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Abstract  
This paper proposes moving horizon estimation (MHE) to estimate the state variables of autonomous 

vehicle linear systems under measurement noises. To solve the MHE optimization problem, quadratic 

programming is employed. The steering angle, yaw angle, and global position constraints of an 

autonomous vehicle are considered in the estimation design. According to the simulation results, it can 

be observed that although the longer MHE step can give better results compared to the shorter MHE 

step, the difference in the MHE step only slightly affects the estimated results. However, the longer 

MHE step can increase the computational time. Additionally, the proposed MHE scheme is compared 

to the Kalman filter (KF) estimator. Based on the obtained results, the KF gives a better estimation 

than the MHE, but this notion must be verified for other case studies.  

Keywords: autonomous vehicle; Kalman filter; linear system; MHE; quadratic programming. 

 
Abstrak 

Paper ini mengusulkan moving horizon estimation (MHE) untuk mengestimasi variabel keadaan sistem linier 

kendaraan otonom karena pengaruh noise pengukuran. Untuk menyelesaikan masalah optimasi MHE, digunakan 

pemrograman kuadratik. Kendala sudut kemudi, sudut yaw dan posisi global dari kendaraan otonom dipertimbangkan 

dalam desain estimasi. Dari hasil simulasi dapat diketahui bahwa meskipun langkah MHE yang lebih panjang dapat 

memberikan hasil yang lebih baik dibandingkan dengan langkah MHE yang lebih pendek, perbedaan langkah MHE 

hanya sedikit mempengaruhi hasil estimasi. Namun, langkah MHE yang semakin panjang dapat meningkatkan waktu 

komputasi. Selain itu, skema MHE yang diusulkan dibandingkan dengan estimator Kalman filter (KF). 

Berdasarkan hasil yang diperoleh, KF memberikan estimasi yang lebih baik daripada MHE, tetapi gagasan ini harus 

diverifikasi untuk studi kasus lainnya. 

Kata Kunci: kendaraan otonom; Kalman filter; sistem linier; MHE; pemrograman kuadratik. 
 
2020MSC: 62P35, 90C20 
 
 

1. INTRODUCTION 

With the sophistication of technology in the information and communication field, the 

development of autonomous and intelligent vehicle systems is increasingly being carried out. The 

purpose of developing these vehicles is to make it easier for humans to drive and to increase traffic 

efficiency as well [1]. Autonomous vehicles are intelligent vehicles that can steer themselves from one 

location to another without a driver. To develop an autonomous vehicle, several technical aspects in 

engineering are needed to support the concept, including Navigation, Guidance, and Control (NGC). 

https://creativecommons.org/licence/by-sa/4.0/
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To design a feedback control system, complete knowledge of the assumptions of a given system 

is essential. Measuring all system states and parameters may be impossible due to economic reasons 

[2]. In addition, the measurement results from a sensor can also be affected by error or noise, so the 

resulting output can be inaccurate. To handle this issue, it is possible to estimate the state variables or 

parameters. Various estimation methods can be used, including Kalman Filter (KF) and its 

modification. Generally, KF is designed for linear systems, while its modifications, such as Extended 

Kalman Filter (EKF), Ensemble Kalman Filter (EnKF), and Unscented Kalman Filter (UKF), are for 

nonlinear systems [3]–[6]. If the estimation problem does not consider the state and input constraints 

and the error distribution of the estimated state variables is Gaussian, KF and its modifications can 

give optimal estimation [7]. However, the limitations of the system should be considered when we 

design an estimation method to estimate the state variables or parameters. The estimation method 

that can be utilized to overcome this problem is Moving Horizon Estimation (MHE). 

MHE is an optimization-based estimation method under system constraints. MHE uses all past 

measurements within the estimation horizon to minimize the deviation of the model subject to the 

state and input constraints via online optimization [8]. Noted that to solve the MHE optimization 

problem by converting it into nonlinear programming at each time, the computational time burden is 

highlighted in the literature. Due to this drawback, MHE does not have the feasibility to be 

implemented in real problems [9]. Through algorithm development, the solution to this problem can 

be addressed rapidly. One of the software packages that can be used to able to apply this estimation 

method is the ACADO toolkit. ACADO toolkit is an open-source efficient package that can be 

implemented as standalone C++ code and a user-friendly MATLAB interface [10]. Recently, the study 

about MHE for an autonomous vehicle can be found in [11]–[13]. Furthermore, MHE has been 

applied to several unmanned vehicles and combined with the Model Predictive Control (MPC) control 

method [14]–[16]. The main contribution of this paper is how to implement MHE in a linear system 

by utilizing the quadratic programming method to obtain the solution to the optimization problem. 

Additionally, the estimation results of MHE are compared to the Kalman filter to ensure the obtained 

solutions are according to the transformation process carried out. 

The outline of this article is formulated as follows. In Section 2, the method section describes the 
general formulation of the proposed estimation method, namely MHE, and its transformation into 
quadratic programming formula. Additionally, the procedure of the MHE optimization problem is 
also presented in Section 2. Then, the results and discussions are presented in Section 3. The last 
section of this paper presents the conclusion and suggestions. 

2. METHODS 

This section contains the optimization-based estimation method, namely moving horizon 
estimation and its transformation into quadratic programming. 

2.1 Moving Horizon Estimation 
MHE is an estimation method utilizing optimization [17] with a series of measurements observed 

over time containing noises and other inaccuracies to produce the estimation of unknown state 
variables and parameters. Different from the deterministic approaches to finding solutions, MHE is 
based on an iterative approach that relies on linear, quadratic, or nonlinear programming [18]. MHE 
is a multivariable estimation method that uses (1) a dynamical model of a process, (2) previous 
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measurement values, and (3) objective function along the estimation horizon to calculate optimal 
values of state variables and parameters. MHE can overcome physical limitations that cannot be 
ignored in a system, namely by defining those constraints in optimization problems [19]. 

A linear system and measurement equation in discrete time used in this study are defined as 
follows: 

𝒙𝑘+1 = 𝑨𝑑𝒙𝑘 + 𝑩𝑑𝒖𝑘 + 𝒘𝑘 , (1) 

𝒛𝑘 = �̃�𝒙𝑘 + 𝒗𝑘, (2) 

where 𝒙𝑘, 𝒙𝑘+1 ∈ ℝ𝑛𝑥  are the state variables at time-𝑘 and 𝑘 + 1, the state and input matrices in 

discrete time are denoted as 𝑨𝑑 ∈ ℝ𝑛𝑥×𝑛𝑥 and 𝑩𝑑 ∈ ℝ𝑛𝑥×𝑛𝑢, respectively, 𝒖𝑘 ∈ ℝ𝑛𝑢 is the 

manipulated or input variables at time-𝑘, 𝒘𝑘, and 𝒗𝑘  are the additive Gaussian noise with zero mean 

and standard deviation 𝝈𝑤 and 𝝈𝑣, respectively, 𝒛𝑘 ∈ ℝ𝑛𝑧 is the measurement variables at time-𝑘, 

�̃� ∈ ℝ𝑛𝑧×𝑛𝑥 is the measurement matrix, and 𝑛𝑥 , 𝑛𝑢, and 𝑛𝑧 denote the number of the state, input, 
and measurement variables, respectively. The purpose of MHE is to minimize the error between the 
actual value of the measurement and the measurement values of the system by considering the 
constraints on the state and input variables. The actual values in MHE can be obtained from the sensor 
device installed on an object. 

The formulation of the MHE optimization problem at each time-𝑘, where 𝑘 ≤ 𝑁, can be written 
as follows: 

𝐽𝑀𝐻𝐸 = 𝐦𝐢𝐧
𝒙𝑘−𝑁,⋯,𝒙𝑘

𝒖𝑘−𝑁,⋯,𝒖𝑘−1

∑ ‖�̃�𝑗 − �̃�𝒙𝑗‖𝑽

𝟐
𝑘

  𝑗=𝑘−𝑁

+ ∑ ‖�̃�𝑗 − 𝒖𝑗‖𝑾

𝟐
𝑘−1

𝑗=𝑘−𝑁

 (3) 

subject to  

𝒙𝑗+1 = 𝑨𝑑𝒙𝑗 + 𝑩𝑑𝒖𝑗 , 𝑗 ∈ [𝑘 − 𝑁, 𝑘 − 1] (4) 

𝒙𝑚𝑖𝑛 ≤ 𝒙𝑗 ≤ 𝒙𝑚𝑎𝑥 ,                 𝑗 ∈ [𝑘 − 𝑁, 𝑘] (5) 

𝒖𝑚𝑖𝑛 ≤ 𝒖𝑗 ≤ 𝒖𝑚𝑎𝑥 , 𝑗 ∈ [𝑘 − 𝑁, 𝑘 − 1] (6) 

where �̃�𝑗 represents the actual values of the measurement at time-𝑗, �̃�𝑗 is the optimal input obtained 

from a controller at time-𝑗, 𝑁 is the estimation horizon or MHE step, 𝒙𝑚𝑖𝑛 and 𝒙𝑚𝑎𝑥 are the lower 

and upper bounds of the state variables, respectively, 𝑽 ∈ ℝ𝑛𝑧×𝑛𝑧  and 𝑾 ∈ ℝ𝑛𝑢×𝑛𝑢  are the weighting 

matrices for measurement and input variables, respectively, 𝒖𝑚𝑖𝑛 and 𝒖𝑚𝑎𝑥 are the lower and upper 
bounds of the input variables, respectively, and  

‖�̃�𝑗 − �̃�𝒙𝑗‖𝑽

𝟐
= (�̃�𝑗 − �̃�𝒙𝑗)

𝑇
𝑽(�̃�𝑗 − �̃�𝒙𝑗) 

‖�̃�𝑗 − 𝒖𝑗‖𝑾

𝟐
= (�̃�𝑗 − 𝒖𝑗)

𝑇
𝑾(�̃�𝑗 − 𝒖𝑗) 

 

The MHE optimization problem in Equations (3)-(6) is then transformed into quadratic 
programming form so that the solution process is easier to find. 
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2.2 Quadratic Programming of MHE Optimization Problem 
The process to solve mathematical optimization problems in terms of a quadratic objective 

function is known as quadratic programming. The optimization process is to minimize or maximize 
an objective function by considering the linear constraints of the variables. Quadratic programming 
can be categorized into nonlinear programming types [20]. In general, the form of quadratic 
programming can be written as follows [21]: 

𝐽 =
1

2
𝝌𝑇𝑯𝝌 + 𝒇𝑇𝝌 (7) 

subject to 

𝑨 ⋅ 𝝌 ≤ 𝒃, (8) 

𝑨𝑒𝑞 ⋅ 𝝌 = 𝒃𝑒𝑞 , (9) 

𝒍𝒃 ≤ 𝝌 ≤ 𝒖𝒃, (10) 

where 𝑯, 𝑨, dan 𝑨𝑒𝑞  are the matrices, and 𝒇, 𝒃, 𝒃𝑒𝑞 , 𝒍𝒃, 𝒖𝒃, and 𝝌 are the vectors. One of the 

alternative tools to solve the optimization problem in Equation (7)-(10) is by utilizing a toolbox in 
MATLAB, namely “quadprog” syntax. 

The steps to transform the MHE optimization problem (3)-(6) into quadratic programming form 
are as follows: 
1. Objective function 

𝐽𝑀𝐻𝐸  = (�̃�𝑘−𝑁 − �̃�𝒙𝑘−𝑁)
𝑇
𝑽(�̃�𝑘−𝑁 − �̃�𝒙𝑘−𝑁) + ⋯+ (�̃�𝑘 − �̃�𝒙𝑘)

𝑇
𝑽(�̃�𝑘 − �̃�𝒙𝑘) + 

  (�̃�𝑘−𝑁 − 𝒖𝑘−𝑁)𝑇𝑾(�̃�𝑘−𝑁 − 𝒖𝑘−𝑁) + ⋯ + (�̃�𝑘−1 − 𝒖𝑘−1)
𝑇𝑾(�̃�𝑘−1 − 𝒖𝑘−1) 

 = (�̃�𝑘−𝑁
𝑇 − 𝒙𝑘−𝑁

𝑇 �̃�𝑇) 𝑽 (�̃�𝑘−𝑁 − �̃�𝒙𝑘−𝑁) + ⋯+ (�̃�𝑘
𝑇 − 𝒙𝑘

𝑇�̃�𝑇) 𝑽 (�̃�𝑘 − �̃�𝒙𝑘) + 

  (�̃�𝑘−𝑁
𝑇 − 𝒖𝑘−𝑁

𝑇 ) 𝑾 (�̃�𝑘−𝑁 − 𝒖𝑘−𝑁) + ⋯+ (�̃�𝑘−1
𝑇 − 𝒖𝑘−1

𝑇 ) 𝑾 (�̃�𝑘−1 − 𝒖𝑘−1) 

 = �̃�𝑘−𝑁
𝑇  𝑽 �̃�𝑘−𝑁 − �̃�𝑘−𝑁

𝑇  𝑽 �̃�𝒙𝑘−𝑁 − 𝒙𝑘−𝑁
𝑇 �̃�𝑇  𝑽 �̃�𝑘−𝑁 + 𝒙𝑘−𝑁

𝑇 �̃�𝑇  𝑽 �̃�𝒙𝑘−𝑁 + ⋯+  
  �̃�𝑘

𝑇𝑽�̃�𝑘 − �̃�𝑘
𝑇𝑽�̃�𝒙𝑘 − 𝒙𝑘

𝑇�̃�𝑇𝑽�̃�𝑘 + 𝒙𝑘
𝑇�̃�𝑇𝑽�̃�𝒙𝑘 + �̃�𝑘−𝑁

𝑇 𝑾�̃�𝑘−𝑁 − �̃�𝑘−𝑁
𝑇 𝑾𝒖𝑘−𝑁 

  −𝒖𝑘−𝑁
𝑇 𝑾�̃�𝑘−𝑁 + 𝒖𝑘−𝑁

𝑇 𝑾𝒖𝑘−𝑁 + ⋯+ �̃�𝑘−1
𝑇 𝑾�̃�𝑘−1 − �̃�𝑘−1

𝑇 𝑾𝒖𝑘−1 −  

  𝒖𝑘−1
𝑇 𝑾�̃�𝑘−1 +  𝒖𝑘−1

𝑇 𝑾𝒖𝑘−1 

The forms that do not contain 𝒙 and 𝒖 can be removed from the optimization, so we obtain, 

𝐽𝑀𝐻𝐸  = −�̃�𝑘−𝑁
𝑇 𝑽�̃�𝒙𝑘−𝑁 − 𝒙𝑘−𝑁

𝑇 �̃�𝑇𝑽�̃�𝑘−𝑁 + 𝒙𝑘−𝑁
𝑇 �̃�𝑇𝑽�̃�𝒙𝑘−𝑁 − ⋯− �̃�𝑘

𝑇𝑽�̃�𝒙𝑘 − 

  𝒙𝑘
𝑇�̃�𝑇𝑽�̃�𝑘 + 𝒙𝑘

𝑇�̃�𝑇𝑽�̃�𝒙𝑘 − �̃�𝑘−𝑁
𝑇 𝑾𝒖𝑘−𝑁 − 𝒖𝑘−𝑁

𝑇 𝑾�̃�𝑘−𝑁 + 𝒖𝑘−𝑁
𝑇 𝑾𝒖𝑘−𝑁 

  −⋯− �̃�𝑘−1
𝑇 𝑾𝒖𝑘−1 − 𝒖𝑘−1

𝑇 𝑾 �̃�𝑘−1+ 𝒖𝑘−1
𝑇 𝑾𝒖𝑘−1 

 = −2𝒙𝑘−𝑁
𝑇 �̃�𝑇𝑽�̃�𝑘−𝑁 + 𝒙𝑘−𝑁

𝑇 �̃�𝑇𝑽�̃�𝒙𝑘−𝑁 − ⋯− 2𝒙𝑘
𝑇�̃�𝑇𝑽�̃�𝑘 + 𝒙𝑘

𝑇�̃�𝑇𝑽�̃�𝒙𝑘  

  −2𝒖𝑘−𝑁
𝑇 𝑾�̃�𝑘−𝑁 + 𝒖𝑘−𝑁

𝑇 𝑾𝒖𝑘−𝑁 − ⋯− 2𝒖𝑘−1
𝑇 𝑾�̃�𝑘−1+ 𝒖𝑘−1

𝑇 𝑾𝒖𝑘−1 (13) 

Then, Equation (11) can be written into Equation (7) by defining, 
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𝝌 =

[
 
 
 
 
 

 

𝒙𝑘−𝑁

𝒖𝑘−𝑁

𝒙𝑘−𝑁+1

⋮
𝒖𝑘−1

𝒙𝑘

 

]
 
 
 
 
 

((𝑛𝑢+𝑛𝑥)𝑁+𝑛𝑥)×1

 , 𝒇 =

[
 
 
 
 
 
 

 

−2�̃�𝑇  𝑽 �̃�𝑘−𝑁

−2𝑾 �̃�𝑘−𝑁

−2�̃�𝑇  𝑽 �̃�𝑘−𝑁+1

⋮
−2𝑾 �̃�𝑘−1

−2�̃�𝑇  𝑽 �̃�𝑘

 

]
 
 
 
 
 
 

((𝑛𝑢+𝑛𝑥)𝑁+𝑛𝑥)×1

 , and 

𝑯 =

[
 
 
 
 

 

2�̃� 𝑽 �̃�
𝟎
𝟎
𝟎
𝟎

     

𝟎
2𝑾
𝟎
𝟎
𝟎

     

𝟎
𝟎

2�̃� 𝑽 �̃�
𝟎
𝟎

     

⋯
⋯
⋯
⋯
⋯

     

𝟎
𝟎
𝟎

2�̃� 𝑽 �̃�
𝟎

     

𝟎
𝟎
𝟎
𝟎

2𝑾

 

]
 
 
 
 

((𝑛𝑢+𝑛𝑥)𝑁+𝑛𝑥)×((𝑛𝑢+𝑛𝑥)𝑁+𝑛𝑥)

 

2. System constraint 

Considering the multiple shooting approach, i.e., 𝒙𝑗+1 − 𝑨𝑑𝒙𝑗 − 𝑩𝑑𝒖𝑗 = 𝟎, 𝑗 ∈ [𝑘 − 𝑁, 𝑘 − 1] 

For every 𝑗, we can obtain Equation (9) by defining, 

𝑨𝑒𝑞 = [

−𝑨𝑑

𝟎
⋮
𝟎

    

−𝑩𝑑

𝟎
⋱
𝟎

    

𝑰
−𝑨𝑑

⋱
𝟎

    

𝟎
−𝑩𝑑

⋱
𝟎

    

⋯
⋯
⋱
⋯

    

𝟎
𝟎
⋱

−𝑩𝑑

    

𝟎
𝟎
⋮
𝑰

]

(𝑛𝑥𝑁)×((𝑛𝑢+𝑛𝑥)𝑁+𝑛𝑥)

, 𝒃𝑒𝑞 = [

𝟎
𝟎
⋮
𝟎

]

(𝑛𝑥𝑁)×1

  

 
3. The lower and upper bounds in Equation (10) for the decision variables are, 

𝒍𝒃 =

[
 
 
 
 
 
 

 

𝒙𝑘−𝑁
𝑚𝑖𝑛

𝒖𝑘−𝑁
𝑚𝑖𝑛

𝒙𝑘−𝑁+1
𝑚𝑖𝑛

⋮
𝒖𝑘−1

𝑚𝑖𝑛

𝒙𝑘
𝑚𝑖𝑛

 

]
 
 
 
 
 
 

((𝑛𝑢+𝑛𝑥)𝑁+𝑛𝑥)×1

, 𝒖𝒃 =

[
 
 
 
 
 
 

 

𝒙𝑘−𝑁
𝑚𝑎𝑥

𝒖𝑘−𝑁
𝑚𝑎𝑥

𝒙𝑘−𝑁+1
𝑚𝑎𝑥

⋮
𝒖𝑘−1

𝑚𝑎𝑥

𝒙𝑘
𝑚𝑎𝑥

 

]
 
 
 
 
 
 

((𝑛𝑢+𝑛𝑥)𝑁+𝑛𝑥)×1

 

For this case, there is no inequality constraint as in Equation (8). 
The procedure to perform the MHE method can be described in Figure 1. The estimation is done 

offline, i.e., the measurements are synthesized first and then the state estimator (MHE) can be 
implemented. The data are obtained from MPC simulation and the number of measurement data is 

denoted by 𝑛. 

3. RESULTS AND DISCUSSION 

This section discusses how to implement the proposed method that was developed in the 
previous section. The mathematical model used in this study is the lateral vehicle dynamics which can 
be represented by the following state space model [22]: 
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[
 
 
 
 

 

�̇�𝑦

�̇�
�̇�
�̇�

 

]
 
 
 
 

= [ 

−4.4021
0

1.3913
1

    

0
0
0
15

    

−12.4603
1

−5.1868
0

    

0
0
0
0

 ] [ 

𝑉𝑦
𝜓
𝑟
𝑦

 ] + [ 

24.1270
0

15.8609
0

 ] 𝛿 

where 𝑉𝑦  is the lateral velocity of a car, 𝜓 represents the heading or yaw angle, 𝑟 is the yaw rate, 𝑦 

denotes the global position of a car on the 𝑦-axis, and 𝛿 is the steering angle. The state variables can 

be defined as 𝝌 = [𝑉𝑦   𝜓  𝑟  𝑦]
𝑇
, while the input variable of the model is 𝒖 = 𝛿.  

 

 

Figure 1. MHE procedure 

The simulation in this study is performed through two scenarios. In the first scenario, we estimate 
the state variables in one MHE step, and the second one, we vary the MHE steps. In this case study, 
it is assumed that only the yaw angle and the global position can be measured, so the measurement 

matrix is �̃� = [
0
0
   
1
0
   
0
0
   
0
1
]. To obtain the simulation results, the measurement covariance is set to 

No 

Yes 

Yes 

No 

Start 

Finish 

Collect measurement data 

Construct MHE optimization to QP and 

initialization 𝑘 = 0 

 𝑘 ≤ 𝑁 

 𝑘 ≤ 𝑛 

Solve MHE problem 

Store the estimate states at time 𝑘 

Update 𝑘 = 𝑘 + 1 

Obtain past measurements over a 

window of size 𝑁 (𝑘 = 𝑁) 
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diag([deg2rad(0.1) 0.1])2.  Then, the weighting matrices are set to 𝑽 = [deg2rad(0.1) 0
0 0.1

]
−1

 

and 𝑾 = [deg2rad(0.1)]−1. The sampling time to transform the continuous system into a discrete 

system is 𝑇𝑠 = 0.1 𝑠. The constraints of yaw angle and global position are −0.2 ≤ 𝜓 ≤ 0.2 (in radian) 

and −2 ≤ 𝑦 ≤ 6 (in meter). In addition, the input constraints are −
𝜋

6
≤ 𝛿 ≤

𝜋

6
 (in radian).  

3.1 Scenario 1: One MHE Step 

In this scenario, the MHE step value is set to 𝑁 = 𝑛 − 1. Through this scheme, the solution 

obtained from the optimization is directly depicted in a figure to observe the state estimate results of 

MHE. Even though this strategy is not common in the field of estimation, the results of this scenario 

must be analyzed. The results of this scenario are shown in Figure 2. 

Figure 2 shows the estimated results of one MHE step. Based on the figure, it can be said that 

the state estimates are close to the actual state values. The trajectories of true values are taken from 

the closed-loop system without the influence of noise. According to the figures of yaw angle and 

global position, due to the noises, the measurements do not approximate the true values. The 

weighting matrices 𝑽 and 𝑾 in the objective function of the optimization formula affect the estimated 

results as well. To observe the errors of measurements and MHE estimator results, it is essential to 

plot in a figure. 

The errors of measurements and MHE are obtained based on the difference between the actual 

values and the measurement values as well as the MHE values. According to Figure 3, the errors of 

MHE for each time are smaller than the errors of measurements, except at the end of the simulation 

for the yaw angle error. This is caused by the MHE estimator that rejecting the noises in a system. In 

the next subsection, we observe the influence of MHE step variation to estimate the state variables. 

 

Figure 2. The state estimates one MHE step. 



Heri Purnawan, Ulul Ilmi, Rifky Aisyatul Faroh, Ahmad Bustanul Ali Ar Rizqi and Fitroh Resmi 

54 | InPrime: Indonesian Journal of Pure and Applied Mathematics 
 

 

Figure 3. Error in measurements and MHE. 

 

3.2 Scenario 2: The Variations of MHE Step 

The procedure in this scenario is the same as in the first scenario, except that we vary the MHE 

steps. This concept is considered to understand the effect of the MHE steps when producing the state 

estimates. This idea is more relevant in the real case since the MHE step is set by a user. The MHE 

steps used in this scenario are 𝑁 = 10 and 𝑁 = 15. Using these MHE step values, the estimated 

results can be analyzed to find the proper MHE step. 

Figure 4 shows the estimated results of MHE with different 𝑁. In Figure 4, it can be seen the 

MHE can estimate the state variables both with and without known measurement values affected by 

noises. Based on the simulation results, the state estimates of MHE are close to the actual values, 

indicating that the MHE has good performance for an autonomous vehicle. For 𝑁 = 10 and 𝑁 =

15, both yield almost similar results. The errors from the two results are depicted in Figure 5, including 

the errors of all state variables. 

The errors are obtained from the difference between the actual and estimated values of MHE. 

According to Figure 5, the error amplitude from the two different MHE steps is very varied. It is too 

difficult to observe the differences between them from the plot. This difficulty can be caused by at a 

certain time, 𝑁 =  15 has low amplitude values, but at certain other times, 𝑁 = 10 has lower 

amplitude values. To be able to find the best performance, the RMSE value is used to compare beween 

the two cases.  
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Figure 4. Simulation results of MHE with different 𝑁. 

 
Figure 5. Error comparison for different 𝑁. 

Table 1. RMSE values for different 𝑁 

State variables 𝑵 = 𝟏𝟎 𝑵 = 𝟏𝟓 

velocity 0.0016 0.0024 

yaw angle 0.0024 0.0020 

yaw velocity 0.0013 8.9535 × 10−4 

global position 0.0375 0.0318 
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Based on Table 1, there are no significant differences between the RMSE values for 𝑁 = 10 and 

𝑁 = 15. Therefore, the different 𝑁 values considered in this study only slightly affects the estimated 

results. However, the longer the MHE steps used, the longer the computational time. In other words, 

the computational time becomes heavy as MHE steps increase. In the next subsection, 𝑁 = 10 is 

used to compare the performance of MHE with the Kalman filter.  

3.3 Comparison of MHE and Kalman Filter 

In this simulation, the MHE is compared to the Kalman filter (KF) to estimate the yaw angle and 

global position of an autonomous vehicle. In this case, the initial state error covariance is 𝑷0 = 1𝑒 −

3 ⋅ 𝐼4, where 𝐼4 is the identity matrix with size 4 × 4, and the measurement noise covariance is set the 

same as the MHE estimator. The comparison of simulation results between MHE and KF can be seen 

in Figure 6. 

 

Figure 6. Comparison of MHE and KF 

In Figure 6, it can be observed that both KF and MHE have good results, but the KF is better 

than MHE to estimate the state variables compared to MHE with 𝑁 = 10. This statement is based 

on the simulation results, especially at the end of simulation time for each state variable. To support 

this finding, we report the errors of MHE and KF calculated from the difference between the actual 

and the estimated values. 

Figure 7 shows the errors of estimation results between MHE and KF. The plot shows that KF 

has a lower error amplitude, and its errors are almost close to zero compared to MHE, particularly for 

velocity, yaw angle, and yaw velocity. Noted that the error of global position for KF is greater than 

MHE at the beginning of simulation time, but in the end, it converges to zero. Table 2 shows the 

comparison of RMSE between MHE and KF. 
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Figure 7. The comparison of error between MHE and KF 

Table 2. RMSE values of MHE and KF 

State variables 𝑴𝑯𝑬 𝑲𝑭 

velocity 0.0016 3.4720 × 10−5 

yaw angle 0.0024 0.0017 

yaw velocity 0.0013 1.3150 × 10−5 

global position 0.0375 0.0721 

 

Table 2 gives information about the RMSE values of MHE and KF for each state variable. The 

yaw angle and global position have very different RMSE values for both MHE and KF, while for 

velocity and yaw velocity, the KF has a smaller RMSE than MHE. By referring to Figure 6, the KF 

produces a better estimation since the errors go to zero. These findings can be caused by several 

factors. Firstly, we perform the estimation by offline as the data is collected first based on MPC 

simulation. Secondly, in the KF method, there are two stages, namely prediction and correction. These 

stages can produce better estimation results. Thirdly, in the MHE optimization, the estimation horizon 

and weighting matrices in the objective function must be tuned, so the obtained results can estimate 

the state variables perfectly. 

 

4. CONCLUSIONS 

This study applies the MHE estimator to estimate the state variables of an autonomous vehicle. 
The formulation of the MHE optimization problem transformed into quadratic programming is 
presented in this paper. The MHE gives better performance to estimate the state variables under 
measurement noises. It can also estimate unmeasured state variables, i.e., velocity and yaw velocity. 
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According to the simulation results, the difference in the MHE steps only slightly affects the 
estimation results. In this research, the comparison of MHE and KF is also reported. Based on the 
used case study, the KF produces better estimation results than MHE. However, this judgment must 
be further analyzed for other certain cases and approaches, such as the estimation process carried out 
online. For future research, we can perform comparison studies with KF modifications, such as the 
Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) for nonlinear systems. 
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