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Abstract  
In this study, we model the transmission of COVID-19 by considering vaccination and quarantine 

interventions. The focus of our study is to measure the effect of these two interventions on controlling 

the spread of COVID-19. We demonstrate the use of the Kermack-McKendrik model as an SIR model 

for the number of people infected with COVID-19 applied in Jember, Indonesia. The model 

parameters are estimated using the Levenberg-Marquardt approach and the model equations are solved 

using the Runge-Kutta 4th-order method. Through the simulation study, we can determine the peak of 

the spread of COVID-19 cases and obtain several parameters related to vaccination and quarantine 

interventions that significantly affected the transmission rate of COVID-19. It is found that a faster 

rate of vaccinations will reduce the rate of transmission of COVID-19. Moreover, COVID-19 can be 

fully controlled if the infected patients carry out proper quarantine procedures. 
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Abstrak 
Dalam penelitian ini, kami memodelkan penularan COVID-19 dengan mempertimbangkan intervensi vaksinasi dan 

karantina. Fokus dari penelitian kami adalah untuk mengukur pengaruh dari kedua intervensi tersebut dalam 

mengontrol penyebaran COVID-19. Kami mendemonstrasikan penggunaan model Kermack-McKendrik sebagai model 

SIR untuk kasus pasien yang terinfeksi COVID-19 di Jember, Indonesia. Parameter model diestimasi menggunakan 

pendekatan Levenberg-Marquardt dan menyelesaikan model menggunakan metode orde-4 Runge-Kutta. Melalui studi 

simulasi, kami dapat menentukan waktu puncak penyebaran kasus COVID-19 dan mendapatkan beberapa 

parameter terkait intervensi vaksinasi dan karantina yang berpengaruh signifikan terhadap laju penularan COVID-

19. Hasil simulasi menunjukan bahwa laju vaksinansi yang cepat akan mengurangi laju penyebaran COVID-19. 

Selain itu, COVID-19 dapat dikontrol dengan penuh jika pasien melakukan prosedur karantina yang tepat. 

Kata Kunci: COVID-19; Kermack-McKendrik; Levenberg-Marquardt; karantina; vaksinasi 
 
2020MSC: 00A71, 92B05 
 
 

1. INTRODUCTION 

The SARS-CoV-2 case first appeared in Wuhan, Hubei Province, China, in December 2019 [1] 

[2]. SARS-CoV-2 causes infected individuals to transmit Coronavirus Disease (COVID-19) through 

several modes of transmission, namely through direct contact, indirect contact, or close contact with 

infected individuals [3] [4]. As a result, SARS-CoV-2 can quickly spread in a population in a short time. 

This transmission process can be modeled mathematically to determine the peak point of its spread, 

determine the parameters that have a significant effect and determine the steps to control the rate of 

spread [5], [6], [7]. From this model, we can provide disease transmission mechanisms, determine 
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transmission processes, suggest effective control and prevention measures, and estimate the severity 

and scale of potential epidemics [8].  

Most infectious disease transmission models use a deterministic model because this model 

requires fewer data, is relatively easy to set up, and software is widely available and easy to use to 

complete this model [9]. One example of deterministic models is the Kermack-McKendrick model or 

the SIR model. Another example of a deterministic model is a disease transmission model by adding 

a control compartment such as the model with the implementation of vaccination and quarantine 

interventions [10] [11]. This study models the spread of COVID-19 using the Kermack-McKendrick 

model involving vaccination and quarantine interventions and finds the effect of these two 

interventions on the transmission process in Jember, Indonesia. We estimate the parameters in the 

SIR model using the Levenberg-Marquardt method, which is a method for solving non-linear least 

squares problems [12] [13]. These problems usually arise in data fitting by adjusting m observations 

and n parameters in non-linear models [14].  

Our study seeks to find the basic reproduction number, ℛ0, and the effective reproduction 

number, ℛ∗. The ℛ0 can be interpreted as the average number of secondary infections caused by one 

infected individual in the susceptible population exposed during the mean infection period [8], and 

the ℛ∗ is interpreted as the number of secondary infections by a single infection during the pandemic 

with time-dependent control interventions. In fact, ℛ∗ is ℛ0 multiplied by 
𝑆

𝑁
 [15]. In general, 

conditions that may occur from the basic reproduction number are ℛ0 < 1 so that the number of 

infected individuals will decrease so that the disease will disappear, or ℛ0 > 1, then the number of 

infected individuals will increase; the disease becomes epidemic. This basic reproduction number ℛ0 

can be found using the next-generation matrix 𝑲 = 𝑭𝑽−𝟏 [16]. The ℛ0 is the spectral radius of the 

𝑲 matrix, or the maximum modulus of the real and complex numbers at the eigenvalues of the 𝑲 

matrix, with 𝑭 and 𝑽 being a Jacobian matrix of the infected and uninfected compartment 

subpopulation [17]. 

2. METHODS 

The data used in this study is a daily data obtained from the district health office of Jember, 
Indonesia, from July 1, 2021, until August 14, 2021. The data contains the population number in 
Jember, the number of people receiving COVID-19 vaccination for dose 1 and 2, the number of 
confirmed cases of COVID-19, the number of COVID-19 patients, the number of COVID-19 
patients with mild, moderate, and severe symptoms, the number of recovered COVID-19 patients, 
and the number of patients who died from COVID-19. 

This study utilizes the Levenberg-Marquardt method to model the COVID-19 transmission using 

a compartmental approach, which can be written as follows:  
𝑑𝑆

𝑑𝑡
= −𝜆𝐼𝑆

𝑑𝐼

𝑑𝑡
= 𝜆𝐼𝑆 − 𝛾𝐼

𝑑𝑅

𝑑𝑡
= 𝛾𝐼. (1) 

This model divides the host population into three compartments: 𝑆 as the susceptible compartment, 

𝐼 as the infected compartment, and 𝑅 as the recovered compartment. Each of these compartments 

indicates the number of individuals in that compartment and has a non-negative value. The constants 
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𝜆 and 𝛾 are model parameters that indicate the rate of movement from one compartment to another, 

where 𝜆 is the rate of infection and 𝛾 is the rate of recovery. The parameters in model (1) are estimated 

using the following equation: 

(𝐉T𝐉 + 𝜇𝐈)𝐡lm = −𝐉𝐓𝐟 (2) 

Since the Levenberg-Marquardt method uses the principles of the Gauss-Newton method, equation 

(2) is obtained from a linear approximation for the vector 𝐟, which is then added to the damping 

parameter 𝜇. So that 𝐉 is the Jacobian matrix of vector 𝐟, and 𝐡lm is the approximate result. The non-

linear least square problem using the Levenberg-Marquardt method can be solved using the lmfit library 

in Python.  

We solve the SIR model using the Runge-Kutta 4th-order method. The Runge-Kutta method is 

a numerical method for approximating the exact solution of an ordinary differential equation [18]. The 

Runge-Kutta 4th-order method can be built from the explicit Runge-Kutta method by setting the 

order of 4 and using the Runge-Kutta-4 coefficient according to the butcher table [19]. The Runge-

Kutta 4th-order is obtained as follows: 

𝐾1 = 𝑦𝑛, 

𝐾2 = 𝑦𝑛 +
ℎ

2
𝑓(𝑡𝑛 , 𝐾1), 

𝐾3 = 𝑦𝑛 +
ℎ

2
𝑓 (𝑡𝑛 +

ℎ

2
,𝐾2), 

𝐾4 = 𝑦𝑛 + ℎ𝑓 (𝑡𝑛 +
ℎ

2
,𝐾3), 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
𝑓(𝑡𝑛 , 𝐾1) +

ℎ

3
𝑓 (𝑡𝑛 +

ℎ

2
,𝐾2) +

ℎ

3
𝑓 (𝑡𝑛 +

ℎ

2
,𝐾3) +

ℎ

6
𝑓(𝑡𝑛 + ℎ,𝐾4), 

(3) 

where 𝑦𝑛+1 approximates the Runge-Kutta 4th-order for the function 𝑓. This method evaluates each 

derivative step 4 times on 𝐾1, 𝐾2, 𝐾3, and 𝐾4.  

 To model the transmission of COVID-19 with vaccination and quarantine interventions, 

several assumptions are made:  

a. Population not exposed to SARS-CoV-2 are grouped into the 𝑆(𝑡) compartment. Population 

infected with SARS-CoV-2 are grouped into compartment 𝐼(𝑡) with an infection rate of 𝜆. 

Population recovered from COVID-19 or COVID-19 survivors are grouped into the 𝑅(𝑡) 
compartment with a recovery rate of 𝛾. 

b. The population is constant, i.e., the population growth rate due to birth or population 

migration (𝛬) and the regular death rate (𝜇) are assumed to be the same. 

c. Each individual in the 𝑆(𝑡) compartment is vaccinated with two doses (with vaccination rates 

of 𝜑1 and 𝜑2), so, there are two compartments for the vaccinated individuals, i.e., 𝑉1(𝑡) for 

individuals receiving dose 1 and 𝑉2(𝑡) for individuals receiving dose 2. 

d. Individuals in compartment 𝑉1(𝑡) may not get proper protection from COVID-19 optimally, 
but it is assumed that the possibility of infection rate can be reduced due to the first dose of 

vaccination with parameter of 𝑝. 
e. Individuals receiving the second dose of vaccination are not 100% protected from COVID-

19, so it is also assumed that there is a parameter to reduce the possibility of being infected 
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with COVID-19 better than parameter 𝑝, i.e., parameter 𝑟. 

f. Individuals who receive quarantine intervention enter into the 𝑄(𝑡) compartment. Individuals 
in this compartment tested positive for COVID-19 but have no symptoms or mild symptoms. 
Individuals in this compartment are assumed to only partially avoid contact with others so they 
still have the possibility to spread COVID-19. However, the ability to spread COVID-19 can 

be reduced, so that there is a parameter 𝑞 which indicates a reduction in this compartment's 
spread rate. 

g. Individuals infected with COVID-19 with mild or no symptoms will be quarantined, thus there 

is a shift from compartment 𝐼(𝑡) to 𝑄(𝑡) at a rate of 𝜏1. 
h. Individuals in the Q(t) compartment are assumed to be completely recovered. Displacement 

from compartment 𝑄(𝑡) to compartment 𝐼(𝑡) is possible with a movement rate of 𝜏2. 
i. COVID-19 survivors are not 100% free from SARS-CoV-2. There is a possibility that 

COVID-19 survivors are exposed to the SARS-CoV-2 virus, so there may be a movement 

from 𝑅(𝑡) to 𝑆(𝑡) compartment at a rate of 𝜌. 

j. Individuals in compartments 𝐼(𝑡) and 𝑄(𝑡) do not entirely go to 𝑅(𝑡). There is a possibility 
that individuals in this compartment do not survive. Therefore, they are grouped into 

compartment 𝐷(𝑡) with death rate due to COVID-19 being 𝜁. 

k. Based on the previous assumptions, individuals in the 𝑄(𝑡) compartment are asymptomatic 
individuals with mild symptoms. The effect of the two-dose vaccinations can reduce the risk 
of individuals exposed to COVID-19 from getting severe symptoms to death. The reduced-

risk is denoted by a parameter 𝑑, which described the rate of movement from compartment 

𝑄(𝑡) to 𝐷(𝑡). 

We estimate the parameters of infection rate parameter (𝜆), vaccination rate at dose one and dose 

two (𝜑1 and 𝜑2, respectively), recovery rate (𝛾), transfer rate from 𝐼(𝑡) to 𝑄(𝑡) (𝜏1), and the death 

rate due to COVID-19 (𝜁) using the Levenberg-Marquardt method and solve the model using the 

Runge-Kutta method of order 4. The ℛ0 value of the COVID-19 transmission model with vaccination 

and quarantine interventions is also estimated in this study. Additionally, we conduct a simulation 

study for COVID-19 transmission model by varying the values of the vaccination rate parameters for 

dose 1 and 2 (𝜑1 and 𝜑2, respectively), the transfer rate from 𝐼(𝑡) to 𝑄(𝑡) (𝜏1), and reducing the 

infection rate due to quarantine (𝑞), and extending the time on the model. 

3. RESULTS AND DISCUSSIONS 

3.1 COVID-19 Transmission Model with Vaccination and Quarantine Intervention 

The COVID-19 transmission model was built with a compartmental approach. The model is built 

from a modified SIR infectious disease transmission model based on the assumptions written in the 

methodology. Furthermore, based on the assumptions, the transmission model is: 

𝑑𝑆

𝑑𝑡
= Λ −

𝜆𝑆𝐼

𝑁
−

𝜆𝑞𝑆𝑄

𝑁
− 𝜑1𝑆 + 𝜌𝑅 − 𝜇𝑆, 

𝑑𝑉1

𝑑𝑡
= 𝜑1𝑆 −

𝜆𝑝𝑉1𝐼

𝑁
−

𝜆𝑝𝑞𝑉1𝑄

𝑁
− 𝜑2𝑉1 − 𝜇𝑉1, 

(4) 
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𝑑𝑉2

𝑑𝑡
= 𝜑2𝑉1 −

𝜆𝑟𝑉2𝐼

𝑁
−

𝜆𝑟𝑞𝑉2𝑄

𝑁
− 𝜇𝑉2, 

𝑑𝐼

𝑑𝑡
=

𝜆𝑆𝐼

𝑁
+

𝜆𝑝𝑉1𝐼

𝑁
+

𝜆𝑟𝑉2𝐼

𝑁
+

𝜆𝑞𝑆𝑄

𝑁
+

𝜆𝑝𝑞𝑉1𝑄

𝑁
+

𝜆𝑟𝑞𝑉2𝑄

𝑁
− 𝜏1𝐼 + 𝜏2𝑄 − 𝛾𝐼 − 𝜁𝐼 − 𝜇𝐼, 

𝑑𝑄

𝑑𝑡
= 𝜏1𝐼 − 𝜏2𝑄 − 𝛾𝑄 − 𝜁𝑑𝑄 − 𝜇𝑄, 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 + 𝛾𝑄 − 𝜌𝑅 − 𝜇𝑅, 

𝑑𝐷

𝑑𝑡
= 𝜁𝐼 + 𝜁𝑑𝑄. 

Based on the assumption of the second point, because the population is assumed to be constant so 

that the regular birth rate and regular death rate can be assumed to be the same, then the total 

population or 𝑁 = 𝑆 + 𝑉1 + 𝑉2 + 𝐼 + 𝑄 + 𝑅 + 𝐷 can be expressed as 
𝑑𝑁

𝑑𝑡
= 𝛬 − 𝜇𝑁, with the value 

Λ = 𝜇𝑁 because 𝑁 is constant. 

3.2 Parameter Estimation 

Parameters in the COVID-19 transmission model were then estimated using the Levenberg-

Marquardt method. The parameters to be estimated are shown in Table 1. 

Table 1. Parameters to be estimated 

Parameter Description 

𝜆 Infection rate 

𝜑1  Single-dose vaccination rate 

𝜑2 Double-dose vaccination rate 

𝜏1 Rate of movement from 𝐼(𝑡) to 𝑄(𝑡) 

𝛾 Recovery rate 

𝜁 The death rate due to COVID-19 

Before performing data fitting, assuming the parameters that are not estimated is necessary. The 

parameters whose values are assumed are presented in Table 2. 

Table 2. Parameters value assumption 

Parameter Value Description 

𝜏2 0.002857 Rate of movement from 𝑄(𝑡) to 𝐼(𝑡) 

𝜌 0.590071 Reinfection rate [20] 

𝑝 0.180143 Reduction of infection rate due to single-dose vaccine 

𝑟 0.05 Reduction of infection rate due to a two-dose vaccine 

𝑞 0.02 Reduction of infection rate due to quarantine 

𝑑 0.0065 Reducing the death rate from vaccines 

Λ 0 Normal birth rate 

𝜇 0 Normal death rate 
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The initial value for each compartment is required for the fitting data. The initial value will be 

taken from COVID-19 data in Jember from July 1, 2021, to August 14, 2021, with the data used as 

the initial value being July 1, 2021. In contrast, the initial value for compartment 𝑆(𝑡) is taken from 

the total population in Jember minus the initial value of all compartments. The first data for each 

compartment will be used as the initial value for each compartment, so the initial value for each can 

be seen in     Table 3. 

Table 3. Compartment initial values 

Compartment Initial Value 

𝑆(0) 2.286.948 

𝑉1(0) 164.243 

𝑉2(0) 66.485 

𝐼(0) 7.512 

𝑄(0) 4.319 

𝑅(0) 6.695 

𝐷(0) 527. 

The parameters in Table 1 are estimated for range [0,1] by using the initial guess of each parameter 

as 1. We use the lmfit library in Python to estimate the parameters and the results shown in Table 4. 

Table 4. Estimation of parameters  

Parameter Estimation 

𝜑1  0.001393 

𝜑2 0.007576 

𝜆 0.030111 

𝜏1 0.005444 

𝛾 0.008703 

𝜁 0.001293 

3.3 Model Solution Using Runge-Kutta Order 4 

The COVID-19 transmission model with known values for each parameter can then be found as 

a solution using the Runge-Kutta method of order 4. The solution from the model will be solved in 

the range [0,44] according to the length of the data. Figure 1 shows the solutions of each 

compartment compared to the COVID-19 data for 45 days, except for the 𝑆(𝑡) compartment, which 

is presented without comparison data.  

3.4 The basic Reproduction Number 𝓡𝟎 of the COVID-19 Transmission Model 

The basic reproduction number ℛ0 of the COVID-19 transmission model will be searched using 

the next-generation matrix. First, determine which compartments are included in the infected 

compartment. Based on equation (4), two compartments are infected, namely compartments 𝐼(𝑡) and 

𝑄(𝑡). 

𝑑𝐼

𝑑𝑡
=

𝜆𝑆𝐼

𝑁
+

𝜆𝑝𝑉1𝐼

𝑁
+

𝜆𝑟𝑉2𝐼

𝑁
+

𝜆𝑞𝑆𝑄

𝑁
+

𝜆𝑝𝑞𝑉1𝑄

𝑁
+

𝜆𝑟𝑞𝑉2𝑄

𝑁
− 𝜏1𝐼 + 𝜏2𝑄 − 𝛾𝐼 − 𝜁𝐼 − 𝜇𝐼, 
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𝑑𝑄

𝑑𝑡
= 𝜏1𝐼 − 𝜏2𝑄 − 𝛾𝑄 − 𝜁𝑑𝑄 − 𝜇𝑄. 

Furthermore, vector 𝓕 is obtained, the rate of a new infection, and vector 𝓥, the transition to the 

infected compartment. 

𝓕 = [
𝜆𝑆𝐼

𝑁
+

𝜆𝑝𝑉1𝐼

𝑁
+

𝜆𝑟𝑉2𝐼

𝑁
+

𝜆𝑞𝑆𝑄

𝑁
+

𝜆𝑝𝑞𝑉1𝑄

𝑁
+

𝜆𝑟𝑞𝑉2𝑄

𝑁
0

] , 𝓥 = [
𝜏1𝐼 − 𝜏2𝑄 + 𝛾𝐼 + 𝜁𝐼 + 𝜇𝐼

−𝜏1𝐼 + 𝜏2𝑄 + 𝛾𝑄 + 𝜁𝑑𝑄 + 𝜇𝑄
]. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1.  (a) The graphs of the solution compartments 𝑉1(𝑡) and 𝑉2(𝑡); (b) Solution plot of compartments 

𝐼(𝑡) and 𝑅(𝑡); (c) 𝑄(𝑡) and 𝐷(𝑡) compartment solution plots; (d) 𝑆(𝑡) compartment solution plot. 

The matrix 𝑭 and 𝑽 can be obtained as follows. 

𝑭 =

[
 
 
 
𝜕ℱ1

𝜕𝐼

𝜕ℱ1

𝜕𝑄
𝜕ℱ2

𝜕𝐼

𝜕ℱ2

𝜕𝑄 ]
 
 
 

= [
𝜆𝑆 + 𝜆𝑝𝑉1 + 𝜆𝑟𝑉2

𝑁

𝜆𝑞𝑆 + 𝜆𝑝𝑞𝑉1 + 𝜆𝑟𝑞𝑉2

𝑁
0 0

], 

𝑽 =

[
 
 
 
𝜕𝒱1

𝜕𝐼

𝜕𝒱1

𝜕𝑄
𝜕𝒱2

𝜕𝐼

𝜕𝒱2

𝜕𝑄 ]
 
 
 

= [
𝜏1 + 𝛾 + 𝜁 + 𝜇 −𝜏2

−𝜏1 𝜏2 + 𝛾 + 𝜁𝑑 + 𝜇
]. 
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The next-generation matrix is  

𝑲 = (𝑭𝑽−𝟏) =

[
 
 
 
 
 

𝜆(𝑝𝑉1 + 𝑟𝑉2 + 𝑆)(𝑑𝜁 +  𝑞𝜏1  + 𝛾 + 𝜇 + 𝜏2)

𝑁 (𝑑𝜁2 + ((𝑑 +  1)𝛾 + (𝑑 + 1)𝜇 + 𝑑𝜏1 + 𝜏2)𝜁 + (𝜇 + 𝛾)(𝜇 + 𝛾 + 𝜏1 + 𝜏2))
0

(𝑝𝑉1 + 𝑟𝑉2 + 𝑆)𝜆((𝛾 + 𝜇 + 𝜁 + 𝜏1)𝑞 + 𝜏2)

𝑁 (𝑑𝜁2 + ((𝑑 + 1)𝛾 + (𝑑 + 1)𝜇 + 𝑑𝜏1 + 𝜏2)𝜁 + (𝜇 + 𝛾)(𝜇 + 𝛾 + 𝜏1 + 𝜏2))
0

]
 
 
 
 
 
T

. 

From the next generation matrix, we get the basic reproduction number ℛ0. It is necessary to find the 

eigenvalues of the 𝑲 matrix as follows. 

𝑬𝒊𝒈𝑽𝒂𝒍 = [

0
𝜆(𝑝𝑉1 + 𝑟𝑉2 + 𝑆)(𝑑𝜁 +  𝑞𝜏1  + 𝛾 + 𝜇 + 𝜏2)

𝑁 (𝑑𝜁2 + ((𝑑 +  1)𝛾 + (𝑑 + 1)𝜇 + 𝑑𝜏1 + 𝜏2)𝜁 + (𝜇 + 𝛾)(𝜇 + 𝛾 + 𝜏1 + 𝜏2))
]. 

The basic reproduction number ℛ0 is obtained from the largest eigenvalue or spectral radius so 

that the basic reproduction number of the model (4) is 

ℛ0 =
𝜆(𝑝𝑉1 + 𝑟𝑉2 + 𝑆)(𝑑𝜁 +  𝑞𝜏1  + 𝛾 + 𝜇 + 𝜏2)

𝑁 (𝑑𝜁2 + ((𝑑 +  1)𝛾 + (𝑑 + 1)𝜇 + 𝑑𝜏1 + 𝜏2)𝜁 + (𝜇 + 𝛾)(𝜇 + 𝛾 + 𝜏1 + 𝜏2))
. (5) 

The 𝑅0 can be obtained by substituting the previously known parameter values. By substituting the 

value of each parameter and compartment required into equation (5), the value of ℛ0 at 𝑡 = 0 is ℛ0 =

2.064658 ≈ 2. This means each infected individual can infect or produce two new infected 

individuals. In addition, because ℛ0 > 1, it can be concluded that the number of infected individuals 

will continue to increase, and the disease will become epidemic. 

Next, the effective reproduction number (ℛ∗) in time range t=[0,44] is obtained by using 

equation (6) along 𝑤𝑖𝑡ℎ 𝑡 as follows. 

ℛ∗ = ℛ0 ⋅
𝑆

𝑁
. (6) 

The plot of ℛ∗ in the range t is shown in Figure 2. Based on this figure, the value of ℛ∗ continues to 

decrease, with the value at 𝑡 = 0 being ℛ∗ = 1.86 and the value at 𝑡 = 44 being ℛ∗ = 1.74. It can 

also be concluded that the average secondary infection that occurred in the time 𝑡 = [0,44] or July 1, 

2021 – August 14, 2021, continued to decline. However, the curve in Figure 2 does not decrease 

linearly, and there is still a possibility that the curve is stable at one point or close to 0. 

3.5 Model Simulation 

Simulations on the COVID-19 transmission model were carried out by varying the values of 

several parameters related to quarantine and vaccination interventions and varying the time (𝑡) to 

discover the process of spreading COVID-19 when t was more than the amount of data according to 

the COVID-19 transmission model. The parameters will be varied in the interval [0,2𝛼], where 𝛼 is 

the value of the parameter being varied (see Table 5).  
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Figure 2. Plot ℛ∗ over the range 𝑡 = [0,44].  

Table 5. Parameters with varied values 

Parameter Description Value 

𝜑1  Single-dose vaccination rate 0.001393 

𝜑2 Double-dose vaccination rate 0.007576 

𝜏1 Rate of movement from 𝐼(𝑡) to 𝑄(𝑡) 0.005444 

𝑞 Reduction of infection rate due to quarantine 0.05 

The first simulation to be carried out is to widen the time interval (𝑡) for the solution from the 

COVID-19 transmission model to [0,1200]. The extended time in this simulation will start from July 

1, 2021, as 𝑡 = 0, so the model's simulation results are as in Figure 3. Based on Figure 3, it can be 

seen that under the parameter values according to the estimation results, cases of infection or spread 

of COVID-19 reached a peak on the 454th day with a total of 184,018 cases with individuals in the 

quarantine compartment reaching its peak on the 546th-day with the total number of cases reached 

81,002 people, while for individuals who recovered from COVID-19 the peak was on the 638th day 

with a total of 303,085 people who recovered. In contrast to the previous three compartments, 

compartment 𝐷(𝑡) or individuals who died from COVID-19 up to day 1200 have not yet touched 

the top of the curve. Then the number of individuals vaccinated against COVID-19 dose 1 peaked on 

the 174th day, reaching 298,671 people. At the same time, the number of individuals vaccinated with 

dose 2 continued to increase until the 1200th day, with the number of individuals on the 1200th day 

reaching 1,416,182 people. 

While the value in the 𝑆(𝑡) compartment continues to decrease, with the highest value being on 

day 0 with a total of the initial value of the 𝑆(𝑡) compartment, furthermore, if you look at the 

compartment curves that have reached a peak, such as the 𝑅(𝑡) curve and the 𝑉1(𝑡) curve, it shows 

a decrease in the number of individuals in that compartment. The displacement in the COVID-19 

transmission model causes a decrease in the number of individuals in a compartment. Then ℛ∗ in this 

transmission model will also be simulated at 𝑡 = [0,1200]. Figure 3 shows the simulation of the ℛ∗ 

value in the COVID-19 transmission model. Based on Figure 3, the value of ℛ∗ begins to be below 

one on the 464th day, namely ℛ∗ of 0.999066. If the value of ℛ∗ is already below 1, starting from day 
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464, individuals infected with COVID-19 will decrease so that the COVID-19 disease can slowly 

disappear. 

The next model simulation will be made by changing the parameter values in Table 5. The 

parameter values that have been changed will be symbolized by variables 𝜑1𝑆
, 𝜑2𝑆

, 𝜏1𝑆
, and 𝑞𝑆. The 

first parameter simulation will be carried out by varying the value of the vaccination rate parameter at 

dose one or 𝜑1. The estimated value of the parameter 𝜑1 = 0.001393, so that the parameter 𝜑1 will 

be varied from 0 to 2𝜑1 = 0.002786. The following will present the simulation results of the 

COVID-19 transmission model by varying the value of 𝜑1. 

 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

Figure 3.  (a) Model simulation at 𝑡 = [0,1200] for 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), and 𝐷(𝑡); (b) Model simulation at       

𝑡 = [0,1200] for 𝑉1(𝑡) and 𝑉2(𝑡); (c) Model simulation at 𝑡 = [0,1200] for compartment 𝑆(𝑡); 

(d) Simulation of ℛ∗ values in the range 𝑡 = [0,1200]. 

 

Figure 4 shows the results of the variation of 𝜑1𝑆
< 𝜑1, namely the value of 𝜑1𝑆

 is reduced by 

70% from the 𝜑1 or 𝜑1𝑆
= 0.000418. Based on Figure 4, the condition of the spread of COVID-

19 or compartment 𝐼(𝑡), whose simulation is depicted by blue and purple curves, experienced an 

increase in total cases at the peak of the spread by 86.93% to 343,985 people, with the peak 𝑡 shifting 

longer to 462 days. Meanwhile, for the quarantine compartment depicted by orange and brown curves, 

the peak of the curve shifted to day 557, with total cases increasing by 84.29% to 149,275 people. 

Then the compartment for individuals who recovered from COVID-19, depicted by the green 

and pink curves, also experienced an increase in cases at 82.52% to 553,191 people, with the peak 
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shifting longer to the 660th day. Next is the compartment of individuals who died from COVID-19, 

depicted by red and silver colored curves. In the 𝐷(𝑡) compartment simulation, cases also increased 

by 97.97%. It can be seen on the 1200th-day cases, which rose to 325,351 people. 

Compartment 𝑉1(𝑡) or individuals vaccinated with dose one are depicted by a blue curve at 𝜑1 

and green when 𝜑1𝑆
< 𝜑1. These two curves show a decrease in the number of individuals vaccinated 

with dose 1. It can be seen from the highest number on both curves, which is larger than the curve at 

the initial condition. Similar to compartment 𝑉1 (𝑡), in compartment 𝑉2 (𝑡), which is depicted by an 

orange curve at 𝜑1 and red when 𝜑1𝑆
< 𝜑1 also decreases by 65% at 𝑡 = 1200. 

 

 

 

Figure 4.  The top plot shows a model simulation for 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), and 𝐷(𝑡) when 𝜑1𝑆
< 𝜑1.                  

The bottom plot shows a model simulation for 𝑉1 (𝑡) and 𝑉2(𝑡) when 𝜑1𝑆
< 𝜑1.  

Figure 5 presents the simulation results of the COVID-19 transmission model when 𝜑1𝑆
> 𝜑1. 

Figure 5 shows the simulation results of the COVID-19 transmission model with the value of 𝜑1𝑆
 

increased by 80% to 𝜑1𝑆
= 0.002507. The first compartment is 𝐼(𝑡), depicted by a blue curve at 𝜑1 

and purple when 𝜑1𝑆
> 𝜑1. This compartment experienced a decrease in the number of cases at the 

peak point, and the peak of infection cases passed more quickly, namely on the 380th day, with the 

total cases dropping by 49.58% to 92,791 people. 
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There is the quarantine compartment or 𝑄(𝑡), which is depicted by an orange curve at 𝜑1 and 

brown when 𝜑1𝑆
> 𝜑1. Based on the 𝑄(𝑡) compartment curve, the peak of the curve is at day 466, 

faster than the initial condition. Meanwhile, the total cases at the peak of the curve also decreased by 

50% to 40,504 people. The third compartment is the 𝑅(𝑡) compartment or individuals who have 

recovered from COVID-19, represented by a green curve at 𝜑1 and pink when 𝜑1𝑆
> 𝜑1. Similar to 

the previous two compartments, the peak point also shifted earlier to day 546, with the total recovered 

cases dropping by 50.71% to 149,378 people. The last compartment is for individuals who died due 

to COVID-19, depicted by a red curve at 𝜑1 and silver when 𝜑1𝑆
> 𝜑1. This compartment also 

experienced a decrease in death cases due to COVID-19. It can be seen from the total cases on the 

1200th day, which decreased by 56.91%. Based on Figure 5, compartment 𝑉1 (𝑡) is depicted by a blue 

curve at 𝜑1 and green when 𝜑1𝑆
> 𝜑1 increases the number of individuals vaccinated with dose one 

at the peak point of 52.84% with the peak point being on day-169. Same as compartment 𝑉1 (𝑡), in 

compartment 𝑉2 (𝑡), which is depicted by an orange curve at 𝜑1 and red when 𝜑1𝑆
> 𝜑1 also 

increases. It can be seen from the increase in the number of individuals vaccinated with dose 2 of 

48.44 % at time 𝑡 = 1200. 

 

 
Figure 5.  The top plot shows a model simulation for 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), and 𝐷(𝑡) when 𝜑1𝑆

> 𝜑1;                  

The bottom plot shows a model simulation for 𝑉1 (𝑡) and 𝑉2(𝑡) when 𝜑1𝑆
> 𝜑1.  
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The next parameter variation is done by varying the value of the vaccination rate parameter at 

dose two or 𝜑2. The parameter 𝜑2 value is varied from 0 to 2𝜑2 = 0.015152. The following will 

present the results of the simulation of the COVID-19 transmission model for the variation of the 𝜑2 

parameter. Figure 6 presents the simulation results of the COVID-19 transmission model at 𝜑2 and 

when 𝜑2𝑆
< 𝜑2 for compartments 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), and 𝐷(𝑡). The parameter value 𝜑2𝑆

 in this 

condition is reduced by 90% to 𝜑2𝑆
= 0.000758. The first compartment is for confirmed cases of 

COVID-19 or 𝐼(𝑡). Based on the 𝐼(𝑡) curve, in the condition 𝜑2𝑆
< 𝜑2, there was an increase in the 

number of cases at the top of the curve by 61.81% to 297,764 people, with the peak point being on 

day 487, with the peak point being longer than 𝜑2. 

Then the 𝑄(𝑡) and 𝑅(𝑡) compartments experienced the same thing: an increase in the number 

of cases for each compartment with the peak point shifting further away compared to 𝑡ℎ𝑒 𝜑2 

condition. The increase in the number of cases in these two compartments, namely 𝑄(𝑡) and 𝑅(𝑡), 

was 62.11% and 63.45%, respectively, with peaks for these two compartments when 𝜑2𝑆
 < 𝜑2 were 

on the day of 586th and 694th day. The next compartment, namely 𝐷(𝑡), also experienced an increase 

in cases like the others. The 𝐷(𝑡) curve shows an increase in deaths due to COVID-19 by 78.66% at 

𝑡 = 1200. 

 

 

 

Figure 6.  The top plot shows a model simulation for 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), and 𝐷(𝑡) when 𝜑2𝑆
< 𝜑2.                    

The bottom plot shows a model simulation for 𝑉1 (𝑡) and 𝑉2(𝑡) when 𝜑2𝑆
< 𝜑2.  
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The following simulation results show the 𝑉1(𝑡) and 𝑉2(𝑡) compartments at 𝜑2 and the condition 

𝜑2𝑆
< 𝜑2. Based on the 𝑉1(𝑡) curve, it can be seen that there was an increase in the number of 

individuals vaccinated with dose 1. It can be seen from the number of individuals at the peak point, 

which increased by 137.77% to 710,148 people, with the peak position shifting further to the 327th 

day. In contrast to the 𝑉1(𝑡) compartment, the 𝑉2  (𝑡) compartment experienced a decrease in the 

number of individuals. At 𝑡 = 1200, the number of individuals who received vaccine dose 2 

decreased by 70.88% to 412,433 people. Next is the COVID-19 transmission model simulation with 

variations when 𝜑2𝑆
> 𝜑2. 

The value of 𝜑2𝑆
 in the simulation results shown in Figure 7 is increased to 2𝜑2 or 100%. Based 

on Figure 7, compartment 𝐼(𝑡) has decreased. At 𝜑2, the peak point of this compartment was on day 

454, while when the condition 𝜑2𝑆
> 𝜑2 peak point for this compartment was on day 453, the 

number of cases decreased by 14,39% compared to 𝑡ℎ𝑒 𝜑2 condition. Similar to compartment 𝐼(𝑡), 

the 𝑄(𝑡) and 𝑅(𝑡) compartments also experienced a decrease in the number of cases. The decrease 

in the peak of individual quarantined cases in this condition occurred by 14.08% from 𝜑2, with the 

peak shifting one day earlier to the 545th day. 

Meanwhile, the 𝑅(𝑡) compartment experienced a decrease in cases. The decrease in the peak 

number of individuals who recovered from COVID-19 in this condition occurred by 13.78%, with 

the peak shifting two days earlier to the 636th day. Next is the D(t) compartment. This compartment 

has also decreased in number. It can be seen from the number of individuals who died from COVID-

19 at 𝑡 = 1200, which decreased by 14.29% to 140,849 people. Based on Figure 7, the number of 

individuals in compartment 𝑉1(𝑡) has decreased. The 𝑉1 (𝑡) curve shows a decrease in the number of 

individuals vaccinated with dose one at 37.91% to 185,455 people, with the peak point getting faster 

to the 76th day. In contrast to the 𝑉1(𝑡) compartment, the 𝑉2(𝑡) compartment experienced an 

increase in the number of individuals. Based on the 𝑉2(𝑡) curve, the 𝑉2(𝑡) compartment experienced 

an increase in individuals by 10.95% to 1,571,284 people on the 1200th day. 

The third parameter variation is to vary the parameter 𝜏1, which is the rate of movement from 

𝐼(𝑡) to 𝑄(𝑡) or the quarantine rate. The value of this parameter will be simulated from 0 to 2𝜏1 =

0.010888. The simulation results for the COVID-19 transmission model when 𝜏1𝑆
< 𝜏1 can be seen 

in Figure 8. Figure 8 shows the simulation of the transmission model for compartments 

𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), and 𝐷(𝑡) when the value of 𝜏1𝑆
 is reduced by 80% to 0.001089. Based on Figure 8, 

the 𝑄(𝑡) compartment experienced a decrease in cases. This 𝑄(𝑡) curve shows a decrease in the 

number of cases at the peak of 54.76%, with the peak point being faster on the 523rd day. In contrast 

to the 𝑄(𝑡) compartment, the other three compartments experienced increased total cases. 

Compartment 𝐼(𝑡) experienced an increase in infection cases by 129.99%, with its peak shifting earlier 

to day 425, and compartment 𝑅(𝑡), which experienced an increase in cases at its peak of 69.14%, with 

its peak shifting earlier to 601st day. 



Model and Simulation of COVID-19 Transmission with Vaccination and Quarantine Interventions in Jember 

15 | InPrime: Indonesian Journal of Pure and Applied Mathematics 

 

 

 

Figure 7.  The top plot shows a model simulation for 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), and 𝐷(𝑡) when 𝜑2𝑆
> 𝜑2.                  

The bottom plot shows the model simulation for 𝑉1 (𝑡) and 𝑉2(𝑡) when 𝜑2𝑆
> 𝜑2.  

 

Furthermore, in the 𝐷(𝑡) compartment, the 𝐷(𝑡) curve shows an increase in the number of cases 

in this compartment by 138.64% on the 1200th day to 392,177 people. Based on Figure 8, 

compartments 𝑉1(𝑡) and 𝑉2(𝑡) experienced a decrease in individuals. The decrease at the peak of the 

𝑉1(𝑡) compartment was 1.70% to 293,591 people, with the peak shifting earlier to the 158th day. At 

the same time, the decrease in the total individual in compartment 𝑉2(𝑡) can be seen at 𝑡 = 1200 in 

the orange curve at 𝜏1 and the red curve for 𝜏1𝑆
< 𝜏1. The decrease that occurred in the 𝑉2(𝑡) 

compartment was 35.44%. 

The following simulation is done by varying the value of 𝜏1𝑆
> 𝜏1. The value of 𝜏1𝑆

 will be 

increased by 80% from 𝜏1 to 0.009799. The following will present the simulation results of the 

COVID-19 transmission model when the value of 𝜏1𝑆
> 𝜏1. Figure 9 shows the simulation results of 

the COVID-19 transmission model with the value 𝜏1𝑆
> 𝜏1 for compartments 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), and 

𝐷(𝑡). In this condition, compartment 𝐼(𝑡) experienced a decrease in cases at the peak point of 

64.21%, with the peak of cases shifting earlier on the 429th day. Likewise, the 𝑅(𝑡) compartment 

experienced a decrease in the number of cases at the top of the curve. Based on the 𝑅(𝑡) curve, the 
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decrease in total cases at the peak of the 𝑅(𝑡) compartment occurred by 54.60%, with the peak being 

on the 612th day, with a shift in peak faster than 𝜏1. 

 

 

 

 

Figure 8. The top plot shows the model simulation for 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), and 𝐷(𝑡) when 𝜏1𝑆 < 𝜏1. The bottom 

plot shows the model simulation for 𝑉1 (𝑡) and 𝑉2(𝑡) when 𝜏1𝑆 < 𝜏1.  

The next compartment is the 𝑄(𝑡), the same as the previous two compartments. This 

compartment also experiences a decrease in the total number of cases at its peak. Based on the 𝑄(𝑡) 

curve, the total cases at the top of the compartment decreased by 34.99%, with the peak of cases 

shifting earlier to day 517. The next compartment is the 𝐷(𝑡) compartment. Based on the 𝐷(𝑡) curve, 

cases in this compartment also decreased. It can be seen on the 1200th day, which shows a decrease 

in individual cases of dying from COVID-19 by 65.16%. 

The following simulation results are compartments 𝑉1(𝑡) and 𝑉2(𝑡). Based on Figure 9, 

compartment 𝑉1(𝑡) experienced a slight increase in the total number of individuals vaccinated at dose 

1. From the curve 𝑉1(𝑡), the increase in the number of individuals at the peak of compartment 𝑉1(𝑡) 

was 1.41% to 302,894 people, with the curve peak shifting longer to be the 188th day. Like 

compartment 𝑉1(𝑡), compartment 𝑉2(𝑡) also experienced an increase in the total number of 



Model and Simulation of COVID-19 Transmission with Vaccination and Quarantine Interventions in Jember 

17 | InPrime: Indonesian Journal of Pure and Applied Mathematics 

 

individuals in this compartment. The increase in the number of individuals in this compartment can 

be seen on the 1200th day, with an increase of 24.86% to 1,768,307 people. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. The top plot shows the model simulation for 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), and 𝐷(𝑡) when 𝜏1𝑆 > 𝜏1. The bottom 

plot shows the model simulation for 𝑉1 (𝑡) and 𝑉2(𝑡) when 𝜏1𝑆 > 𝜏1.  

The last parameter variation is done by varying the value of the 𝑞 parameter or reducing the 

infection rate due to the quarantine intervention. The value of the 𝑞 parameter is varied from 0 to 

2𝑞 =  0.1. Next, the model simulation for the parameter 𝑞𝑆 < 𝑞 variation is shown in Figure 10. 

Figure 10 is a simulation for compartments 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), and 𝐷(𝑡) with the parameter 𝑞 values 

used as 0.01. This value is down by 80% from 𝑞. Based on Figure 10, it can be seen that there was a 

decrease in cases in the four compartments. In compartment 𝐼(𝑡), there was a decrease in the number 

of cases at the peak of 5.98%, with the peak shifting longer on the 456th day. Then for the 𝑄(𝑡) 

compartment, the number of cases also decreased at the peak point, with a decrease in cases that 

occurred by 5.89% at the peak point, which shifted longer to day 548. The next compartment is the 

𝑅(𝑡) compartment. Compartment 𝑅(𝑡) experienced a decrease in the number of cases at the peak of 

5.82%, with the peak of cases shifting to the 639th day. Furthermore, in the 𝐷(𝑡) compartment, there 

was a decrease in cases seen on the 1200th day cases, which decreased by 6.62%. 

Based on Figure 10, the simulation results for the 𝑉1(𝑡) and 𝑉2(𝑡) compartments at 𝑞𝑆 < 𝑞 do 

not have a significant change in cases. Compartment 𝑉1(𝑡) only experienced an increase in the number 
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of individuals by 0.19% to 299,241 people, with the peak shifting to the 175th day. Furthermore, for 

the 𝑉2(𝑡) compartment, it increased by 2.77% on the 1200th day.  

 

 

Figure 10. The top plot shows the model simulation for 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), and 𝐷(𝑡) when 𝑞𝑆 < 𝑞. The bottom 

plot shows the model simulation for 𝑉1 (𝑡) and 𝑉2(𝑡) when 𝑞𝑆 < 𝑞.  

The following simulation is a simulation when the parameter value 𝑞𝑆 > 𝑞. Figure 11 shows the 

simulation results of the COVID-19 transmission model for compartments 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), and 

𝐷(𝑡) when the parameter value 𝑞𝑆  > 𝑞. The value of the 𝑞𝑆 parameter in Figure 11 is 0.09, which is 

an increase of 80% from 𝑞. Based on Figure 11, the four compartments experienced a rise in cases. 

In the compartment, 𝐼(𝑡) cases increased at the peak point of 5.96%, with the peak point occurring 

earlier than the 450th day. Furthermore, for the 𝑄(𝑡) compartment, there was an increase in cases at 

the peak of 5.84% to 85,732 people, with the peak shifting faster to the 544th day. The third 

compartment, the 𝑅(𝑡), also experienced an increase in the number of individuals at the peak of 

5.76%, with the peak shifting to the 637th day. The last compartment is compartment 𝐷(𝑡). Based 

on the 𝐷(𝑡) curve, the 𝐷(𝑡) compartment also experienced an increase in cases of 6.65% on the 

1200th day. 

Furthermore, the COVID-19 transmission model simulation results for compartments 𝑉1(𝑡) and 

𝑉2(𝑡). Based on Figure 11, both compartments experienced a decrease in individuals. The curve in 

compartment 𝑉1(𝑡) shows a decline in the number of individuals at the peak point by 0.19% to 
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298,102 people, with the peak point shifting to day 172. Furthermore, for compartment 𝑉2(𝑡), there 

is also a decrease in the number of individuals. This compartment decreased by 2.76%, which occurred 

on the 1200th day. 

 

 

 

Figure 11. The top plot shows the model simulation for 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), and 𝐷(𝑡) when 𝑞𝑆 > 𝑞. The bottom 

plot shows the model simulation for 𝑉1 (𝑡) and 𝑉2(𝑡) when 𝑞𝑆 > 𝑞.  

Based on the simulations carried out on the COVID-19 transmission model by varying the values 

of the four parameters, several parameters significantly influence the rate of spread of COVID-19. 

Parameter 𝜑1 is the rate of vaccination of dose 1, 𝜑2 is the rate of vaccination of dose 2, and 𝜏1 is the 

rate of quarantine or transfer from 𝐼(𝑡) to 𝑄(𝑡), giving a more significant effect than parameter 𝑞. 

Then if you pay attention to the rate of spread of COVID-19, the rate of spread of this disease can be 

suppressed or based on its spread curve. To do that, several things can be done, including the 

following, 

1. Accelerate the process of vaccination dose of 1 COVID-19 per day or increase the value of 𝜑1, 

2. Accelerate the process of vaccination dose of 2 COVID-19 per day or increase the value of 𝜑2, 

3. Increase the number of quarantined individuals due to positive COVID-19 with asymptomatic 

status or mild symptoms, or increase the value of 𝜏1. 

When we implement the three efforts above, the simulation of the spread of COVID-19 is shown 

in Figure 12. This figure shows the compartment curve 𝐼(𝑡) during the initial conditions and after 
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implementing the three efforts. Cases at the peak are much lower than in the previous simulation, with 

a total of 28,463 cases, and this figure decreased by 84.53% from the total cases in the initial conditions. 

Then the 𝑞 parameter does not significantly affect the last three parameters. Still, this parameter shows 

that the smaller the value, the slightly lower the spread of COVID-19, which means that the fewer 

individuals who violate quarantine procedures, the less the spread of COVID-19. 

 

 

Figure 12.  Model simulation implemented the three prevention efforts: vaccination dose 1, dose 2, and 

individual quarantine.  

 

4. CONCLUSIONS 

The COVID-19 transmission model with vaccination and quarantine interventions can be used 
to describe future conditions in Jember. The results of the simulation study yield a better spread 
scenario than the initial conditions by varying different parameter values. It is found that vaccination 
and quarantine interventions greatly influence the transmission of COVID-19. A faster rate of 
vaccinations will reduce the rate of transmission of COVID-19. In terms of quarantine interventions, 
if individuals who are tested positive for COVID-19 with mild or asymptomatic symptoms carry out 
proper quarantine procedures, the tracking process for individuals who are confirmed with COVID-
19 can be further expanded to maximize quarantine interventions. As a result, the rate of spread of 
COVID-19 can be reduced. 
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