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Abstract  
The concept of a strong 𝑘-rainbow index is a generalization of a strong rainbow connection number, 

which has an interesting application in security systems in a communication network. Let 𝐺 be an edge-

colored connected graph of order 𝑛, where adjacent edges may be colored the same. A rainbow tree in 

𝐺 is a tree whose edges have distinct colors. For an integer 𝑘 with 2 ≤ 𝑘 ≤ 𝑛, the strong 𝑘-rainbow 

index 𝑠𝑟𝑥𝑘(𝐺) of 𝐺 is the minimum number of colors needed to color all edges of 𝐺 so that every 𝑘 

vertices of 𝐺 are connected by a rainbow tree of minimum size. We focus on 𝑘 = 3. It is clear that 

𝑠𝑟𝑥3(𝐺) ≤ ‖𝐺‖, where the upper bound is sharp since the 𝑠𝑟𝑥3 of a tree equals its size. Hence, we are 

interested in studying how the 𝑠𝑟𝑥3 of a tree changes if we add some edges connecting two nonadjacent 

vertices in the tree. This paper is focused on graphs containing three cycles. We first determine a sharp 

upper bound of the 𝑠𝑟𝑥3 of graphs containing exactly three edge-disjoint cycles. We also determine the 

exact values of 𝑠𝑟𝑥3 of theta graph 𝜃(𝑎1, 𝑎2, 𝑎3) for certain values of 𝑎1, 𝑎2, and 𝑎3.  
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Abstrak 

Konsep indeks pelangi-𝑘 kuat merupakan perumuman dari bilangan terhubung pelangi kuat yang memiliki aplikasi 

menarik dalam sistem keamanan jaringan komunikasi. Misalkan 𝐺 adalah suatu graf terhubung berorde 𝑛 yang 

memiliki suatu pewarnaan sisi, dimana dua sisi bertetangga boleh memiliki warna yang sama. Pohon pelangi di 𝐺 

adalah pohon yang setiap sisinya memiliki warna berbeda. Untuk suatu bilangan bulat 𝑘 dengan 2 ≤ 𝑘 ≤ 𝑛, indeks 

pelangi-𝑘 kuat 𝑠𝑟𝑥𝑘(𝐺) graf 𝐺 adalah banyak warna minimum yang dibutuhkan untuk mewarnai semua sisi di 𝐺 

sehingga setiap 𝑘 titik di 𝐺 dihubungkan oleh suatu pohon pelangi berukuran minimum. Kami fokus pada 𝑘 = 3. 

Jelas bahwa 𝑠𝑟𝑥3(𝐺) ≤ ‖𝐺‖, dimana batas atas ini merupakan batas ketat karena 𝑠𝑟𝑥3 pohon sama dengan 

ukurannya. Karena itu, kami tertarik untuk mempelajari bagaimana 𝑠𝑟𝑥3 pohon berubah jika ditambahkan beberapa 

sisi yang menghubungkan dua titik tidak bertetangga di pohon tersebut. Artikel ini difokuskan pada graf yang memuat 

tiga siklus. Pertama, kami menentukan batas atas ketat 𝑠𝑟𝑥3 graf yang memuat tepat tiga siklus saling lepas sisi. 

Kami juga menentukan nilai eksak 𝑠𝑟𝑥3 graf theta 𝜃(𝑎1, 𝑎2, 𝑎3) untuk beberapa nilai 𝑎1, 𝑎2, dan 𝑎3 tertentu. 

Kata Kunci: siklus; pewarnaan pelangi; pohon Steiner pelangi; graf theta; pohon. 
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1. INTRODUCTION 

All graphs considered in this paper are nontrivial, simple, and connected. We follow the notation 
and terminology of Diestel [1] unless otherwise stated. Chartrand et al. in 2008 introduced the concept 
of the rainbow connection number of a graph [2]. This concept has an interesting application in a 

security system in a communication network, which can be modeled by graph 𝐺. To obtain a secure 
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communication network, we can assign some passwords to an information transfer line between 
people, which may have other people as intermediaries so that no password is repeated. The minimum 

number of these passwords is represented by the rainbow connection number 𝑟𝑐(𝐺) of 𝐺. In the 
same paper, Chartrand et al. also introduced the concept of a strong rainbow connection number 

𝑠𝑟𝑐(𝐺) of 𝐺, which represents the minimum number of passwords needed in a communication 
network so that people can transfer information securely and quickly. 

Computing the 𝑟𝑐 of graphs is an NP-Hard problem [3], [4]. Therefore, many previous 

researchers studied the 𝑟𝑐 of graphs by limiting their study to certain classes of graphs, e.g. [2], [5], [6], 

[7], [8], [9], [10], [11]. We refer the readers to [12], [13] for some detailed surveys on 𝑟𝑐 of graphs.  

Later, Awanis and Salman introduced the concept of a strong 𝑘-rainbow index of a graph [14], 

which is a generalization of the strong rainbow connection number of a graph. Let 𝐺 be an edge-

colored connected graph of order 𝑛, where adjacent edges may be colored the same. A tree 𝑇 in 𝐺 is 

a rainbow tree if no two edges of 𝑇 are colored the same. Let 𝑆 be a set of vertices of 𝐺. The minimum 

size of a tree connecting 𝑆 in 𝐺 is called the Steiner distance 𝑑(𝑆) of 𝑆. Such a tree is called a Steiner 

𝑆-tree. The maximum Steiner distance of 𝑆 among all sets 𝑆 of 𝑘 vertices of 𝐺 is called the 𝑘-Steiner 

diameter 𝑠𝑑𝑖𝑎𝑚𝑘(𝐺) of 𝐺 [15]. If 𝑆 = {𝑢, 𝑣}, then 𝑑(𝑢, 𝑣) is the distance between 𝑢 and 𝑣 in 𝐺, and 

𝑠𝑑𝑖𝑎𝑚2(𝐺) is the diameter 𝑑𝑖𝑎𝑚(𝐺) of 𝐺. Furthermore, the Steiner {𝑢, 𝑣}-tree is called the 𝑢 − 𝑣 

geodesic [2]. A strong 𝑘-rainbow coloring of 𝐺 is an edge-coloring of 𝐺 having the property that for every 

set 𝑆 of 𝑘 vertices of 𝐺, there exists a rainbow Steiner 𝑆-tree in 𝐺. The minimum number of colors 

needed in a strong 𝑘-rainbow coloring of 𝐺 is called the strong 𝑘-rainbow index 𝑠𝑟𝑥𝑘(𝐺) of 𝐺. If 𝑘 = 2, 

then 𝑠𝑟𝑥2(𝐺) is the strong rainbow connection number 𝑠𝑟𝑐(𝐺) of 𝐺 [2]. It follows that for every connected 

graph 𝐺 of order 𝑛, 𝑠𝑟𝑐(𝐺) = 𝑠𝑟𝑥2(𝐺) ≤ 𝑠𝑟𝑥3(𝐺) ≤ ⋯ ≤ 𝑠𝑟𝑥𝑛(𝐺) [14]. 

It is clear that 𝑠𝑑𝑖𝑎𝑚𝑘(𝐺) is the natural lower bound for 𝑠𝑟𝑥𝑘(𝐺). Furthermore, since every 

edge-coloring of 𝐺 that assigns distinct colors to all edges of 𝐺 is a strong 𝑘-rainbow coloring, Awanis, 
and Salman in [14] showed that 

𝑠𝑑𝑖𝑎𝑚𝑘(𝐺) ≤ 𝑠𝑟𝑥𝑘(𝐺) ≤ ‖𝐺‖,     (1) 

where ‖𝐺‖ denotes the size of 𝐺. They also provided the exact values of 𝑠𝑟𝑥3 of some certain graphs 
and their amalgamation. Some of these results are given in Observation 1.1 and Theorems 1.2 and 1.3. 

Observation 1.1 shows how to color the bridges of a connected graph. An edge 𝑒 of a connected 

graph 𝐺 is called a bridge of 𝐺 if 𝐺 − 𝑒 is disconnected. Meanwhile, Theorems 1.2 and 1.3 provide the 

exact values of 𝑠𝑟𝑥3 of trees and cycles, respectively. There are also some results about the 𝑠𝑟𝑥3 of 
graphs formed by other graph operations, such as edge amalgamation of graphs [16], comb product 
of graphs [17], and edge-comb product of graphs [18]. Some authors are also interested to study the 

characterization of graphs 𝐺 with 𝑠𝑟𝑥3(𝐺) = 2 [19]. 

Observation 1.1. [14] Let 𝐺 be a connected graph of order 𝑛 ≥ 3 and 𝑐 be a strong 3-rainbow 

coloring of 𝐺. If 𝑒 and 𝑓 are two distinct bridges of 𝐺, then 𝑐(𝑒) ≠ 𝑐(𝑓). 

Theorem 1.2. [14] For each integer 𝑛 ≥ 3, 𝑠𝑟𝑥3(𝑇𝑛) = ‖𝑇𝑛‖ = 𝑛 − 1. 

Theorem 1.3. [14] For each integer 𝑛 ≥ 3, the strong 3-rainbow index of 𝐶𝑛 is 
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𝑠𝑟𝑥3(𝐶𝑛) = {
2, for 𝑛 = 3;

𝑛 − 2, for 4 ≤ 𝑛 ≤ 6 or 𝑛 = 8;
 𝑛, for 𝑛 = 7 or 𝑛 ≥ 9.

 

 

 

Figure 1. Strong 3-rainbow colorings of 𝐶3, 𝐶4, 𝐶5, 𝐶6, and 𝐶8. 

Following Theorem 1.2, we are interested in studying how the 𝑠𝑟𝑥3 of a tree changes if we add 
some edges connecting two nonadjacent vertices in the tree. This paper is focused on graphs 

containing three cycles. We first determine an upper bound of the 𝑠𝑟𝑥3 of graphs containing exactly 
three edge-disjoint cycles, then we prove the sharpness of the upper bound by providing a graph 

containing exactly three edge-disjoint cycles whose 𝑠𝑟𝑥3 equals the upper bound. We also determine 

the exact values of 𝑠𝑟𝑥3 of theta graph 𝜃(𝑎1, 𝑎2, 𝑎3) for certain values of 𝑎1, 𝑎2, and 𝑎3. 

 
2. RESULTS AND DISCUSSIONS 

For simplifying, we define some notations as follows. We define [𝑎, 𝑏] as a set of all integers 𝑥  

with 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑇 = {𝑒1, 𝑒2, … , 𝑒𝑛} as a tree with edge set {𝑒1, 𝑒2, … , 𝑒𝑛}, and 𝑐(𝑋) as a set of colors 

assigned to the edges in 𝑋 ⊆ 𝐸(𝐺). 
For 𝑛 ≥ 7 and 𝑔1, 𝑔2, 𝑔3 ≥ 3, let 𝐻 be a connected graph of order 𝑛 containing exactly three 

edge-disjoint cycles 𝐶𝑔1 , 𝐶𝑔2 , and 𝐶𝑔3 . Hence, there exist exactly two paths 𝑃1 and 𝑃2 connecting 

certain two cycles as given in Figure 2. Without loss of generality, let 𝑉(𝐶𝑔𝑖) = {𝑣𝑖
1, 𝑣𝑖

2 , … , 𝑣𝑖
𝑔𝑖} and 

𝐸(𝐶𝑔𝑖) = {𝑣𝑖
𝑝
𝑣𝑖
𝑝+1

∶ 𝑝 ∈ [1, 𝑔𝑖], 𝑣𝑖
𝑔𝑖+1 = 𝑣𝑖

1} for each 𝑖 ∈ [1,3] such that 𝑃1 ≔ 𝑣1
1 − 𝑣2

1 and 𝑃2 ≔

𝑣2
𝑡 − 𝑣3

1 for some 𝑡 ∈ [1, 𝑔2]. Observe that if 𝑡 = 1, then |𝐸(𝑃1) ∩ 𝐸(𝑃2)| ≥ 0. 

 
Figure 2. A graph containing exactly three cycles. 
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We first determine an upper bound for 𝑠𝑟𝑥3(𝐻) as given in the following theorem. 

Theorem 2.1. Let 𝐻 be a connected graph of order 𝑛 ≥ 7 containing exactly three edge-disjoint cycles 

of length at least 3. Then 𝑠𝑟𝑥3(𝐻) ≤ ‖𝐻‖ − 2. 

Proof. We show 𝑠𝑟𝑥3(𝐻) ≤ ‖𝐻‖ − 2 by defining a strong 3-rainbow coloring 𝑐 of 𝐻 as follows. 

1. Assign colors 1,2,… , 𝑔2 to the edges of 𝐶𝑔2 . 

2. Define 𝑐 (𝑣1
⌊
𝑔1
2
⌋+1
𝑣1
⌊
𝑔1
2
⌋+2
) = 𝑐 (𝑣2

⌊
𝑔2
2
⌋+1
𝑣2
⌊
𝑔2
2
⌋+2
) and 𝑐 (𝑣3

⌊
𝑔3
2
⌋+1
𝑣3
⌊
𝑔3
2
⌋+2
) =

𝑐 (𝑣2
⌊
𝑔2
2
⌋+𝑡
𝑣2
⌊
𝑔2
2
⌋+𝑡+1

). 

3. Assign colors 𝑔2 + 1,𝑔2 + 2,… , ‖𝐻‖ − 2 to the remaining ‖𝐻‖ − 𝑔2 − 2 edges of 𝐻. 

Observe that the edge coloring above provides the following properties. 

 For each 𝑖 ∈ [1,3], all edges of 𝐶𝑔𝑖  have distinct colors. 

 For distinct 𝑖, 𝑗 ∈ {1,2} or 𝑖, 𝑗 ∈ {1,3}, 𝑝 ∈ [1, 𝑔𝑖], and 𝑞, 𝑟 ∈ [1, 𝑔𝑗], there exists a rainbow 

𝑣𝑖
1 − 𝑣𝑖

𝑝
 geodesic 𝑇𝑖 in 𝐶𝑔𝑖  and a rainbow Steiner {𝑣𝑗

1 , 𝑣𝑗
𝑞
, 𝑣𝑗

𝑟}-tree 𝑇𝑗 in 𝐶𝑔𝑗  such that 

𝑐(𝐸(𝑇𝑖)) ∩ 𝑐 (𝐸(𝑇𝑗)) = ∅. 

 For 𝑖 = 2 and 𝑗 = 3, we have two properties as follows. 

- There exist a rainbow 𝑣2
𝑡 − 𝑣2

𝑝
 geodesic 𝑇1 in 𝐶𝑔2 and a rainbow Steiner {𝑣3

1 , 𝑣3
𝑞
, 𝑣3
𝑟}-tree 

𝑇2 in 𝐶𝑔3  for each 𝑝 ∈ [1, 𝑔2] and 𝑞, 𝑟 ∈ [1, 𝑔3] such that 𝑐(𝐸(𝑇1)) ∩ 𝑐(𝐸(𝑇2)) = ∅. 

- There exist a rainbow Steiner {𝑣2
𝑡 , 𝑣2

𝑝
, 𝑣2
𝑞}-tree 𝑇1 in 𝐶𝑔2 and a rainbow 𝑣3

1 − 𝑣3
𝑟 geodesic 

𝑇2 in 𝐶𝑔3  for each 𝑝, 𝑞 ∈ [1, 𝑔2] and 𝑟 ∈ [1, 𝑔3] such that 𝑐(𝐸(𝑇1)) ∩ 𝑐(𝐸(𝑇2)) = ∅. 

 If 𝐻 contains bridges, then every bridge of 𝐻 is colored with distinct colors which are not used 

for 𝐸(𝐶𝑔𝑖) for all 𝑖 ∈ [1,3]. 

By using the properties above repeatedly, we can find a rainbow Steiner tree connecting every three 

vertices of 𝐻. Thus, the theorem holds.               ∎ 

The upper bound given in Theorem 2.1 is sharp. Theorem 2.3 shows that there exists a connected 

graph 𝐻 containing exactly three edge-disjoint cycles of a certain length with 𝑠𝑟𝑥3(𝐻) = ‖𝐻‖ − 2. 
We first need the following lemma. 

Lemma 2.2. For 𝑛 ≥ 4 and 𝑔 ≥ 3, let 𝐺 be a connected graph of order 𝑛 containing a cycle 𝐶𝑔. Let 

𝑐 be a strong 3-rainbow coloring of 𝐺. If 𝑒 ∈ 𝐸(𝐶𝑔) and 𝑓 is an arbitrary bridge of 𝐺, then 𝑐(𝑒) ≠

𝑐(𝑓). 

Proof. Let 𝑉(𝐶𝑔) = {𝑣1, 𝑣2, … , 𝑣𝑔} and 𝐸(𝐶𝑔) = {𝑣𝑖𝑣𝑖+1 ∶ 𝑖 ∈ [1, 𝑔], 𝑣𝑔+1 = 𝑣1}. Let 𝑒 = 𝑣𝑖𝑣𝑖+1 

for 𝑖 ∈ [1, 𝑔] be an arbitrary edge of 𝐶𝑔 and 𝑓 = 𝑥𝑦 be an arbitrary bridge of 𝐺. Assume that 

𝑑(𝐶𝑔, 𝑥) < 𝑑(𝐶𝑔, 𝑦). Thus, by considering {𝑣𝑖, 𝑣𝑖+𝑖 , 𝑦}, we obtain that 𝑐(𝑒) ≠ 𝑐(𝑓).         ∎ 

Theorem 2.3. Let 𝑔1, 𝑔2, and 𝑔3 be three integers equal to 7 or at least 9. Let 𝐻 be a connected graph 

containing exactly three edge-disjoint cycles of length 𝑔1, 𝑔2, and 𝑔3. If 𝑔1 and 𝑔3 are odd or have 

distinct parity, then 𝑠𝑟𝑥3(𝐻) = ‖𝐻‖ − 2. 
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Proof. Let 𝐶𝑔1 , 𝐶𝑔2 , and 𝐶𝑔3 be the three edge-disjoint cycles contained in 𝐻. It follows by Theorem 

2.1 that 𝑠𝑟𝑥3(𝐻) ≤ ‖𝐻‖ − 2. To prove the lower bound, suppose that 𝑠𝑟𝑥3(𝐻) ≤ ‖𝐻‖ − 3. Let 

𝑐: 𝐸(𝐻) → [1, ‖𝐻‖ − 3] be a strong 3-rainbow coloring of 𝐻. Let 𝑋 be a set of colors assigned to 

the bridges of 𝐻 and 𝑌 be a set of colors assigned to the edges of 𝐶𝑔𝑖  for all 𝑖 ∈ [1,3]. Since 𝐻 contains 

‖𝐻‖ − 𝑔1 − 𝑔2 − 𝑔3 bridges, we have |𝑋| ≥ ‖𝐻‖ − 𝑔1 − 𝑔2 − 𝑔3 by Observation 1.1. Note that 

by Lemma 2.2, all edges of 𝐶𝑔𝑖  for each 𝑖 ∈ [1,3] should have distinct colors from 𝑋. Thus, 𝑋 ∩ 𝑌 =

∅, which implies |𝑌| ≤ 𝑔1 + 𝑔2 + 𝑔3 − 3. Without loss of generality, let 𝑌 = [1, 𝑔1 + 𝑔2 + 𝑔3 − 3]. 

Since 𝑠𝑟𝑥3(𝐶𝑔2) ≥ 𝑔2 by Theorem 1.3, without loss of generality, let 𝑐 (𝐸(𝐶𝑔2)) = [1, 𝑔2]. Now, 

consider cycles 𝐶𝑔1  and 𝐶𝑔3 . For each 𝑖 ∈ {1,3}, let 𝐴𝑖 = 𝐸(𝐶𝑔𝑖) ∖ {𝑣𝑖
⌊
𝑔𝑖
2
⌋+1
𝑣
𝑖

⌊
𝑔𝑖
2
⌋+2
} if 𝑔𝑖 is odd or 

𝐴𝑖 = 𝐸(𝐶𝑔𝑖) ∖ {𝑣𝑖

𝑔𝑖
2 𝑣

𝑖

𝑔𝑖
2
+1
, 𝑣
𝑖

𝑔𝑖
2
+1
𝑣
𝑖

𝑔𝑖
2
+2
} if 𝑔𝑖 is even. If 𝑔1 and 𝑔3 are odd, then by considering 

{𝑣1
1 , 𝑣1

𝑝
, 𝑣3
𝑞} for 𝑝 ∈ {⌊𝑔1

2
⌋ + 1, ⌊𝑔1

2
⌋ + 2} and 𝑞 ∈ {⌊𝑔3

2
⌋ + 1, ⌊𝑔3

2
⌋ + 2}, we obtain that 𝑐(𝐴1) ∩

𝑐(𝐴3) = ∅. A similar argument applies if 𝑔1 and 𝑔3 have distinct parity. Thus, 

𝑐(𝐴1) ∩ 𝑐(𝐴3) = ∅.      (2) 

Observe that every edge 𝑒 = 𝑥𝑦 ∈ 𝐸(𝐶𝑔2) should be contained in any rainbow Steiner {𝑥, 𝑦, 𝑣𝑖
𝑝}-

tree for each 𝑖 ∈ {1,3} and 𝑝 ∈ {⌊𝑔𝑖
2
⌋ + 1, ⌊𝑔𝑖

2
⌋ + 2} if 𝑔𝑖 is odd or 𝑝 ∈ {𝑔𝑖

2
, 𝑔𝑖
2
+ 2} if 𝑔𝑖 is even. This 

implies 𝑐(𝐴𝑖) ⊈ [1,𝑔2] for each 𝑖 ∈ {1,3}. Now, we consider two cases as follows. 

Case 1. 𝑔1 and 𝑔3 are odd 

Since every three vertices of 𝐶𝑔𝑖  for each 𝑖 ∈ {1,3} are connected by a rainbow Steiner tree 

contained in 𝐶𝑔𝑖 , we have |𝑐(𝐴𝑖)| ≥ 𝑔𝑖 − 1 by Theorem 1.3. It follows by equation (2) that 

|𝑐(𝐴1) ∪ 𝑐(𝐴3)| ≥ 𝑔1 + 𝑔3 − 2, which is impossible since there are at most 𝑔1 + 𝑔3 − 3 colors left 

from 𝑌 that have not been used.  

Case 2. 𝑔1 and 𝑔3 have distinct parity 

Without loss of generality, let 𝑔1 be even and 𝑔3 be odd. By using a similar argument as Case 1, 

we have |𝑐(𝐴1)| ≥ 𝑔1 − 2 and |𝑐(𝐴3)| ≥ 𝑔3 − 1 by Theorem 1.3. It follows by equation (2) that 
|𝑐(𝐴1) ∪ 𝑐(𝐴3)| ≥ 𝑔1 + 𝑔3 − 3, which implies 𝑐(𝐴1) ∪ 𝑐(𝐴3) = [𝑔2 + 1, 𝑔2 + 2,… , 𝑔1 + 𝑔2 +

𝑔3 − 3]. It means we have used all colors from 𝑌. Now, consider edges 𝑣1

𝑔1
2 𝑣1

𝑔1
2
+1

 and 𝑣1

𝑔1
2
+1
𝑣1

𝑔1
2
+2

. By 

using Theorem 1.3 and considering {𝑣1

𝑔1
2 , 𝑣1

𝑔1
2
+2
, 𝑣3

𝑝} for 𝑝 ∈ {⌊𝑔3
2
⌋ + 1, ⌊𝑔3

2
⌋ + 2}, we have 

{𝑐 (𝑣1

𝑔1
2 𝑣1

𝑔1
2
+1
) , 𝑐 (𝑣1

𝑔1
2
+1
𝑣1

𝑔1
2
+2
)} ⊈ 𝑐(𝐴1) ∪ 𝑐(𝐴3). This implies 

{𝑐 (𝑣1

𝑔1
2 𝑣1

𝑔1
2
+1
) , 𝑐 (𝑣1

𝑔1
2
+1
𝑣1

𝑔1
2
+2
)} ⊆ [1, 𝑔2]. If 𝑔2 is even, then by considering {𝑣1

𝑔1
2 , 𝑣1

𝑔1
2
+2
, 𝑣2

𝑝
} for 

𝑝 ∈ {𝑔2
2
, 𝑔2
2
+ 2}, we have {𝑐 (𝑣1

𝑔1
2 𝑣1

𝑔1
2
+1
) , 𝑐 (𝑣1

𝑔1
2
+1
𝑣1

𝑔1
2
+2
)} = {𝑐 (𝑣2

𝑔2
2 𝑣2

𝑔2
2
+1
) , 𝑐 (𝑣2

𝑔2
2
+1
𝑣2

𝑔2
2
+2
)}. 

However, there is no rainbow Steiner {𝑣1

𝑔1
2 , 𝑣1

𝑔1
2
+2
, 𝑣2

𝑔2
2
+1
}-tree, a contradiction. If 𝑔2 is odd, then by 
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considering {𝑣1

𝑔1
2 , 𝑣1

𝑔1
2
+2
, 𝑣2

𝑝} for 𝑝 ∈ {⌊𝑔2
2
⌋ + 1, ⌊𝑔2

2
⌋ + 2}, we have 

{𝑐 (𝑣1

𝑔1
2 𝑣1

𝑔1
2
+1
) , 𝑐 (𝑣1

𝑔1
2
+1
𝑣1

𝑔1
2
+2
)} = {𝑐 (𝑣2

⌊
𝑔2
2
⌋+1
𝑣2
⌊
𝑔2
2
⌋+2
)}, which is impossible since two adjacent 

edges should have distinct colors.                 ∎ 

The illustration of a strong 3-rainbow coloring of 𝐻 with 𝑔1 = 𝑔2 = 7 and 𝑔3 = 9 is given in       
Figure 3. 
 

 

Figure 3. A strong 3-rainbow coloring of 𝐻 with 𝑔1 = 𝑔2 = 7 and 𝑔3 = 9. 

Another class of graphs containing exactly three cycles is a theta graph. For 𝑎3 ≥ 𝑎2 ≥ 𝑎1 ≥ 2, 

a theta graph 𝜃(𝑎1, 𝑎2, 𝑎3) is a graph constructed by three internally disjoint paths of length 𝑎1, 𝑎2, and 

𝑎3 which have the same end vertices. For distinct 𝑖, 𝑗 ∈ [1,3], let 𝑃𝑎𝑖 ≔ 𝑥𝑣𝑖
1𝑣𝑖

2 …𝑣𝑖
𝑎𝑖−1𝑦 be a path 

of length 𝑎𝑖 contained in 𝜃(𝑎1, 𝑎2, 𝑎3), and 𝐶𝑎𝑖+𝑎𝑗
≔ 𝑃𝑎𝑖 ∪ 𝑃𝑎𝑗 . Theorems 2.6 and 2.7 provide the 

𝑠𝑟𝑥3(𝜃(𝑎1, 𝑎2, 𝑎3)) for certain values of 𝑎1, 𝑎2, and 𝑎3. We first need the following two 

observations. 

Observation 2.4. For 𝑎3 ≥ 𝑎2 ≥ 𝑎1 ≥ 2, let 𝜃(𝑎1, 𝑎2, 𝑎3) be a theta graph of order 𝑎1 + 𝑎2 + 𝑎3 −
1 which admits a strong 3-rainbow coloring. If 𝑎1 = 𝑎2 = 𝑎3, then any rainbow Steiner tree 

connecting every three vertices of 𝐶𝑎𝑖+𝑎𝑗  should be contained in 𝐶𝑎𝑖+𝑎𝑗  for distinct 𝑖, 𝑗 ∈ [1,3]. 

Proof. For distinct 𝑖, 𝑗 ∈ [1,3], let 𝑆 be a set of three vertices of 𝐶𝑎𝑖+𝑎𝑗 . We consider three cases as 

follows. 

Case 1. {𝑥, 𝑦} ⊆ 𝑆 

Either 𝑃𝑎𝑖  or 𝑃𝑎𝑗  is a rainbow Steiner 𝑆-tree. 

Case 2. 𝑥 ∈ 𝑆 or 𝑦 ∈ 𝑆 

Without loss of generality, let 𝑥 ∈ 𝑆. If 𝑆 = {𝑥, 𝑣𝑖
𝑝
, 𝑣𝑖

𝑞} for distinct 𝑝, 𝑞 ∈ [1,𝑎𝑖 − 1], then the 

rainbow Steiner 𝑆-tree is contained in 𝑃𝑎𝑖 . A similar argument applies if 𝑆 = {𝑥, 𝑣𝑗
𝑝
, 𝑣𝑗

𝑞} for distinct 

𝑝, 𝑞 ∈ [1, 𝑎𝑗 − 1]. Now, if 𝑆 = {𝑥, 𝑣𝑖
𝑝
, 𝑣𝑗

𝑞} for 𝑝 ∈ [1, 𝑎𝑖 − 1] and 𝑞 ∈ [1, 𝑎𝑗 − 1], let 𝑆′ be the 

Steiner distance of 𝑆 contained in 𝐶𝑎𝑖+𝑎𝑗 . Observe that any rainbow Steiner 𝑆-tree that passes through 
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𝑃𝑎𝑘  for 𝑘 ≠ 𝑖 and 𝑘 ≠ 𝑗 has a size at least 𝑆′ + 1. Thus, it is clear that the rainbow Steiner 𝑆-tree is 

contained in 𝐶𝑎𝑖+𝑎𝑗. 

Case 3. {𝑥, 𝑦} ⊈ 𝑆 

Without loss of generality, let 𝑆 = {𝑣𝑖
𝑝
, 𝑣𝑖

𝑞
, 𝑣𝑗

𝑟} for distinct 𝑝, 𝑞 ∈ [1, 𝑎𝑖 − 1] and 𝑟 ∈

[1, 𝑎𝑗 − 1]. By using a similar argument as Case 2, we will obtain that any rainbow Steiner 𝑆-tree is 

contained in 𝐶𝑎𝑖+𝑎𝑗.                  ∎ 

Observation 2.5. For 𝑎3 ≥ 𝑎2 ≥ 𝑎1 ≥ 2, let 𝜃(𝑎1, 𝑎2, 𝑎3) be a theta graph of order 𝑎1 + 𝑎2 + 𝑎3 −
1 which admits a strong 3-rainbow coloring. If 𝑎1 = 𝑎2 and 𝑎3 > 𝑎1, then any rainbow Steiner tree 

connecting every three vertices of 𝐶𝑎𝑖+𝑎𝑗  should be contained in 𝐶𝑎𝑖+𝑎𝑗  for distinct 𝑖, 𝑗 ∈ [1,3]. 

Proof. For distinct 𝑖, 𝑗 ∈ [1,3], let 𝑆 be a set of three vertices of 𝐶𝑎𝑖+𝑎𝑗 . If 𝑆 ⊆ 𝑉(𝐶𝑎1+𝑎2), then by 

Observation 2.4, any rainbow Steiner 𝑆-tree is contained in 𝐶𝑎1+𝑎2 . Hence, we assume that 𝑆 ⊆

𝑉(𝐶𝑎𝑖+𝑎3) for 𝑖 ∈ {1,2}. By considering the three cases and using a similar argument as Observation 

2.4, we will obtain that any rainbow Steiner 𝑆-tree is contained in 𝐶𝑎𝑖+𝑎3.                      ∎ 

Theorem 2.6. For 𝑎3 ≥ 𝑎2 ≥ 𝑎1 ≥ 2, let 𝜃(𝑎1, 𝑎2, 𝑎3) be a theta graph of order 𝑎1 + 𝑎2 + 𝑎3 − 1. 

If 𝑎1 = 𝑎2 = 𝑎3, then 

𝑠𝑟𝑥3(𝜃(𝑎1, 𝑎1, 𝑎1)) = {

3, for 𝑎1 = 2;
4, for 𝑎1 = 3;
 8, for 𝑎1 = 4;

3𝑎1, for 𝑎1 ≥ 5.

 

Proof. We consider four cases as follows. 

Case 1. 𝑎1 = 2 

Since any rainbow Steiner {𝑣1
1, 𝑣2

1, 𝑣3
1}-tree has a size of at least 3, then 𝑠𝑟𝑥3(𝜃(2,2,2)) ≥ 3. To 

prove the upper bound, we define a strong 3-rainbow coloring of 𝜃(2,2,2) as given in Figure 4. 

Case 2. 𝑎1 = 3 

Since any rainbow Steiner {𝑣1
1, 𝑣2

2, 𝑣3
1}-tree has a size of at least 4, then 𝑠𝑟𝑥3(𝜃(3,3,3)) ≥ 4. To 

prove the upper bound, we define a strong 3-rainbow coloring of 𝜃(3,3,3) as given in Figure 4. 

Case 3. 𝑎1 = 4 

Suppose that 𝑠𝑟𝑥3(𝜃(4,4,4)) ≤ 7. Let 𝑐: 𝐸(𝜃(4,4,4)) → [1,7] be a strong 3-rainbow coloring 

of 𝜃(4,4,4). Since there are two possible rainbow Steiner {𝑣1
2 , 𝑣2

2, 𝑣3
2}-trees, without loss of generality, 

let 𝑇 = {𝑥𝑣1
1, 𝑣1

1𝑣1
2, 𝑥𝑣2

1 , 𝑣2
1𝑣2

2 , 𝑥𝑣3
1, 𝑣3

1𝑣3
2} be the rainbow Steiner {𝑣1

2, 𝑣2
2 , 𝑣3

2}-tree with 𝑐(𝑣𝑣𝑖
1) = 𝑖 

and 𝑐(𝑣𝑖
1𝑣𝑖

2) = 𝑖 + 3 for each 𝑖 ∈ [1,3]. Now, by considering {𝑣𝑖
1 , 𝑣𝑖

3, 𝑣𝑗
1}, {𝑥, 𝑦, 𝑣𝑖

2}, and 

{𝑣𝑖
3 , 𝑣𝑗

1, 𝑣𝑗
3} for distinct 𝑖, 𝑗 ∈ [1,3], we have 

       𝑐(𝑣1
2𝑣1

3) ∈ {5,6,7}, 𝑐(𝑣1
3𝑦) ∈ {2,3,7}, 𝑐(𝑣2

2𝑣2
3) ∈ {4,6,7}, 𝑐(𝑣2

3𝑦) ∈ {1,3,7},   

𝑐(𝑣3
2𝑣3

3) ∈ {4,5,7}, and 𝑐(𝑣3
3𝑦) ∈ {1,2,7}.     (3) 
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Next, consider {𝑦, 𝑣𝑖
2, 𝑣𝑗

2} for distinct 𝑖, 𝑗 ∈ [1,3]. Since 𝑇 = {𝑣𝑖
2𝑣𝑖

3 , 𝑣𝑖
3𝑦, 𝑣𝑗

2𝑣𝑗
3 , 𝑣𝑗

3𝑦} is the only 

possible rainbow Steiner tree connecting these three vertices, we obtain that edges 𝑣1
2𝑣1

3, 𝑣1
3𝑦, 𝑣2

2𝑣2
3, 

𝑣2
3𝑦, 𝑣3

2𝑣3
3, and 𝑣3

3𝑦 should have distinct colors. Hence, we further consider two subcases as follows. 

Subcase 3.1. There exists 𝑖 ∈ [1,3] such that either 𝑐(𝑣𝑖
2𝑣𝑖

3) = 7 or 𝑐(𝑣𝑖
3𝑦) = 7 

Without loss of generality, let 𝑖 = 1. If 𝑐(𝑣1
2𝑣1

3) = 7, this forces 𝑐(𝑣1
3𝑦) ∈ {2,3}, 𝑐(𝑣2

2𝑣2
3) ∈

{4,6}, 𝑐(𝑣2
3𝑦) ∈ {1,3}, 𝑐(𝑣3

2𝑣3
3) ∈ {4,5}, and 𝑐(𝑣3

3𝑦) ∈ {1,2} by equation (3). Observe that by 

equation (3), there are two possible colorings of edges 𝑣1
3𝑦, 𝑣2

3𝑦, and 𝑣3
3𝑦 as follows. 

(i) 𝑐(𝑣1
3𝑦) = 3, 𝑐(𝑣2

3𝑦) = 1, and 𝑐(𝑣3
3𝑦) = 2 

If 𝑐(𝑣2
2𝑣2

3) = 4, then there is no rainbow Steiner {𝑥, 𝑣1
2 , 𝑣2

3}-tree. Hence, we have 

𝑐(𝑣2
2𝑣2

3) = 6. A similar argument applies for edge 𝑣3
2𝑣3

3, thus 𝑐(𝑣3
2𝑣3

3) = 4. However, there 

is no rainbow Steiner {𝑣1
1, 𝑣2

3, 𝑣3
2}-tree, a contradiction. 

(ii) 𝑐(𝑣1
3𝑦) = 2, 𝑐(𝑣2

3𝑦) = 3, and 𝑐(𝑣3
3𝑦) = 1 

By using a similar argument as Case (i), we will obtain that there is no rainbow Steiner 

{𝑣1
1, 𝑣2

2 , 𝑣3
3}-tree, a contradiction. 

Now, if 𝑐(𝑣1
3𝑦) = 7, then 𝑐(𝑣1

2𝑣1
3) ∈ {5,6}, 𝑐(𝑣2

2𝑣2
3) ∈ {4,6}, 𝑐(𝑣2

3𝑦) ∈ {1,3}, 𝑐(𝑣3
2𝑣3

3) ∈

{4,5}, and 𝑐(𝑣3
3𝑦) ∈ {1,2}. Observe that by equation (3), there are two possible colorings of edges 

𝑣1
2𝑣1

3, 𝑣2
2𝑣2

3, and 𝑣3
2𝑣3

3, which are 𝑐(𝑣1
2𝑣1

3) = 5, 𝑐(𝑣2
2𝑣2

3) = 6, and 𝑐(𝑣3
2𝑣3

3) = 4, or 𝑐(𝑣1
2𝑣1

3) = 6, 

𝑐(𝑣2
2𝑣2

3) = 4, and 𝑐(𝑣3
2𝑣3

3) = 5. By using a similar argument as case 𝑐(𝑣1
2𝑣1

3) = 7, we will obtain a 

contradiction. 

Subcase 3.2. For each 𝑖 ∈ [1,3], 𝑐(𝑣𝑖
2𝑣𝑖

3) ≠ 7 and 𝑐(𝑣𝑖
3𝑦) ≠ 7 

It follows by equation (3) that 𝑐(𝑣1
2𝑣1

3) ∈ {5,6}, 𝑐(𝑣1
3𝑦) ∈ {2,3}, 𝑐(𝑣2

2𝑣2
3) ∈ {4,6}, 𝑐(𝑣2

3𝑦) ∈

{1,3}, 𝑐(𝑣3
2𝑣3

3) ∈ {4,5}, and 𝑐(𝑣3
3𝑦) ∈ {1,2}. For this case, there are also two possible colorings of 

edges 𝑣1
3𝑦, 𝑣2

3𝑦, and 𝑣3
3𝑦 by equation (3), which are 𝑐(𝑣1

3𝑦) = 3, 𝑐(𝑣2
3𝑦) = 1, and 𝑐(𝑣3

3𝑦) = 2, or 

𝑐(𝑣1
3𝑦) = 2, 𝑐(𝑣2

3𝑦) = 3, and 𝑐(𝑣3
3𝑦) = 1. Hence, by using a similar argument as Subcase 3.1, we 

will obtain a contradiction. 

Next, to prove the upper bound, we define a strong 3-rainbow coloring of 𝜃(4,4,4) as given in 
Figure 4. 

 

Figure 4. Strong 3-rainbow colorings of 𝜃(2,2,2), 𝜃(3,3,3), and 𝜃(4,4,4). 
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Case 4. 𝑎1 ≥ 5 

Let 𝑐 be a strong 3-rainbow coloring of 𝜃(𝑎1, 𝑎1, 𝑎1). By Theorem 1.3 and Observation 2.4, all 

edges of 𝜃(𝑎1, 𝑎1, 𝑎1) should have distinct colors. Thus, 𝑠𝑟𝑥3(𝜃(𝑎1, 𝑎1, 𝑎1)) ≥ 3𝑎1. Furthermore, 

since ‖𝜃(𝑎1, 𝑎1, 𝑎1)‖ = 3𝑎1, it follows by equation (1) that 𝑠𝑟𝑥3(𝜃(𝑎1, 𝑎1, 𝑎1)) = 3𝑎1.         ∎ 

Theorem 2.7. For 𝑎3 ≥ 𝑎2 ≥ 𝑎1 ≥ 2, let 𝜃(𝑎1, 𝑎2, 𝑎3) be a theta graph of order 𝑎1 + 𝑎2 + 𝑎3 − 1. 

If 𝑎1 = 𝑎2 and 𝑎3 > 𝑎1, then 

𝑠𝑟𝑥3(𝜃(𝑎1, 𝑎1, 𝑎3))

=

{
 
 

 
 

𝑎3, for 𝑎1 = 2 and 𝑎3 ∈ {3,4};
7, for 𝑎1 = 2 and 𝑎3 = 6, or 𝑎1 = 3 and 𝑎3 = 5;

 2𝑎1 + 𝑎3 − 2, for 𝑎1 = 2 and 𝑎3 = 5 𝑜𝑟 𝑎3 ≥ 7, or
  𝑎1 = 3 and 𝑎3 = 4 𝑜𝑟 𝑎3 ≥ 6, or 𝑎1 = 4 and 𝑎3 ≥ 5;

2𝑎1 + 𝑎3, for 𝑎1 ≥ 5 and 𝑎3 ≥ 6.

 

Proof. We consider four cases as follows. 

Case 1. 𝑎1 = 2 and 𝑎3 ∈ {3,4}
 

Since 𝑠𝑑𝑖𝑎𝑚3(𝜃(2,2, 𝑎3)) = 𝑎3, we have 𝑠𝑟𝑥3(𝜃(2,2, 𝑎3)) ≥ 𝑎3 by equation (1). To prove the 

upper bound, we define a strong 3-rainbow coloring of 𝜃(2,2, 𝑎3) as given in Figure 5. 

 

Figure 5. Strong 3-rainbow colorings of 𝜃(2,2,3) and 𝜃(2,2,4). 

Case 2. 𝑎1 = 2 and 𝑎3 = 6, or 𝑎1 = 3 and 𝑎3 = 5 

Suppose that 𝑠𝑟𝑥3(𝜃(𝑎1, 𝑎1, 𝑎3) ≤ 6. Let 𝑐 ∶ 𝐸(𝜃(𝑎1, 𝑎1, 𝑎3)) → [1,6] be a strong 3-rainbow 

coloring of 𝜃(𝑎1, 𝑎1, 𝑎3). Consider graph 𝐶𝑎1+𝑎3 . By Observation 2.5, any rainbow Steiner tree 

connecting every three vertices of 𝐶𝑎1+𝑎3 should be contained in 𝐶𝑎1+𝑎3 . It follows Theorem 1.3 that 

we need at least 6 colors to color all edges of 𝐶𝑎1+𝑎3 . 

For 𝑎1 = 2 and 𝑎3 = 6, there is only one possible edge-coloring of 𝐶𝑎1+𝑎3 . Without loss of 

generality, color all edges of 𝐶𝑎1+𝑎3 as given in Figure 6(a). Now, consider edge 𝑣2
1𝑦. By considering 

{𝑦, 𝑣1
1, 𝑣2

1}, {𝑦, 𝑣2
1 , 𝑣3

2}, and {𝑦, 𝑣2
1 , 𝑣3

3}, we obtain that 𝑐(𝑣2
1𝑦) ∉ {1,2,3,4,6}. These forces  

𝑐(𝑣2
1𝑦) = 5. However, there is no rainbow Steiner {𝑣2

1 , 𝑣3
2 , 𝑣3

5}-tree, a contradiction. 

For  𝑎1 = 3 and 𝑎3 = 5, there are two possible edge colorings of 𝐶𝑎1+𝑎3 . Without loss of 

generality, color all edges of 𝐶𝑎1+𝑎3 as given in Figures 6(b) and 6(c). First, consider Figure 6(b). By 

considering {𝑥, 𝑣1
2 , 𝑣2

1}, {𝑣2
1 , 𝑣3

1 , 𝑣3
3}, and {𝑥, 𝑣2

2, 𝑣3
4}, we obtain that 𝑐(𝑥𝑣2

1) ∉ [1,6]. This implies we 
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need one new distinct color to color edge 𝑥𝑣2
1, which is impossible. Now, consider Figure 6(c). First, 

consider edge 𝑣2
1𝑣2

2. By considering {𝑥, 𝑣1
1 , 𝑣2

2}, {𝑥, 𝑣2
2, 𝑣3

2}, and {𝑦, 𝑣2
1, 𝑣3

3}, we obtain that 

𝑐(𝑣2
1𝑣2

2) ∉ {1,3,4,5,6}. This forces 𝑐(𝑣2
1𝑣2

2) = 2. By symmetry and using a similar argument as the 

previous case, we can show that 𝑐(𝑥𝑣2
1) ∈ {3,5} and 𝑐(𝑣2

2𝑦) ∈ {1,6}. If 𝑐(𝑥𝑣2
1) = 5, then there is 

no rainbow Steiner {𝑥, 𝑣2
2, 𝑣3

3}-tree, a contradiction. A similar argument applies if 𝑐(𝑣2
2𝑦) = 6. Thus, 

𝑐(𝑥𝑣2
1) = 3 and 𝑐(𝑣2

2𝑦) = 1. However, there is no rainbow Steiner {𝑥, 𝑣1
2 , 𝑣2

2}-tree, a contradiction. 

 

Figure 6. The illustrations of the proof of Case 2 when (a) 𝑎1 = 𝑎2 = 2 and 𝑎3 = 6; (b) 𝑎1 = 𝑎2 = 3 and 

𝑎3 = 5; (c) 𝑎1 = 𝑎2 = 3 and 𝑎3 = 5. 

To prove the upper bound, we define a strong 3-rainbow coloring of 𝜃(𝑎1, 𝑎1, 𝑎3) as given in 
Figure 7. 

Case 3. 𝑎1 = 2 and 𝑎3 = 5 or 𝑎3 ≥ 7, or 𝑎1 = 3 and 𝑎3 = 4 or 𝑎3 ≥ 6, or 𝑎1 = 4 and 𝑎3 ≥ 5 

Let 𝑐 be a strong 3-rainbow coloring of 𝜃(𝑎1, 𝑎1, 𝑎3). It follows by Theorem 1.3 and Observation 

2.5 that 𝑠𝑟𝑥3(𝜃(𝑎1, 𝑎1, 𝑎3)) ≥ 2𝑎1 + 𝑎3 − 2. To prove the upper bound, we define a strong 3-

rainbow coloring of 𝜃(𝑎1, 𝑎1, 𝑎3) as follows. For 𝑎1 = 2 and 𝑎3 = 5 or 𝑎3 ≥ 7, assign color 1 to the 

edges 𝑥𝑣1
1 and 𝑣2

1𝑦, color 2 to the edges 𝑣1
1𝑦 and 𝑥𝑣2

1 , and colors 3,4, … , 𝑎3 + 2 to the remaining 

𝑎3 edges of 𝜃(2,2, 𝑎3). For 𝑎1 = 3 and 𝑎3 = 4 or 𝑎3 ≥ 6, assign color 1 to the edges 𝑥𝑣1
1 and 𝑣2

2𝑦, 

color 2 to the edges 𝑣1
2𝑦 and 𝑥𝑣2

1 , and colors 3,4,… , 𝑎3 + 4 to the remaining 𝑎3 + 2 edges of 

𝜃(3,3, 𝑎3). For 𝑎1 = 4 and 𝑎3 ≥ 5, assign color 1 to the edges 𝑥𝑣1
1 and 𝑣2

3𝑦, color 2 to the edges 

𝑣1
2𝑣1

3 and 𝑣2
1𝑣2

2, and colors 3,4,… , 𝑎3 + 6 to the remaining 𝑎3 + 4 edges of 𝜃(4,4, 𝑎3). 

 

 

Figure 7. Strong 3-rainbow colorings of 𝜃(2,2,6) and 𝜃(3,3,5). 
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Now, we show that there exists a rainbow Steiner 𝑆-tree for every set 𝑆 of three vertices of 

𝜃(𝑎1, 𝑎1, 𝑎3). First, consider 𝑎1 = 2 and 𝑎3 = 5 or 𝑎3 ≥ 7. Observe that the edge-coloring of 

𝜃(2,2, 𝑎3) above assigns two colors to all edges of 𝐶4 which has the same pattern as an edge-coloring 

given in Figure 1, and assign 𝑎3 + 2 colors to all edges of 𝐶2+𝑎3 . It means if 𝑆 ⊆ 𝑉(𝐶4) or 𝑆 ⊆

𝑉(𝐶2+𝑎3), then there exists a rainbow Steiner 𝑆-tree contained in 𝐶4 or 𝐶2+𝑎3 , respectively. Therefore, 

we assume that 𝑆 = {𝑣1
1 , 𝑣2

1, 𝑣3
𝑝} for 𝑝 ∈ [1, 𝑎3 − 1]. By the edge-coloring of 𝜃(2,2, 𝑎3), we also can 

show that there exists a rainbow Steiner {𝑥, 𝑣1
1 , 𝑣2

1}-tree 𝑇1, a rainbow Steiner {𝑣1
1 , 𝑣2

1 , 𝑦}-tree 𝑇2, a 

rainbow 𝑥 − 𝑣3
𝑝

 geodesic 𝑇3, and a rainbow 𝑣3
𝑝
− 𝑦 geodesic 𝑇4 such that 𝑐(𝐸(𝑇1)) ∩ 𝑐(𝐸(𝑇3)) =

∅ and 𝑐(𝐸(𝑇2)) ∩ 𝑐(𝐸(𝑇4)) = ∅. Thus, the tree 𝑇1 ∪ 𝑇3 or 𝑇2 ∪ 𝑇4 is a rainbow Steiner 𝑆-tree. A 

similar argument applies for case 𝑎1 = 3 and 𝑎3 = 4 or 𝑎3 ≥ 6, or 𝑎1 = 4 and 𝑎3 ≥ 5. 

Case 4. 𝑎1 ≥ 5 and 𝑎3 ≥ 6 

Let 𝑐 be a strong 3-rainbow coloring of 𝜃(𝑎1, 𝑎1, 𝑎3). It follows by Theorem 1.3 and Observation 

2.5 that 𝑠𝑟𝑥3(𝜃(𝑎1, 𝑎1, 𝑎3)) ≥ 2𝑎1 + 𝑎3. Furthermore, since ‖𝜃(𝑎1, 𝑎1, 𝑎3)‖ = 2𝑎1 + 𝑎3, we have 

𝑠𝑟𝑥3(𝜃(𝑎1, 𝑎1, 𝑎3)) = 2𝑎1 + 𝑎3 by equation (1).                         ∎ 

 
3. CONCLUSIONS 

In this paper, we obtained that ‖𝐻‖ − 2 is the sharp upper bound for 𝑠𝑟𝑥3(𝐻) where 𝐻 is a 
connected graph containing exactly three edge-disjoint cycles. We also determined the exact values of 

𝑠𝑟𝑥3 of theta graph 𝜃(𝑎1, 𝑎2, 𝑎3) for certain values of 𝑎1, 𝑎2, and 𝑎3. There are many other classes 
of graphs containing three cycles that have not been studied in this paper. Hence, it is interesting to 

continue the study by determining the exact values of 𝑠𝑟𝑥3 of the graphs. For further study, it is also 

interesting to study the 𝑠𝑟𝑥3 of graphs containing at least four cycles. 
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