆𝑚

𝐴1𝑁𝑚
)}))𝛽𝛼𝑛𝑆𝑛

𝐼𝑚

𝑁𝑚
− (𝛾𝑛 + 𝜇𝑛)𝐸𝑛 −

𝑏 (𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (𝜍2
𝑚𝑎𝑥 ,

𝑏(𝜗1𝑆𝑛+𝜗2𝐸𝑛+𝜗3𝐼𝑛

𝐴2
)})𝐸𝑛,                               (45) 

𝑑𝐼𝑛

𝑑𝑡
= 𝛾𝑛𝐸𝑛 − 𝜇𝑛𝐼𝑛 − 𝑏 (𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (𝜍2

𝑚𝑎𝑥 ,
𝑏(𝜗1𝑆𝑛+𝜗2𝐸𝑛+𝜗3𝐼𝑛

𝐴2
)}) 𝐼𝑛 ,                   (46) 

𝑑𝑆𝑚

𝑑𝑡
= Λ𝑚 − (1 − (𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (𝜍1

𝑚𝑎𝑥 ,
(𝜗1−𝜗2)𝛽𝛼𝑛𝑆𝑛𝐼𝑚+(𝜗5−𝜗4)𝛽𝛼𝑚𝐼𝑛𝑆𝑚

𝐴1𝑁𝑚
)}))𝛽𝛼𝑚𝐼𝑛

𝑆𝑚

𝑁𝑚
− 𝜇𝑚𝑆𝑚 −

(𝑚𝑎𝑥{0,𝑚𝑖𝑛 ((𝜗8 − 𝜗4)𝑆𝑚)})𝑆𝑚,                                              (47) 

𝑑𝐸𝑚

𝑑𝑡
= (1 − (𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (𝜍1

𝑚𝑎𝑥 ,
(𝜗1−𝜗2)𝛽𝛼𝑛𝑆𝑛𝐼𝑚+(𝜗5−𝜗4)𝛽𝛼𝑚𝐼𝑛𝑆𝑚

𝐴1𝑁𝑚
)}))𝛽𝛼𝑚𝐼𝑛

𝑆𝑚

𝑁𝑚
− (𝛾𝑚 + 𝜇𝑚)𝐸𝑚,                                                                                     

       (48) 

𝑑𝐼𝑚

𝑑𝑡
= 𝛾𝑚𝐸𝑚 − (𝜂 + 𝑞1 + 𝜇𝑚)𝐼𝑚 ,                                                         (49) 

𝑑𝑃𝑚

𝑑𝑡
= 𝜂𝐼𝑚 − (𝛿 + 𝑞2 + 𝜇𝑚)𝑃𝑚,                                                                       (50) 

𝑑𝑅𝑚

𝑑𝑡
= 𝑞1𝐼𝑚 + 𝑞2𝑃𝑚 − 𝜇𝑚𝑅𝑚 + (𝑚𝑎𝑥{0,𝑚𝑖𝑛 ((𝜗8 − 𝜗4)𝑆𝑚)})𝑆𝑚 .                                 (51) 

To optimize the objective function 𝐽, we used 𝜍1 ≠ 0, 𝜍2 ≠ 0, 𝜍3 ≠ 0. The initial conditions are 

in [11] and the parameter value for the numerical simulation are in Table 1.  

Table 1. Description and Parameter Value 

Parameter Description Value Units 

𝜇𝑚 The natural death rate of human 1/70.97 × 365 day-1 

𝛿 Human disease-related death rate 0.0969 day-1 

𝑞1 Hospitalized and/or alerted afflicted humans' recovery 

rates 

0.0840 day-1 

𝑞2 Infected people's natural healing rate 0.0154 day-1 

𝜂 Hospitalization and/or notification of affected people rates 0.0904 day-1 

𝛾𝑚 Extrinsic human incubation 0.5550 day-1 

𝛼𝑚 Probability of infection from an infected mosquito to a  

vulnerable individual 

0.6794  

Λ𝑚 Human recruitment rate 1525.1426 day-1 

𝛾𝑛 Extrinsic mosquito incubation 0.7186 day-1 

𝜇𝑛 The natural death rate of mosquito 0.0244 day-1 

𝛼𝑛 Transmission probability from infected human to 

susceptible mosquito 

0.8541  

𝛽 Average mosquito biting rate per person 1.1971 day-1 

Λ𝑛  Mosquito recruitment rate 3839.9 day-1 
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(a) 

 
(b) 

(c)  (d) 

 
(e) 

Figure 2. Simulation of the model without optimal control (a) Population of mosquito that infectious; (b) 
Population of human that infectious; (c) Population of mosquito that exposed; (d) Population of 
human that exposed; (e) Population of human that hospitalized and/or notified infectious. 
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Figure 2 shows the numerical results. Maximum prevention is carried out for about 10 days, as 

shown in Figure 2. According to the simulation shown in Figure 2, 𝐸𝑛 and In dropped in the mosquito 

population before being provided optimal management. The 𝐸𝑛 and 𝐼𝑛 populations both showed a 

drop when optimal control was supplied, with a more significant decrease compared to before optimal 

control was given. 

The 𝐸𝑚 population in the human population showed a decline before and after being given 

optimal control, but it saw a more significant decrease after being given optimal control since the first 

day of monitoring. Both exhibited a rise and a drop in the days after in the 𝐼𝑚 population at the start 

of the study, before and after being administered control. 𝐼𝑚 population increased significantly before 

being granted control, but it decreased significantly after being given control. Figure 2 shows a large 

increase in the 𝑃𝑚 population before being provided control till the last day of observation. Meanwhile, 

the graph shows a decline until the last day of the experiment after being provided optimal control. 

4. CONCLUSIONS 

We develop a mathematical model of dengue disease with hospitalization in this study, with three 
optimal controls. According to the sensitivity analysis done, the most sensitive factors were mosquito 

bite rate (𝛽) and mosquito fatality rate (𝜇𝑛). Dengue infection can be rapidly decreased by reducing 
mosquito mortality and other community-wide prevention measures. Mosquito nets, insect repellant, 
and other critical steps can help decrease insect bites. To see the influence of vaccines, pesticide use, 
and prevention on dengue fever transmission in East Java, we employed optimal control approaches. 
The presence of optimal controls and their properties were computed and evaluated. Based on the 
results of the simulations, giving optimal control in the form of the vaccine, pesticide use, and 
prevention can lower the number of dengue fever hosts and vectors in the community, demonstrating 
that the optimal control offered can meet the study's objectives. This research will provide statistics 
to assist the government in making choices and implementing actions to combat dengue fever. 
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