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Abstract  
Typhoid fever is an endemic disease caused by infection with Salmonella Typhi. The transmission of 

typhoid fever is through food and drink contaminated with Salmonella Typhi bacteria, which is excreted 

through the feces or urine of an infected person. The problem of typhoid fever is increasingly complex 

because of the increase in carrier cases, making it difficult for treatment and prevention efforts. This 

study develops a mathematical model for the control of typhoid fever, which consists of two 

equilibrium points, namely endemic and non-endemic equilibrium points. The endemic and non-

endemic equilibrium point is asymptotically stable if it satisfies the condition given by the Routh-

Hurwitz criterion. Optimal control theory is applied to the mathematical model by providing control 

through health campaigns, screening, and treatment to minimize the number of asymptomatic 

individuals, symptomatic individuals, and chronic carriers. The Pontryagin Minimum principle is used 

to determine the optimal control form. Numerical simulations are performed using the Forward-

Backward Sweep Runge-Kutta method of order 4. The simulation results indicate a decrease in each 

infected subpopulation after applying optimal control for ten months. It is found that control in health 

campaigns has a more significant impact than control in screening and treatment in decreasing the 

number of asymptomatic and symptomatic individuals. The control of treatment effectively reduces 

infected individuals with symptoms of becoming chronic carriers. In conclusion, the most effective 

strategy in controlling the spread of typhoid fever is to simultaneously apply controls in the form of 

health campaigns, screening, and treatment.  

Keywords: health campaign; screening; treatment; optimal control; Pontryagin minimum principle; 
forward-backward sweep. 

 
 

Abstrak 
Demam tifoid merupakan penyakit endemik yang disebabkan oleh infeksi bakteri Salmonella Typhi. Proses penularan 

demam tifoid melalui makanan dan minuman yang  telah terkontaminasi bakteri Salmonella Typhi yang dikeluarkan 

melalui tinja maupun urin dari orang yang telah terinfeksi. Permasalahan tentang demam tifoid semakin kompleks 

karena meningkatnya kasus - kasus carrier, sehingga menyulitkan upaya pengobatan dan pencegahan. Model 

matematika yang dikembangkan memiliki dua titik kesetimbangan yaitu titik setimbang nonendemik dan titik 

setimbang endemik. Titik setimbang nonendemik dan endemik akan stabil asimtotik jika memenuhi kondisi yang 

diberikan oleh aturan Routh-Hurwitz. Teori kontrol optimal diterapkan pada model matematika dengan pemberian 

kontrol berupa kampanye kesehatan, screening dan pengobatan untuk meminimumkan jumlah individu asymptomatic, 

individu symptomatic dan carrier chronic. Penentuan bentuk kontrol optimal menggunakan prinsip Minimum 

Pontryagin. Simulasi numerik dilakukan dengan menggunakan metode Forward-Backward Sweep Runge-Kutta        

orde 4. Berdasarkan hasil simulasi, terjadi penurunan disetiap subpopulasi terinfeksi setelah penerapan kontrol optimal 

selama 10 bulan. Kontrol berupa kampanye kesehatan memiliki pengaruh yang besar dibandingkan kontrol berupa 

screening dan pengobatan dalam menekan meningkatnya individu asymptomatic dan individu symptomatic. Penerapan 
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kontrol berupa pengobatan sangat efektif dalam menekan individu terinfeksi dengan gejala menjadi individu carrier 

chronic. 

Kata Kunci: kampanye kesehatan; screening; pengobatan; kontrol optimal; prinsip minimum Pontryagin; forward-
backward sweep. 
 
2020MSC: 00A71, 92B05  
 
 

1. INTRODUCTION 

According to [1], typhoid fever often occurs in several countries worldwide and generally occurs 

in developing countries with low levels of hygiene. Typhoid fever is a public health problem, with 

cases reaching 11-20 million yearly, resulting in around 128.000-161.000 deaths annually [2]. Typhoid 

fever is an endemic disease in Indonesia, caused by infection with Salmonella Typhi bacteria. These 

bacteria can be transmitted through food and drink contaminated with Salmonella Typhi bacteria 

which are excreted through feces and urine from people infected with Salmonella Typhi bacteria [3], 

[4], [5]. Typhoid fever is a disease that must receive serious attention from various parties because it 

is endemic and threatens public health [6]. According to [7], the problem of typhoid fever is 

increasingly complex, with increasing carrier cases, relapses, and resistance to the drugs used, making 

it difficult for treatment and prevention efforts. After treatment, not all patients recover completely. 

Approximately 2% - 4% of typhoid fever patients become carrier chronic. These patients remain 

asymptomatic after acute treatment, but they can excrete Salmonella Typhi bacteria for up to 1 year 

in feces and urine [5], [8], [9], [10]. 

The study of typhoid fever and strategies for controlling the spread of typhoid fever can be done 

theoretically, one of which is through mathematical modeling. Mathematical modeling is widely used 

to describe various real problems in everyday life and various fields, including the health sector. For 

example, the mathematical model spreads infectious diseases. In connection with these problems, 

mathematical models can be used to determine the dynamics spread of disease. Thus, an effective 

strategy can be determined to control the disease. According to [11], the mathematical model has been 

widely used as an approach to identify the mechanism spread of disease properly. At the same time, 

optimal control is a standard method used to solve optimization problems of a continuous dynamic 

system. The definition of the objective function is based on the goals to be achieved [12]. 

Research on the spread of typhoid fever was previously carried out by several researchers, 

including [13], [14], [15], [16], [17], [18], [19]. In this study, a mathematical model of the spread of 

typhoid fever is developed [15] by reviewing the impact and influence of chronic carriers and their 

impact on the spread of typhoid fever. This current study develops a mathematical model by adding 

a chronic carrier individual (𝐶). 

2. METHODS 

The mathematical model of the spread of typhoid fever in this article is the development of a 

mathematical model [15] by adding the Carrier Chronic compartment. Therefore, this study consists 

of six compartments, namely: susceptible individuals (𝑆), asymptomatic infection individuals (𝐼𝑐), 
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symptomatic infection individuals (𝐼), chronic carrier individuals (C), Recovered Individuals (𝑅) and 

population of Salmonella Typhi bacteria in the environment (𝐵). 

Susceptible individuals (S) will increase due to natural birth at the rate of Λ. Typhoid fever is 

transmitted from bacteria in the environment through food or water contaminated by the Salmonella 

typhi bacteria [13], [15], [16], so the case of new infections is 
𝒗𝑩

𝐾+𝑩
, 𝑣 is the rate of absorption of 

Salmonella Typhi bacteria in food or drink, 𝐾 is the concentration of Salmonella Typhi bacteria in 

food and beverages. Individuals who consume food or drink contaminated with Salmonella Typhi 

bacteria have a probability of 𝜌 to getting into asymptomatic infection individuals (𝐼𝑐) or (1 − 𝜌)  to 

getting into symptomatic infection individuals (𝐼).  

Asymptomatic infection individuals (𝐼𝑐) will get into symptomatic infection individuals 𝐼 after 

screening with the rate of 𝜃, while 𝜙 is the natural recovered rate in asymptomatic infection individuals 

(𝐼𝑐). It is assumed that the natural death rate in each sub-population is the same, which is 𝜇. Death 

due to disease only occurs in symptomatic individuals (𝐼) with the rate of 𝛿. Recovered after treatment 

is divided into two: complete recovery and not full recovery. Individuals who recover completely after 

treatment enter Recovery individuals (𝑅) at the rate of 𝜏. Individuals who do not fully recover will 

enter the Chronic Carrier individuals(𝐶) at the rate of 𝛽. At the same time, 𝛼 is the natural recovery 

rate in Chronic Carrier individuals (𝐶). Salmonella typhi bacteria population in the environment (𝐵) 

will increase due to bacterial removal from asymptomatic infection individuals (𝐼𝑐) through feces and 

urine with an abacterial removal rate of 𝜂1, symptomatic infection individuals (𝐼) with the rate of 𝜂2 

and Chronic Carrier individuals 𝐶 with the rate of 𝜂3.  

Salmonella typhi bacteria population(𝐵) in the environment will be decreased due to the natural 

death of bacteria at the rate of 𝜇𝑏 . Early prevention is needed in controlling the disease to reduce the 

rate of entry of susceptible individuals (𝑆) into asymptomatic infection individuals (𝐼𝑐) and 

symptomatic infection individuals (𝐼) implementing health campaigns control (𝑢1), which shows the 

success of the health campaigns while (1 − 𝑢1) shows unsuccessful in health campaigns. To obtain 

appropriate treatment, asymptomatic infection individuals (𝐼𝑐) have to do screening (𝑢2), and to 

decrease the number of symptomatic infection individuals (𝐼) and Chronic Carrier individuals (𝐶), 

then complete treatment must be carried out (𝑢3). Based on the assumptions, the changes that occur 

for each population in the spread of typhoid fever can be seen in Figure 1. Based on this figure, the 

model for the spread of typhoid fever is as follows: 

𝑑𝑆

𝑑𝑡
= Λ+ 𝜀𝑅 − (1 − 𝑢1)

𝜈𝐵

𝐾+𝐵
𝑆 − 𝜇𝑆,         

𝑑𝐼𝑐

𝑑𝑡
= (1 − 𝑢1)

𝜌𝜈𝐵

𝐾+𝐵
𝑆 − (𝜙 + 𝑢2 + 𝜃 + 𝜂1 + 𝜇)𝐼𝑐 ,     

𝑑𝐼

𝑑𝑡
= (1 − 𝑢1)

(1−𝜌)𝜈𝐵

𝐾+𝐵
𝑆 + (1 − 𝑢2)𝜃𝐼𝑐 − (𝜏 + 𝑢3 + 𝛽 + 𝜂2 + 𝛿 + 𝜇),                      (1) 

𝑑𝐶

𝑑𝑡
= 𝛽𝐼 − (𝛼+𝑢3 + 𝜂3 + 𝜇)𝐶,             

𝑑𝑅

𝑑𝑡
= 𝜙𝐼𝑐 + (𝜏+𝑢3)𝐼 + (𝛼+𝑢3𝐶) − (𝜀 + 𝜇)𝑅,                  
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𝑑𝐵

𝑑𝑡
= 𝜂1𝐼𝑐 + 𝜂2𝐼 + 𝜂3𝐶 − 𝜇𝑏𝐵.  

The variables and parameters in the model (1) are presented in Table 1 and Table 2. 

 

 
Figure 1. Compartment diagram of the spread of typhoid fever 

 
Table 1. Variables in the model (1) 

Variable Description Unit 

𝑆(𝑡) Number of susceptible individuals infected with typhoid fever Person 

𝐼𝑐(𝑡) Number of individuals infected with typhoid fever without showing symptoms Person 

𝐼(𝑡) Number of individuals infected with typhoid fever with symptoms Person 

𝐶(𝑡) Number of individuals who made treatment but still had Salmonella Typi bacteria in 

their intestines 

Person 

𝑅(𝑡) Number of individuals who recovered from typhoid fever Person 

𝐵(𝑡) The population of Salmonella Typhi bacteria in the environment Bacteria 

Table 2. Parameters in the Model (1) 

Parameter Description Value Reference 

Λ Human birth rate 100 [15] 

𝜇 Natural mortality rate  0.0247 [15] 

𝜀 The rate of losing the natural immunity of humans  0.000904 [15] 

𝜌 Probability of individuals entering the class of asymptomatic 
infection 

0.3 [15] 

𝐾 The concentration of Salmonella Typhi bacteria in food and 
beverages 

50000 [15] 

𝜈 The absorption rate of Salmonella Typhi bacteria in humans 0.9 [15] 

𝜃 Screening rate 0.2 [15] 

𝜂
2
𝑰 

(𝜇 + 𝛿)𝑰 

𝜇
𝑏
 

𝜇𝑪 

(𝛼 + 𝑢3)𝑪 
𝛽𝑰 

𝜇𝑰𝒄 

 

(1 − 𝑢1)𝜌
𝑣𝑩

𝐾 + 𝑩
𝑺 

(1
−
𝑢
2 )𝜃

𝑰
𝒄  

 

(𝜏 + 𝑢3)𝑰 

𝜇𝑹 

𝜀𝑹 

𝛬 

𝜇𝑺 

𝑺 𝑰𝒄 

𝑹 𝑩 𝑰 

𝑪 

𝜃𝑢2𝑰𝒄 

 
𝑢2𝑰𝒄 
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Table 2. Continued 

  

Parameter Description Value Reference 

𝜙 The natural recovery rate of the asymptomatic infection 
population 

0.0003 [15] 

𝛿 The mortality rate due to typhoid fever 0.052 [15] 

𝜏 Recovery rate 0.002 [15] 

𝛼 The natural recovery rate of Carrier Chronic individuals 0.0834 [20] 

𝜇𝑏 The natural mortality rate of Salmonella Typhi Bacteria 0.001 [15] 

𝜂1 The rate of removal of Salmonella Typhi Bacteria from the 
asymptomatic infection population 

0.9 [15] 

𝜂3 The rate of removal of Salmonella Thypi Bacteria from the Carrier 
Chronic population 

0.01 [21] 

𝛽 The rate from symptomatic infection population to Carrier 
Chronic individuals 

0.004 [16] 

𝜂2 The rate of removal of Salmonella Thypi Bacteria from the 
symptomatic infection population 

0.8 [15] 

𝑢1 The successful proportion of the health campaign of the 

population (𝑆), 0 ≤ 𝑢1 ≤ 1. 

-  

𝑢2 Screening proportion, 0 ≤ 𝑢2 ≤ 1 -  

𝑢3 The proportion of successful treatment, 0 ≤ 𝑢3 ≤ 1. -  

 

3. RESULTS AND DISCUSSION 

3.1 The Equilibrium Point of the Model 
The non-endemic equilibrium point is a condition where the disease does not spread in a 

population. The condition occurs when 𝐼𝑐 = 𝐼 = 𝐶 = 𝐵 = 0. By substituting and solving for each 
variable in (1), the disease-free equilibrium point is obtained as follows: 

𝐸0 = (𝑆0 ,  𝐼𝑐
0, 𝐼0 , 𝐶0, 𝐵0, 𝑅0) = (

Λ

𝜇
, 0,0,0,0,0). 

The endemic equilibrium point is the condition when the disease spreads in a population. The 

condition occurs when 𝐼𝑐
∗ > 0, 𝐼∗ > 0, 𝐶∗ > 0,𝑅∗ > 0,  and 𝐵∗ > 0. Then, by using the equation 

of (1) obtained: 

𝐸∗ = (𝑆∗,  𝐼𝑐
∗, 𝐼∗ , 𝐶∗, 𝐵∗ , 𝑅∗), 

where 

𝑆∗ =
𝐿3𝐿4𝐿7Λ

𝐿4𝐿3𝐿6𝐿7(𝐿1𝐿2 + 𝜇) − 𝐿1𝐿2𝐿4𝜌𝜀𝐿6𝜙 − 𝐿1𝐿2𝜀(𝐿6𝐿10 + 𝛽𝐿11)(𝐿9𝜌 + 𝐿8𝐿3)
 ,          

 𝐼𝑐
∗ =

𝐿4𝜌𝐿1𝐿2𝐿6𝐿7Λ

𝐿4𝐿3𝐿6𝐿7(𝐿1𝐿2 + 𝜇) − 𝐿1𝐿2𝐿4𝜌𝜀𝐿6𝜙 − 𝐿1𝐿2𝜀(𝐿6𝐿10 + 𝛽𝐿11)(𝐿9𝜌 + 𝐿8𝐿3)
 , 

𝐼∗ =
𝐿1𝐿2𝐿6𝐿7Λ(𝐿9𝜌 + 𝐿8𝐿3)

𝐿4𝐿3𝐿6𝐿7(𝐿1𝐿2 + 𝜇) − 𝐿1𝐿2𝐿4𝜌𝜀𝐿6𝜙 − 𝐿1𝐿2𝜀(𝐿6𝐿10 + 𝛽𝐿11)(𝐿9𝜌 + 𝐿8𝐿3)
 ,                 
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𝐶∗ =
𝛽𝐿1𝐿2𝐿7Λ(𝐿9𝜌 + 𝐿8𝐿3)

𝐿4𝐿3𝐿6𝐿7(𝐿1𝐿2 + 𝜇) − 𝐿1𝐿2𝐿4𝜌𝜀𝐿6𝜙 − 𝐿1𝐿2𝜀(𝐿6𝐿10 + 𝛽𝐿11)(𝐿9𝜌 + 𝐿8𝐿3)
 , 

𝑅∗ =
𝐿3𝐿4𝐿7Λ(𝐿1𝐿2 + 𝜇)

𝜀𝐿4𝐿3𝐿6𝐿7(𝐿1𝐿2 + 𝜇) − 𝜀𝐿1𝐿2𝐿4𝜌𝜀𝐿6𝜙 − 𝜀𝐿1𝐿2𝜀(𝐿6𝐿10 + 𝛽𝐿11)(𝐿9𝜌 + 𝐿8𝐿3)
−
Λ

𝜀
 , 

𝐵∗ =
𝜂1𝐼

∗
𝑐 + 𝜂2𝐼

∗ + 𝜂3𝐶
∗

𝜇𝑏
 , 

with 𝐿1 = (1 − 𝑢1), 𝐿2 =
𝑣𝐵

𝑘+𝐵
 , 𝐿3 = (𝜙 + 𝑢2 + 𝜃 + 𝜂1 + 𝜇), 𝐿4 = (𝜏 + 𝜂2 + 𝛿 + 𝜇),  

𝐿5 = (1 − 𝑢3),  𝐿6 = (𝛼 + 𝜂3 + 𝜇),  𝐿7 = (𝜀 + 𝜇),  𝐿8 = (1 − 𝜌),  𝐿9 = (1 − 𝑢2)𝜃,   𝐿10 = 𝜏+𝑢3, 

𝐿11 = 𝛼+𝑢3. 
 
3.2 Stability Analysis of the Model 

By linearizing the system (1), the Jacobian matrix is 

𝐽 =

(

 
 
 
 
 
 
 
−(1 − 𝑢1)

𝜈𝐵

𝐾 + 𝐵
− 𝜇 0 0 0 𝜀 −(1 − 𝑢1)

𝐾𝜈

(𝐾 + 𝐵)2
𝑆

(1 − 𝑢1)
𝜌𝜈𝐵

𝐾 + 𝐵
−(𝜙 + 𝑢2 + 𝜃 + 𝜂1 + 𝜇) 0 0 0 (1 − 𝑢1)

𝜌𝐾𝜈

(𝐾 + 𝐵)2
𝑆

(1 − 𝑢1)
(1 − 𝜌)𝜈𝐵

𝐾 + 𝐵
(1 − 𝑢2)𝜃 −(𝜏 + 𝑢3 + 𝜂2 + 𝛽 + 𝛿 + 𝜇) 0 0 (1 − 𝑢1)

(1 − 𝜌)𝐾𝜈

(𝐾 + 𝐵)2
𝑆

0 0 𝛽 − (𝛼+𝑢3 + 𝜂3 + 𝜇) 0 0

0 𝜙 𝜏 + 𝑢3 𝛼 + 𝑢3 −(𝜀 + 𝜇) 0
0 𝜂1 𝜂2 𝜂3 0 −𝜇𝑏𝐵 )

 
 
 
 
 
 
 

. 

Then, the stability of the disease-free equilibrium point will be analyzed (𝐸0) by evaluating the 
Jacobian matrix at the non-endemic equilibrium point and solving the characteristic equation of 

𝑑𝑒𝑡(𝜆𝐼 − 𝐽(𝐸0)) = 0 so that the eigenvalue is obtained 𝜆  , which is a solution of the characteristic 

equation (2). 

(𝜆 + 𝜇)(𝜆 + 𝐿7)(𝜆
4 + 𝐴1𝜆

3 + 𝐴2𝜆
2  + 𝐴3 λ + A4 ) = 0.      (2) 

From the characteristic equation (2) it is obtained 𝜆1 = −𝜇 and 𝜆2 = −𝐿7,  the other four eigenvalues 
are obtained by solving the characteristic equation, 

     𝜆4 + 𝐴1𝜆
3 + 𝐴2𝜆

2 + 𝐴3 𝜆 + 𝐴4 = 0,                (3)                          

with 𝐴1 = (𝐿3 + 𝐿4 + 𝐿6 + 𝜇𝑏), 𝐴2 = ((𝐿3 + 𝐿4 + 𝜇𝑏)𝐿6 + (𝐿4 + 𝜇𝑏)𝐿3 + 𝐿4𝜇𝑏) −
𝐿1νΛ

𝐾𝜇
(L8𝜂2 + 𝜂1𝜌),  

𝐴3 = (((𝐿4 + 𝜇𝑏)𝐿3 + 𝐿4𝜇𝑏)𝐿6 + 𝐿3𝐿4𝜇𝑏) −
Λ𝐿1ν

𝐾𝜇
((L8𝜂2 + 𝜂2𝜌)𝐿6 +  𝜏𝜂3𝐿5𝐿8 + 𝜂1𝜌𝐿4 + 𝜂2𝜌 +

𝜂2𝐿3𝐿8), 𝐴4 =(L3𝐿4𝐿6𝜇𝑏 − ((𝜂2𝐿3𝐿8 + 𝜌(𝜂1𝐿4 + 𝜂2𝜌))𝐿6 + 𝜏𝜂3𝐿5(𝐿3𝐿8 + 𝜌))
Λ𝜈𝐿1

𝐾𝜇
.   

The characteristic equation (3) solution is difficult to obtain explicitly because it involves many 

parameters. By using the Routh-Hurwitz criterion, non-endemic equilibrium point 𝐸0 will be 
asymptotically stable if the polynomial (3) has roots with a negative real part if it satisfies the condition: 
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𝐴1, 𝐴2, 𝐴3 , 𝐴4 > 0 and 𝐴1𝐴2𝐴3𝐴4 > 𝐴1
2𝐴4
2 + 𝐴3

2𝐴4 . 

We get linearization around the endemic equilibrium point by evaluating the Jacobian matrix at the 

endemic equilibrium point (𝐸∗). Eigenvalue 𝜆 is obtained by solving the characteristic equation 

𝑑𝑒𝑡(𝜆𝐼 − 𝐽(𝐸∗)) = 0.  

                      𝜆6 + 𝐴1𝜆
5 + 𝐴2𝜆

4 + 𝐴3𝜆
3 + 𝐴4𝜆

2 + 𝐴5𝜆 + 𝐴6 = 0, 
(4) 

with  

𝐴1 = (𝐿3 + 𝐿4 + 𝐿6 + 𝐿7 +𝑀1 + 𝜇𝑏),  

𝐴2 = ((𝐿3 + 𝜇𝑏 + 𝐿4 + 𝐿7 +𝑀1)𝐿6 + (𝐿3 + 𝜇𝑏 + 𝐿4 +𝑀1)𝐿7 + (𝐿3 + 𝐿4 + 𝜇𝑏)𝑀1 + (𝐿4 + 𝜇𝑏)𝐿3 +

𝐿4𝜇𝑏 − 𝜂1𝑥2 − 𝜂2𝑥3),    

𝐴3 = (((𝐿3 + 𝜇𝑏 + 𝐿4 +𝑀1)𝐿7 + (𝐿3 + 𝜇𝑏 + 𝐿4)𝑀1 + (𝐿4 + 𝜇𝑏)𝐿3 + 𝐿4𝜇𝑏 − 𝜂1𝑥2 − 𝜂2𝑥3)𝐿6 +

(((𝐿3 + 𝜇𝑏 + 𝐿4)𝑀1 + (𝐿4 + 𝜇𝑏)𝐿3 + 𝐿4𝜇𝑏 − 𝜂1𝑥2 − 𝜂2𝑥3)𝐿7 + ((𝐿4 + 𝜇𝑏)𝐿3 + 𝐿4𝜇𝑏 − 𝜂1𝑥2 −

𝜂2𝑥3)𝑀1 + (𝐿4𝜇𝑏 − 𝜂2𝑥3)𝐿3 − 𝐿4𝑥2𝜂1 + (𝑀3𝑥1 − 𝑥2𝐿9)𝜂2 + (−𝑀2𝜙 −𝑀3𝐿10)𝜀 +𝑀2𝜂1𝑥1 −

𝛽𝜂3𝑥3),  

𝐴4 = ((((𝐿3 + 𝐿4 + 𝜇𝑏)𝑀1 + (𝐿4 + 𝜇𝑏)𝐿3 + 𝐿4𝜇𝑏 − 𝜂1𝑥2 − 𝜂2𝑥3)𝐿7 + ((𝐿4 + 𝜇𝑏)𝐿3 + 𝐿4𝜇𝑏 −

𝜂1𝑥2 − 𝜂2𝑥3)𝑀1 + (𝐿4𝜇𝑏 − 𝜂2𝑥3)𝐿3 − 𝐿4𝑥2𝜂1 + (𝑀3𝑥1 − 𝑥2𝐿9)𝜂2 + (−𝑀2𝜙 −𝑀3𝑁2)𝜀 +

𝑀2𝜂1𝑥1) 𝐿6 + (((𝐿4 + 𝜇𝑏)𝐿3 + 𝐿4𝜇𝑏 − 𝜂1𝑥2 − 𝜂2𝑥3)𝑀1 + (𝐿4𝜇𝑏 − 𝜂2𝑥3)𝐿3 − 𝐿4𝑥2𝜂1 + (𝑀3𝑥1 −

𝑥2𝐿9) 𝜂2 +𝑀2𝜂1𝑥1 − 𝑁1𝜂3𝑥3) 𝐿7 + ((𝐿4𝜇𝑏 − 𝜂2𝑥3)𝐿3 − 𝑥2𝐿9𝜂2 − 𝐿4𝑥2𝜂1 − 𝑁1𝜂3𝑥3)𝑀1 +

(−𝑀3𝑁2𝜀 +𝑀3𝜂2𝑥1 − 𝑁1𝜂3𝑥3)𝐿3 +𝑀2(𝜂1𝑥1 − 𝜀𝜙)𝐿4 − 𝜀𝜇𝑏(𝑀2𝜙 +𝑀3𝑁2) + 𝑀2𝜂2𝑥1𝐿9 +
(−𝑀2𝐿9𝐿10 −𝑀3𝛽𝐿11)𝜀 + 𝜂3𝛽(𝑀3𝑥1 − 𝑥2𝐿9)),  

𝐴5 = ((((𝐿4 + 𝜇𝑏)𝐿3 + 𝐿4𝜇𝑏  − 𝜂1𝑥2 − 𝜂2𝑥3)𝑀1 + (𝐿4𝜇𝑏 − 𝜂2𝑥3)𝐿3 − 𝐿4𝑥2𝜂1 + (𝑀3𝑥1 − 𝑥2𝐿9)𝜂2 +

𝑀2𝜂1𝑥1) 𝐿7 + ((𝐿4𝜇𝑏 − 𝜂2𝑥3)𝐿3 − 𝑥2(𝐿4𝜂1 + 𝜂2𝐿9))𝑀1 +𝑀3(−𝐿10𝜀 + 𝜂2𝑥1)𝐿3 +𝑀2(𝜂1𝑥1 −

𝜀𝜙)𝐿4 − 𝜀 𝜇𝑏(𝑀2𝜙 +𝑀3𝑁2) +  𝐿9𝑀2(−𝐿10𝜀 + 𝑥1𝜂2)) 𝐿6 + (((𝐿4𝜇𝑏  − 𝜂2𝑥3)𝐿3 − 𝑥2𝐿𝜂2 −

𝐿4𝑥2𝜂1 − 𝛽𝜂3𝑥3)𝑀1 + (𝑀3𝜂2𝑥1 − 𝑁1𝜂3𝑥3)𝐿3 + 𝐿4𝑀2𝑥1𝜂1 +𝑀2𝜂2𝐿9𝑥1 + 𝜂3𝛽(𝑀3𝑥1 −

𝑥2𝐿9)) 𝐿7 − 𝛽𝜂3𝑀1(𝐿3𝑥3 + 𝑥2𝐿9) −𝑀3(𝜇𝑏𝜺𝑳𝟏𝟎 − 𝛽(𝜂3𝑥1 − 𝐿11𝜀))𝐿3 − 𝐿4𝑀2𝜇𝑏𝜀𝜙 −

𝜀(𝑀3𝐿9𝐿10 +𝑀3𝛽𝐿11)𝜇𝑏 − 𝜀𝜙(−𝑀2𝑥3 +𝑀3𝑥2)𝜂2 + ((−𝛽𝐿9𝐿11 − 𝐿10𝑥3𝜂1)𝑀2 +

𝑀3𝜂1𝑥2𝐿10)𝜀 + 𝑀2𝜂3𝑥1𝐿9),  

𝐴6 = ((((𝐿4𝜇𝑏 − 𝜂2𝑥3)𝐿3 − 𝑥2(𝐿4𝜂1 + 𝜂2𝐿9))𝑀1 + (𝑀3𝜂2𝐿3 +𝑀2(𝐿4𝜂1 + 𝜂2𝐿9)𝑥1)𝐿7 −

𝜀(𝐿3𝑀3𝐿10𝜇𝑏 + 𝐿4𝑀2𝜇𝑏𝜙 +𝑀2𝐿9𝐿10𝜇𝑏 + (−𝐿10𝜂1 + 𝜙𝜂2)(−𝑀2𝑥3 +𝑀3𝑥2))) 𝐿6 −

(−𝜂3((−𝐿3𝑥3 − 𝑥2𝐿9)𝑀1 + 𝑥1(𝑀3𝐿3 +𝑀2𝐿9))𝐿7 + (𝐿3𝜇𝑏𝐿11𝑀3 + 𝜇𝑏𝐿9𝐿11𝑀2 + (−𝐿11 +

𝜂3𝜙)(−𝑀2𝑥3 +𝑀3𝑥2))𝜀).  



Stability Analysis and Optimal Control of Mathematical Model of Thypoid Fever Spread 

29 | InPrime: Indonesian Journal of Pure and Applied Mathematics 

 

By using the Routh-Hurwitz criterion, endemic equilibrium point 𝐸∗ will be asymptotically stable 
if the polynomial (4) has roots with a negative real part if it satisfies the condition: 

  𝐴1, 𝐴2, 𝐴3 , 𝐴4, 𝐴5, 𝐴6 > 0 and  𝐴1𝐴2𝐴3𝐴4𝐴5𝐴6 + 𝐴2𝐴3𝐴5
2𝐴6 + 2𝐴1𝐴4𝐴5

2𝐴6 + 𝐴3
2𝐴6
2 + 𝐴1

2𝐴3𝐴4𝐴6
2 +

2𝐴1
2𝐴2𝐴5𝐴6

2 > 𝐴3
2𝐴4𝐴5𝐴6 + 𝐴1

2𝐴4
2𝐴5𝐴6 + 𝐴1𝐴2

2𝐴5
2𝐴6 + 𝐴5

3𝐴6 + 𝐴1𝐴2𝐴3
2𝐴6
2 + 3𝐴1𝐴3𝐴5𝐴6

2 + 𝐴1
3𝐴6
3 . 

3.3 Formulation and Optimal Control Solution 
In this model, optimal control theory is applied to obtain the control function of health 

campaigns(𝑢1), screening (𝑢2), and treatment (𝑢3) so that it can reduce infected individuals without 

symptoms (𝐼𝑐), infected individuals with symptoms(𝐼), and chronic carrier individuals. Control 

function 𝑢𝑖(𝑡), 𝑖 = 1,2,3 defined in area 0 ≤ 𝑢𝑖(𝑡) ≤ 1, for each 𝑡 ∈ [𝑡0, 𝑡𝑓]. The value of 𝑢𝑖(𝑡) =

0 shows that the given control is inefficient for being applied, and the value of  𝑢𝑖(𝑡) = 1 shows that 

the given control is very efficient. 𝑡0 is the initial time of providing control, and 𝑡𝑓 is the end time of 

giving control. Then we get three control functions defined in the determined area, as follows: 

𝑈 = {(𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡))|0 ≤ 𝑢1 ≤ 1, 0 ≤ 𝑢2 ≤ 1, 0 ≤ 𝑢3 ≤ 1, 𝑡 ∈ [𝑡0, 𝑡𝑓]}. 

The relationship between the costs to be incurred for each control variable 𝑢𝑖(𝑡) with the number 
of infected individual populations in the form of non-linear so that the cost function is formed in a 

quadratic model  
1

2
𝑊𝑖𝑢𝑖

2(𝑡), 𝑖 = 1,2,3 with 𝑊𝑖  is the weight that is correlated with the costs incurred 

for each control variable than the value of  
1

2
 stating the importance of the expenses concerned are 

identical. 𝐴𝑖, 𝑖 = 1,2,3 is the weight of each infected subpopulation. Based on the description above, 
the following objective functions can be formed: 

 𝑇 = 𝑚𝑖𝑛
(𝑢𝟏,𝑢𝟐,𝒖𝟑)

∫ (𝐴1𝐼𝑐 + 𝐴2𝐼 + 𝐴3𝐶 +
1

2
∑𝑊𝑖𝑢𝑖

2

3

𝑖=1

)𝑑𝑡

𝑡𝑓

0

, 

 𝑇 = 𝑚𝑖𝑛
(𝑢𝟏,𝑢𝟐,𝒖𝟑)

∫ (𝐴1𝐼𝑐 + 𝐴2𝐼 + 𝐴3𝐶 +
1

2
(𝑊1𝑢1

2 +𝑊2𝑢2
2 +𝑊3𝑢3

2)) 𝑑𝑡.

𝑡𝑓

0

 

 

Determination of optimal control 𝒖∗  is done using Pontryagin's minimum principle. The first 
thing to do is to form a Hamiltonian function [22]. The general form of the Hamiltonian function: 

           𝐻(𝑡, 𝒙, 𝑢, 𝝀) = 𝑓(𝑡, 𝒙, 𝑢) + 𝝀𝑻(𝑡)𝒈(𝑡, 𝒙, 𝑢).   (5) 

Let the Lagrange multiplier in equation (5) as: 

𝝀 = (𝜆1  𝜆2  𝜆3  𝜆4  𝜆5 𝜆6 )
𝑻. 

Then, 

𝑓(𝑡, 𝒙, 𝑢) = 𝐴1𝐼𝑐 + 𝐴2𝐼 + 𝐴3𝐶 +
1

2
𝑤1𝑢1

2 +
1

2
𝑤2𝑢2

2 +
1

2
𝑤3𝑢3

2. 

Based on equation (5), a Hamiltonian function can be formed such as equation (6): 
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𝐻 = 𝐴1𝐼𝑐 + 𝐴2𝐼 + 𝐴3𝐶 +
1

2
𝑤1𝑢1

2 +
1

2
𝑤2𝑢2

2 +
1

2
𝑤3𝑢3

2 + 𝜆1 (Λ + 𝜀𝑅 − ((1 − 𝑢1(𝑡))
𝜈𝐵

𝐾+𝐵
+ 𝜇) 𝑆) +

𝜆2 ((1 − 𝑢1(𝑡))
𝜌𝜈𝐵

𝐾+𝐵
𝑆 − (𝜙 + 𝑢2(𝑡) + 𝜃 + 𝜂1 + 𝜇)𝐼𝑐) + 𝜆3 ((1 − 𝑢1)

(1−𝜌)𝜈𝐵

𝐾+𝐵
𝑆 + (1 −

𝑢2(𝑡))𝜃𝐼𝑐 − (𝜏 + 𝑢3(𝑡) + 𝛽 + 𝜂2 + 𝛿 + 𝜇)𝐼) + 𝜆4(𝛽𝐼 − (𝛼+𝑢3(𝑡) + 𝜂3 + 𝜇)𝐶) + 𝜆5(𝜙𝐼𝑐 +

(𝜏+𝑢3(𝑡))𝐼 + (𝛼+𝑢3(𝑡))𝐶 − (𝜀 + 𝜇)𝑅) + 𝜆6(𝜂1𝐼𝑐 + 𝜂2𝐼 + 𝜂3𝐶 − 𝜇𝑏𝐵).                                

(6) 

The Hamiltonian equation (6) will determine the equation of state, costate and stationary 
conditions of (1). By drifting the Hamiltonian equation (6) to the Lagrange multiplier, we get the state 
equation: 

�̇� =
𝜕𝐻

𝜕𝝀
= (

𝜕𝐻

𝜕𝜆1
  
𝜕𝐻

𝜕𝜆2
  
𝜕𝐻

𝜕𝜆3
  
𝜕𝐻

𝜕𝜆4
  
𝜕𝐻

𝜕𝜆5

𝜕𝐻

𝜕𝜆6
)
𝑇

, 

with 

𝜕𝐻

𝜕𝜆1
= Λ + 𝜀𝑅 − ((1 − 𝑢1(𝑡))

𝜈𝐵

𝐾 + 𝐵
+ 𝜇) 𝑆, 

𝜕𝐻

𝜕𝜆2
= (1 − 𝑢1(𝑡))

𝜌𝜈𝐵

𝐾 + 𝐵
𝑆 − (𝜙 + 𝑢2(𝑡) + 𝜃 + 𝜂1 + 𝜇)𝐼𝑐 , 

𝜕𝐻

𝜕𝜆3
= (1 − 𝑢1)

(1 − 𝜌)𝜈𝐵

𝐾 + 𝐵
𝑆 + (1 − 𝑢2(𝑡))𝜃𝐼𝑐 − (𝜏 + 𝑢3(𝑡) + 𝛽 + 𝜂2 + 𝛿 + 𝜇)𝐼, 

𝜕𝐻

𝜕𝜆4
= 𝛽𝐼 − (𝛼+𝑢3(𝑡) + 𝜂3 + 𝜇)𝐶, 

𝜕𝐻

𝜕𝜆5
= 𝜙𝐼𝑐 + (𝜏+𝑢3(𝑡))𝐼 + (𝛼+𝑢3(𝑡))𝐶 − (𝜀 + 𝜇)𝑅, 

𝜕𝐻

𝜕𝜆6
= 𝜂1𝐼𝑐 + 𝜂2𝐼 + 𝜂3𝐶 − 𝜇𝑏𝐵. 

Costate equation: 

�̇� = −
𝜕𝐻

𝜕𝒙
= (−

𝜕𝐻

𝜕𝑆
−
𝜕𝐻

𝜕𝐼𝑐
−
𝜕𝐻

𝜕𝐼
−
𝜕𝐻

𝜕𝐶
−
𝜕𝐻

𝜕𝑅
  −

𝜕𝐻

𝜕𝐵
)
𝑇

, 

with 

�̇�1 =
(𝜆1 − 𝜆3)𝜈𝐵 + (𝜆3 − 𝜆2)𝜌𝜈𝐵 + (𝜆3 − 𝜆1)𝜈𝐵𝑢1(𝑡) + (𝜆2 − 𝜆3)𝜌𝜈𝐵𝑢1(𝑡)  

𝐾 + 𝐵
+ 𝜆1𝜇, 

�̇�2 = (𝜆2 − 𝜆5)𝜙 + (𝜆2 − 𝜆3)𝜃 + (𝜆2 − 𝜆6)𝜂1 + 𝜆2𝜇 + 𝜆2𝑢2 + 𝜆3𝑢2𝜃 − 𝐴1 , 
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�̇�3 = (𝜆3 − 𝜆4)𝛽 + (𝜆3 − 𝜆5)𝜏 + (𝜆3 − 𝜆6)𝜂2 + 𝜆3(𝛿 + 𝜇) + (𝜆3 − 𝜆5)𝑢3 − 𝐴2, 

�̇�4 = (𝜆4 − 𝜆5)𝛼 + (𝜆4 − 𝜆6)𝜂3 + (𝜆4 − 𝜆5)𝑢3 + 𝜆4𝜇 − 𝐴3 , 

�̇�5 = (𝜆5 − 𝜆1)𝜀+𝜆5𝜇, 

�̇�6 = 𝜆6𝜇𝑏 +
(𝜆1 − 𝜆3)𝜈𝐾𝑆 + (𝜆2 − 𝜆3)𝜈𝜌 𝑢1(𝑡)𝐾𝑆 + (𝜆3 − 𝜆2)𝜈𝜌 𝐾𝑆 + (𝜆2 − 𝜆3)𝜈 𝑢1(𝑡)𝐾𝑆

(𝐾 + 𝐵)2
. 

In stationary conditions, optimal control 𝑢𝑖(𝑡) must minimize the Hamiltonian form for every time 

𝑡. This is caused by a condition that should be fulfilled, that is, the first derivative of the Hamiltonian 

toward each control 𝑢𝑖(𝑡) must be equal to zero, then 

𝜕𝐻

𝜕𝒖
= (

𝜕𝐻

𝜕𝑢1

𝜕𝐻

𝜕𝑢2

𝜕𝐻

𝜕𝑢3
)
𝑇

= (0 0 0)𝑇, 

with 𝑢1 =
(𝜆3−𝜆1)𝜈𝐵𝑆+(𝜆2−𝜆3)𝜈𝜌𝐵𝑆

(𝐾+𝐵)𝑤1
, 𝑢2 =

(𝜆3𝜃−𝜆2)𝐼𝑐

𝑤2
, 𝑢3 =

(𝜆4−𝜆5)𝐶+(𝜆3−𝜆5)𝐼

𝑤3
 . 

Based on the boundary conditions for 𝑢1, 𝑢2, and 𝑢3, which are 0 ≤ 𝑢1 ≤ 1,  0 ≤ 𝑢2 ≤ 1, 0 ≤
𝑢3 ≤ 1 it is obtained optimal control 𝑢1

∗, 𝑢2
∗  and 𝑢3

∗ is written as follows: 

(1) For control 𝑢1(𝑡): 

𝑢1
∗(𝑡) = {

0 𝑖𝑓 𝑢1 ≤ 0
 𝑢1          𝑖𝑓 0 < 𝑢1 < 1
1 𝑖𝑓 𝑢1 ≥ 1

, 

or 

𝑢1
∗(𝑡) = 𝑚𝑖𝑛 {1,𝑚𝑎𝑥 {0,

(𝜆3−𝜆1)𝜈𝐵𝑆+(𝜆2−𝜆3)𝜈𝜌𝐵𝑆

(𝐾+𝐵)𝑤1
}}. 

(2) For control 𝑢2(𝑡): 

𝑢2
∗(𝑡) = {

0 𝑖𝑓 𝑢2 ≤ 0
 𝑢2          𝑖𝑓 0 < 𝑢2 < 1
1 𝑖𝑓 𝑢2 ≥ 1

, 

or 

𝑢2
∗(𝑡) = 𝑚𝑖𝑛 {1,𝑚𝑎𝑥 {0,

(𝜆2−𝜆3)𝜃𝐼𝑐

𝑤2
}}. 

(3) For control 𝑢3(𝑡): 

𝑢3
∗(𝑡) = {

0 𝑖𝑓 𝑢3 ≤ 0
 𝑢3          𝑖𝑓 0 < 𝑢3 < 1
1 𝑖𝑓 𝑢3 ≥ 1

, 

or 

𝑢3
∗(𝑡) = 𝑚𝑖𝑛 {1,𝑚𝑎𝑥 {0,

(𝜆4−𝜆5)𝜏𝐼

𝑤3
}}. 
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3.4 Numerical Simulation 
The simulation was carried out using the values given in Table 1. We use the forward-backward 

sweep Runge Kutta Order 4 method and solve for the optimized system numerically. The initial values 

of each population are 𝑆(0)  =  3000, 𝐼𝑐  (0)  =  150, 𝐼(0)  =  350, 𝐶(0)  =  30, 𝑅(0)  =  450 

and 𝐵(0)  =  5000.  The individual weights to be minimized 𝐴1   = 𝐴2  = 𝐴3 = 50 for reasons of 

importance in minimizing each infected population are the same. W1 is the weight of the cost of the 

health campaign, W2 is the weight of the cost of screening, and W3 is the weight of the cost of 

treatment. It is assumed that the cost weight required for each control to control the spread of typhoid 

fever is 𝑊1  = 9, 𝑊2  = 7 dan 𝑊3  = 10, where the weight of the cost for complete treatment in 

reducing the possibility of individuals becoming carrier chronic is more expensive than the weight of 

the cost health campaign and screening. Changes in the subpopulation before and after being given 

control are shown in Figure 2-5. 

 

Figure 2. (a) Numerical Simulation of Susceptible Individuals (𝑺), (b) Numerical Simulation of Asymptomatic 

Infection Individuals (𝑰𝒄). 
 

Based on Figure 2a graph of susceptible individuals (𝑆)  without control decreases rapidly from 

the beginning to the end of the observation time. Reducing susceptible individuals, (𝑆)  was caused 

by the absence of intervention to suppress the infection rate of the entry individuals 𝑆 into the 

subpopulation 𝐼 and 𝐼𝑐  as a result, asymptomatic infection individuals (𝐼𝑐) and symptomatic infection 

individuals (𝐼) tend to decrease slowly towards the endemic equilibrium point, (Figure 2b) and (Figure 

3a). Reducing the asymptomatic infection individuals (𝐼𝐶) and symptomatic infection individuals (𝐼) 
at the beginning of the observation was due to the natural death and recovery rates. Without health 

campaign control, susceptible individuals (𝑆)  that enter the asymptomatic infection individuals (𝐼𝑐) 

and symptomatic infection individuals (𝐼) will increase. 

The graph with the blue line shows the changes in each subpopulation after being given control 

health campaigns 𝑢1, screening 𝑢2, and treatment 𝑢3. In Figure 2a, the graph with optimal control 

shows that the behavior of the susceptible individuals (𝑆) with optimal control tends to decrease 

slowly from the beginning until the end of observation. This is due to the intervention given to the 
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rate of infection so that it can reduce the rate of entry of susceptible individuals (𝑆) into asymptomatic 

infection individuals (𝐼𝑐) and symptomatic infection individuals (𝐼), which means that health 

campaign control (𝑢1)  can provide an understanding for the community to apply a clean living 

culture, personal hygiene and always maintain sanitation. In Figure 2b, the graph with optimal control 

shows that the behavior of the asymptomatic infection individuals (𝐼𝑐)  tends to decrease in the first 

five months. In the following month, the asymptomatic infection individuals (𝐼𝑐) do not change. In 

addition to the impact of providing health campaigns, the decline in the number of asymptomatic 

infected individuals (𝐼𝑐)  also is due to the effect of delivering screening control 𝑢2, which is quite 

effective early so that it allows the asymptomatic infected individuals (𝐼𝑐) to decrease and enter the 

symptomatic infection individuals (𝐼) to receive treatment immediately. 

 

 

Figure 3. (a) Numerical Simulation of Symptomatic Infection Individuals (𝑰), (b) Numerical Simulation of 

Chronic Carrier Individuals (𝑪). 
 

Based on Figure 3a, the graph with optimal control shows that the symptomatic infection 

individuals (𝐼) began to decrease rapidly in the first months and did not change in the next month. 

The decrease in symptomatic infection individuals(𝐼)  is not only caused by control in the form of 

health campaigns but also due to control in the form of treatment 𝑢3 that can increase recovered 

individuals (𝑅) and reduce the proportion of symptomatic infection individuals (𝐼) entering to carrier 

individuals (𝐶). Figure 3b shows that the graph behavior of carrier individuals (𝐶) without control 

increases in the following month until the end of the observation. Increasing the carrier individuals 

(𝐶)  is due to the absence of intervention given to the rate of treatment. In Figure 3b, the graph of 

the subpopulation 𝐶 with control tends to decrease from the beginning until the end of observation. 

This shows that the provision of control in the form of treatment (𝑢3) can reduce the entry of 

symptomatic individuals (𝐼) to carrier individuals (𝐶). 
 

 



Muh. Nursyam Siduppa, Syamsuddin Toaha, and Kasbawati 
 

34 | InPrime: Indonesian Journal of Pure and Applied Mathematics 
 

 

Figure 4. (a) Numerical Simulation of Recovered Individuals (𝑹), (b) Numerical Simulation of Salmonella 

Typhi Bacteria (𝑩). 
 

In Figure 4a, recovered individuals (𝑅) without control tend to decrease rapidly from the 

observation time until the end of the observation. In contrast, the graph with control tends to increase 

in the first two months of observation and then decline again in the following month. The increase of 

recovered individuals (𝑅) with control was caused by the presence of individuals recovering after 

performing and natural recovery rate in the asymptomatic infection individuals (𝐼𝑐)  and carrier 

individuals (𝐶). In Figure 4b, the number of Samonellah Thypii bacteria in the environment (𝐵) tends 

to increase from the beginning to the end of the observation. The increase in the number of bacteria 

is in line with the rise in asymptomatic infection individuals (𝐼𝑐), symptomatic infection individuals 

(𝐼), and carrier individuals (𝐶). This is because no health campaign 𝑢1 is provided to the community, 

impacting infected individuals and the disposal of environmental bacteria. In Figure 2f, the graph with 

control, the Salmonella Thypi bacteria (𝐵) population increase only in the first two months. In the 

following month, the bacterial population in the environment did not change. Health campaigns can 

provide understanding for the community to apply a culture of clean living, personal hygiene, and 

always maintaining sanitation. 

Based on Figure 5, health campaign control (𝑢1) should be given maximally from the 

observation's beginning to the end. Screening control (𝑢2) should be given maximally for three 
months, and in the following month, the screening can be reduced slowly. The graph of the treatment 

control function(𝑢3) should be given maximally in the first five months of observation. After that, 

the following month of treatment (𝑢3) can be decreased to the end of the observation.  
Furthermore, it will discuss the accumulation of infected individuals from each infected 

subpopulation before and after being given control of the health campaign, screening, and treatment 
for ten months. The number of infected individuals from each subpopulation was calculated using the 
Riemann integral by partitioning the estimated area into 10000 parts with a rectangular shape which 
will be presented in Table 3. Based on Table 3, applying control for ten months can reduce as many 

as 98.14% of individuals 𝐼𝑐 without control, 89.82% of individuals 𝐼 without control, and 94.21% of 

individuals 𝐶 without control. 
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Figure 5. The Function of Health Campaigns Control(𝒖𝟏), screening (𝒖𝟐) and treatment (𝒖𝟑). 

Table 3. Accumulation of Infected Individuals 

Treatment 
Subpopulation 

𝑰𝒄 𝑰 𝑪 

Without Control 598 1769 432 

With Control 𝑢1, 𝑢2 dan 𝑢3  70 180 25 

 

4. CONCLUSIONS 

The developed mathematical model yields non-endemic and endemic equilibrium points. 

Endemic and non-endemic equilibrium points are asymptotically stable if they meet the conditions set 

by the Routh-Hurwitz rule. The simulation results with the application of controls in the form of a 

health campaign, screening, and treatment indicate that the number of asymptomatic individuals can 

be reduced by as much as 98.14%, symptomatic individuals by as much as 89.82%, and chronic carrier 

individuals as much as 94.21%. The use of screening and treatment controls is less important when 

compared to health campaign controls. The use of controls in the form of health campaigns has a 

more significant influence when compared to controls in the form of screening and treatment. This 

shows that prevention in the form of health campaigns must be carried out for a long time to prevent 

the spread of typhoid fever. Meanwhile, the control of treatment effectively reduces the number of 

symptomatic individuals from becoming chronic carriers. Based on the results of numerical 

simulations, the most effective strategy in controlling the spread of typhoid fever is to simultaneously 

apply controls in the form of health campaigns, screening, and treatment. 
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