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Abstract

This paper introduces a new four-parameter distribution called the exponentiated Gompertz generated
inverted exponential (EGGig) distribution. Explicit expressions of the structural properties such as the
ordinary and incomplete moments, probability weighted moments, quantile function, Lorenz and
Bonferroni curves, entropies, and order statistics are derived. The empirical findings indicate that the
maximum likelihood procedure dominates the other estimators in the simulation study while the
Cramer-Von Mises procedure dominates in the two real datasets applications. We demonstrate the
superiority of the EGGig distribution over the Gompertz Lomax, odd Fréchet Inverse exponential,
generalized inverse exponential, generalized inverse exponential, exponential inverse exponential, and
Gompertz Weibull distribution using the maximum likelihood procedure utilizing two real datasets
applications. The findings show that the EGGig, distribution yields the best goodness of fit to the two
datasets.

Keywords: exponentiated Gompertz generated family; inverse exponential distribution; Kolmogorov-
Smirnov statistic; Anderson-Datling; maximum product spacing.

Abstrak

Paper ini memperkenalkan distribusi 4-parameter baru yang disebut dengan distribusi exponentiated Gompertz
generated inverted exponential (EGGIE). Ekspresi eksplisit sifat struktural dari distribusi ini diturnnkan,
seperti momen biasa dan momen tak lengkap, momen probabilitas terboboti, fungsi kuartil, kurva Lorenz dan
Bonferroni, entropi, dan statistik urutan. Temnan empiris menunjukan babwa prosedur maksimum likelibood
mendominasi estimator lainnya pada studi simulasi, sementara prosedur Cramer-Von Mises mendominasi pada
aplikasi dua dataset nyata. Peneliti menunjukkan keunggulan dari distribusi EGGIE dibandingkan distribusi
Gompertz Lomax, odd Frechet Inverse exponential, generalized inverse exponential, exponential
inverse exponential, dan Gompertz Weibull zenggunakan metode maksimum likelibood yang diaplikasikan pada
dna dataset nyata. Hasil mennnjukan babwa distribusi EGGIE menghasilkan kecocokan model yang baik pada kedna
dataset.

Kata Kunci: &cluarga bangkitan exponentiated Gompertz; distribusi inverse exponential; Kolmogorov-
Smirnov statistic; Anderson-Darling; maximum product spacing.

2020MSC: 62E10

1. INTRODUCTION

Keller and Kamath [1] introduced the inverted-exponential (IE) distribution as a modification of
the exponential distribution. Also, the IE distribution a sub-distribution of the inverted-Weibull
distribution is quite a good fit for real-life processes with inverted-bathtub-failure rate characteristics.
The IE distribution has a non-constant failure rate which stands good for describing real-life events
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in biomedical sciences, medicine, engineering, and public health. Abouammoh and Alshingiti (2009)
introduced the generalized form of the IE distribution with the unique properties of the IE
distribution. Lin et al. [2] cited in Sharifah [3], proved that the IE distribution would be efficient when
used in strength-data modeling. The cumulative distribution function (CDF) of the IE distribution is
given by

L
Ge(y:8)=e ", y>0, O
and the corresponding probability density function (pdf) is given by
L
g.E(y:ﬁ)=ée ', y>0, (2)

where £ >0 is the scale parameter.

Several authors attempting to improve the flexibility and modeling capability of the IE
distribution given its quality (non-constant failure rate) and competitiveness with the exponential
distribution have proposed various generalizations and extensions. Singh and Goel [4] proposed the
Beta IE distribution with expressions for the inverse moments, stress-strength reliability, and inverse
moment generating function. They stated that in comparison to the MLE, the Bayes estimation
procedure performed better with less error value through the simulation study. Also, the real datasets
applications showed that the Beta IE distribution is superior to some distributions considered using
the maximum likelihood estimation (MLE) procedure. Sharifah [3] introduced the odd Fréchet IE
distribution with some statistical properties and demonstrated its flexibility over some distributions
using the MLE procedure. Eghwerido et al. [5] introduced the Gompertz Alpha-power IE distribution
with some statistical properties and demonstrated its flexibility over some distributions using the MLE
procedure on two real datasets. Leren and Abdullahi [6] proposed the odd Lindley IE distribution
with decreasing hazard rate function, some statistical properties, and two real datasets considered in
demonstrating the practical importance of the distribution using the MLE procedure. Abdulkadir et
al. [7] proposed a two-parameter distribution called the LLomax IE distribution with derived properties
such as the survival and hazard rate functions, quantile function, and order statistics. The MLE
procedure utilizes fitting two sets of real datasets. Moreso, Sule [8] proposed the Topp Leone
Kumaraswamy generalized IE distribution, a four-parameter distribution with an increasing-
decreasing, J-and-reversed-] shaped hazard rate function. The flexibility of the distribution using the
MLE was demonstrated utilizing three real datasets. Eghwerido [9] introduced the Weibull IE
distribution with expressions of the moments, probability weighted moments, quantile function and
then demonstrated its flexibility over some distributions using the MLE procedure.

This research aims to introduce a new extended IE distribution with unique characteristics
capable of modeling skewed datasets and also examine the performance of four classical estimation
procedures such as the maximum likelthood (ML), maximum product spacing (MPS), Cramer-von
mises (CVM), and Anderson-Darling (ANDA) in estimating the parameters of the new extended IE
distribution using extensive Monte Carlo simulation and two real datasets applications. Hence, creating
a standard guideline for selecting the best estimation procedure is believed to be of interest to applied
statisticians.

The remaining parts are as follows: Section 2, the exponentiated Gompertz inverted exponential
(EGGig) density function, distribution function, and reliability analysis are presented. The linear
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representations of the EGGig functions and general structural properties are provided in Section 3.
The mathematical expressions of the four estimators for the EGGr distribution are provided in
Section 4. Monte Carlo simulations for the true parameter estimates of the EGGig distribution are
performed using the four classical estimation procedures in Section 5. The comparison of the four
estimators and the fitness ability of the EGGe distribution to two real datasets using the MLE
procedure are provided in Section 6. The conclusion is given in Section 7.

2. THE EXPONENTIATED GOMPERTZ INVERTED EXPONENTIAL (EGGk)
DISTRIBUTION

Alzaatreh et al. [10] proposed the method of generating classes of distributions, the CDF is given
by

H[G(y)]
Fy)=], vt 3)
By differentiating Eq (3), the corresponding pdf takes the form
d
)=o) {HLem]- 2
If H|G(y)]=-log[1-G(y.yw)] is the link function and v(t) the pdf of the generalized Gompertz (GG)

distribution. The CDF of the exponentiated Gompertz generated (EGG) family using Eq (3) is given
by

. ,Q et “ ﬁ M : =7 “
F(yi0..aw)=] " lil—e Gl } dt = {1—ey(l e )} : 5)
and the corresponding pdf to Eq (5) takes the form

1 -a(yu) " o
a@g(y;y/)e’(l {1-6(yw)] ){1_;(1{1_6("””)} 1
|:1_G(y;(//)]1+y

f(y:0.7.a.p)= : 6)

where G(y;w)and g (y; l//) are the baseline CDF and pdf depending on the parameter vector w [11].
Therefore, the CDF of the new EGGy distribution is developed by inserting Eq (1) into Eq (5):

a
0

e

F(yig)=11-¢ , Y

and the corresponding pdf to Eq (7) takes the form

p Y
P P~
aﬂ(yﬂze VJey 5{1{”5} }
L+y 1_e
{1—@

f(y:&)=

: (®)

=
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where f>0 is scale parameter, «,0,y >0 are additional shape parameters and ye®R*. From now
onwatrd, we will denote a random variable Y having pdfin Eq (8) by Y ~ EGG. (¢), where & =(a, 7,0, B)

are the set of parameters.

Reliability analysis
The survival function (SF) of the EGGig distribution is given by

]

R (¥;¢)=1—{1-¢’

©)

The hazard rate function (HRF) of the EGGx distribution is given by

h(y:é)=—" ey (10)

The reversed hazard rate function (RHRF) of the EGGii distribution is given by

ag[yﬂzef]ef T 5

r(y:&)= T 1-e (11)
{1—e g
The odds function (OF) of the EGGy: distribution is given by
‘9[1{1&}7 ’
r
l-e
O(y:$)= werk (12)
B 14
6[1{1(5 y} J
1-<1-e
The cumulative hazard rate function (CHRF) of the EGGig distribution is given by
f[l{leqq
H(y;é)=-In|1-q1-e (13)
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3. STRUCTURAL PROPERTIES OF THE EGG: DISTRIBUTION

This part inspects some fundamental structural properties of the EGGe distribution. These
include the series expansion of the pdf and CDF, quantile function, median, ordinary and incomplete
moments, moment generating function, Lorenz and Bonferroni curves, Tsallis, Shannon, Rényi
entropies, order statistics, and probability weighted moments.

3.1. Mixture representations

The mixture representations of the EGGie density function (pdf) and distribution function (CDF)
are derived in this subpart. According to Cordeiro et al. [11], the linear representation of Eq (5) is
given by

F(Y):quHq(y), (14)
q=0
where H, (y) denotes the exponential-G CDF with power parameter (q), and
by =1()+ 2.2 0 - (15)
i-1 j=0

I,(q) is considered as an indicator function which takes one if q=0, and the coefficient v,, , is given

by
T (—1)a+b+q (Olj(—bJ/][a_Hjb ;79 (16)
aba bt (a)l g )\ » '

By inserting Eq (7) into Eq (14), the CDF of the EGGg distribution can be expressed as a linear
combination of the IE distribution by

_fa

F(Y)=2 %nee 7 o
=0
1o (_1)a+b+q a —b}/ ab b aﬂiﬁ
h 9 = EE— o, .
where &,y ;; bt al q Y )

Figures 1 and 2 depict the pdf and HRF plots of the EGGyg distribution for selected parameter
values. The pdf plots depict that the EGG distribution is unimodal, right-skew, decreasing, and

increasing. In contrast, the HRF plots show an increasing and concave increasing failure rate function
for the EGGi distribution.

The [F(y)] for the EGGy: distribution can be expressed as a linear combination of the inverted

exponential (IE) distribution by

s _Ba
[F] =2 e 7 (18)
k=0
oo 1 a+b+q —b b ad
where @,,,= > ( 2), [ij(a]E y](a—ej e” and s is an integer.

a,b,q=0 a q 7
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Figure 2. The EGG: HRF plots for selected values of the parameters.

According to Cordeiro et al. [11], the linear representation of the density function (pdf) of the
EGG family of distributions is given by

0

F(y:€)=2 b (viw), (19)

1=0
where h|+1(y;l//)=(|+1)g(y;l//)G(y;l//)l denote the exponential-G pdf with power parameter(l+1).

Therefore, by inserting Eq (7) and Eq (8) into Eq (19), we have the pdf of the EGG distribution
given by

f(y:f):iq);f" e 0)

1=0
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a0 D! a |

where 0, —atp S (-1)™! [a _1][—7(b +1)_1J[ [(a+10] Jt’ L

3.2. Quantile function
Let Y denote a random variable such that Y ~ EGG,. (¢). The quantile function Q(u), ue(0,1) is

obtained by inverting Eq (7). The quantile function of the EGG e distribution is given by

Q(u,&)=- A . ue(0d). 1)
vlog (1—u%1) 7
Y

1
¥

log|1-|1-

By setting U=0.5in Eq (21), the median (M) function of the EGGy distribution is given by
M =- p . ue(0). (22)

ylog (1—0.5%’) K
(7]

log|1-|1-

Most statistical software can generate uniform random variables. Hence, the quantile function Eq
(21) is considered very valuable in simulating random values from the EGG distribution. The
quantile function Eq (21) can be utilized in estimating the skewness and kurtosis of the EGGx
distribution. The expressions of the Bowley skewness [12] and Moor’s kurtosis [13] are given by

i 3 B (0 (5 e 0 (50 R
o[ 3¢ 5i¢] S o[8[ 3¢

where Q(.)is the EGG: quantile function Eq (21).

Numerical values of the median, 25", and 75" percentiles, skewness, and kurtosis for selected
parameter values using (21), (22), and (23) are provided in Table 1. There are positively decreasing
skew values and negatively increasing kurtosis values as the parameter values 6, y and « increase,

independent of the scale parameter 3.

Table 1. Median (M), 25t and 75t percentiles, skewness (Sk), and kurtosis (Ks) for selected parameter values.

6 4 a yij M 25th 75th Sk Ks

0.5 0.1 0.1 1.0  0.160 0.076 0.451  0.550 -2.488
1.1 04 05 1.0  0.661 0.348 1.369  0.387 -1.153
1.5 0.9 1.2 1.0 0979 0.628 1.519  0.212 -0.570
25 1.8 1.9 1.0 0.808 0.609 1.053  0.104 -0.277
3.5 25 25 1.0 0.709 0.571 0.868  0.070 -0.187
45 3.0 32 1.0 0.656 0.549 0.777  0.056 -0.150
5.5 45 42 1.0  0.597 0.520 0.678  0.033 -0.088

110 | InPrime: Indonesian Journal of Pure and Applied Mathematics



Statistical Modeling using A New Hybrid Form of The Inverted Exponential Distribution ...

Figures 3-5 depict the three-dimensional plots of the skewness and kurtosis measures. The plots
confirm the positivity of the skewness values and the negativity of the kurtosis values.
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Figure 5. Bowley’s skewness (left) and Moors’ kurtosis (right) plots with 6= 0.7, y = vaaried, a = varied, § =1.

3.3. Moments and moment generating function

This subpart presents the expressions of the ordinary and incomplete moments, and the moment-
generating function (MGF) for the EGGyg distribution.

Theorem 1. If Y ~ EGG, (&), then the r* ordinary moment (OM) of Y is given by
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S ri-r
ﬂr(y)—gq’a,b,. ik (24)

where @, = gﬁz )M”I [a—l][_y(brl)—lJ[MJb; 2

ab=0 a v

Proof. Let Y be a random variable following the EGG1 distribution, the OM of Y can be derived as
follows:

yr’zE(Yr)zf:yrf(y,f)dy. (25)
By inserting Eq (20) into Eq (25) gives
=Y, [y ey (26)
1=0
Let z=y™, then Eq (26) takes the form
> O F
Z a,b,l ) (27)
o (]I +1])
a+b+l _ _ _ 1 0 a+1
where @, a0y 3, U [ ][ r(0+1) 1} [(a+no] ] =2
? ab-0 a | 4
The moments are found by substituting r=1,2,3,... into Eq (27).
Theorem 2. If Y ~ EGG,. (£), then the MGF of Y is given by
© tf rl-r
My ()= 3 o, 0 9

S ()

Proof. The moment generating function is defined as

W (0=E() =3 LY )y =3 (v). (29

By inserting Eq (27) into Eq (29) gives

M, (t)= i}t—,?)ﬂ"[;%(ll])_lr) (30)
where @, = aeﬂabzo 1)““ [ N j[-?(brl)—l][wy e
Theorem 3. If Y ~ EGG,. (&), then the s" lower and upper incomplete moments (IMs) are given by
o, () =E(Y|Y <t)=[ vy f (v.£)dy, (31)
rs(t):E(Ys ):jtmysf(y,f)dy. (32)

For any se N, the s” lower incomplete moment (LIM) of EGGy distribution using Eq (31) is given
by
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33
TR >

where, v(s,t)= J'; y*'e7dy is the lower incomplete gamma function.

o (t)= iq)i J_ Ijt yo2e I gy iq)i . {V(l— s, (1 +1)t-1)]

Likewise, the s™ upper incomplete moment (UIM) of the EGGy distribution using Eq (32) is
given by

=zl Y ZQ{ (BO+0)” (34)

where T'(s,t)= .L y*'e™dy is the upper incomplete gamma function.
The IMs are used in the calculation of other valuable statistical measures such as the mean deviation
about the mean &, =E(|X - 4]) and about the median 5, =E(|X =M|). The first LIM given as (/) is
useful in defining the mean deviation of X about the mean (z) and median (M ).
8 =B (X =) =[x ] £ (6)ox =264 () =20 (1), (36)
5, =E(|X -M]) = Io+x|x—M| f(x;&)dx =1 —2¢/ (M),
where
w4 = pis the mean found by injecting r=1in the OM Eq (24),
M is the median gotten by inserting u =0.5in the quantile function Eq (22),
o (t)= I; xf (x)dx is the first LIM that can be obtained by inserting s=1in the LIM Eq (33).

3.4. Bonferroni and Lorenz curves
The Bonferroni and Lorenz curves are defined using the quantile function. The Bonferroni curve
for the EGGye distribution using the quantile function Eq (21) is given by

Bu)= - ei[Q(ue)]= -] - | ve©y, 5)

and the Lorenz curve is given by
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L(u)=B(u) =—¢1[Q u;é)]= —(pl - , ue(01). (36)

3.5. Order Statistics
Let v,,¥,,...,y,be a random sample from a continuous distribution, and y,, <VY,, <...<Y,,are

order statistics (O.S) obtained from the sample According to David [14], the z™ O.S is given by

fun (y)— [y -6y, (37)
where G(y) and g(y) atre the CDF and pdf of the EGGyg: distribution, and B(.,.) is the beta function.
E)q)zmding[l—G(y)]NfZ , the O.S takes the form

fon (Y)=mti ( j[G :|z+| -1 (38)

By inserting Eq (7) and Eq (8) into Eq (38) and expanding the O.S equation. The expression for the
O.S is given by

z+1

1 w» 19 ﬂ(c+1)

f, _ l,a,b,c y 39
Z.N(y) B(Z,N—Z‘Fl); y2 e > ( )

b -5 U 0 N2 o)

I1=0 a=o0 b=0 a C

The minimum and maximum O.S are found by setting p=1 and p=n in Eq (39). The " moment of
the order statistics for the EGGi distribution is given by

E(Xin) =]y f0 (v:€)dy. (40)
By inserting Eq (39) into Eq (40), the ™ moment of the order statistics is given by
23l (1-
E(XLy )= ! ane (1°1) (41)

B(z,N-z+1) & (ﬂ(cﬂ))m )
Noza(z+)-1 o (_q)\l+atb+c b _ _ _ _ (a+1)6
where 8,00 = Z( 1) b!y(ba+1)e [NI zj(a(z;l) 1}{ y(b+1) 1} =

c

3.6. Probability Weighted Moment (PWM)
The PWM of a random variable (r.v) Y is a very useful mathematical quantity in mathematical
statistics [15]. The PWM of the EGGig distribution is given by

F(l— r)
Fpal T (42)
(Ala+1-1])

Trs =
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s oo (_1)a+b+l+q S\a)\l ad+ (a +1) 2l b a-1 —b}/ —}/(b + 1) 1 a6+(a+1)d
here = af, - af+(a+1)d =
where & .41 =@ ["kz:(;ab%:o o s . : . | ]

Proof. The PWM of ar.v Y is given by

0 =E[YF() [=[ Ty T (n)(F(y)) dy . (43)
Introducing Eq (18) and Eq (20) into Eq (43) gives
ial j,|a)i,j,q_|.+w yrfze[*ﬂ(qnu)]y’ldy , (44)
k=0 1=0
i+j+l _ _ . _ 1 0 |+l):9
whetes,,, ~agp U (“i 1}( iy 1}[@] ,
i,j=0 J 7

e ST

Let z=y™, then

=30 J‘O*w 7l Ay, ’ (45)
where & ./ =8 @, -
Therefore, the PWM of the EGGi distribution is given by
r(1-r)
s = T oy (46)

0 o -
e ] e [ R

3.7. Entropy
This subpart, the most popular entropy (EPY) measures known as the Shannon, Tsallis and Rényi
entropies ([16] [17] [18]) are derived. The Shannon EPY is given by

S, = E{—log[f (y)]} ) (47)
The Shannon EPY for the EGGii distribution is given by

W +ab & (1) (a-1\[(i+1)0] =
E[_log(f(y))]=—|og<aa>_E{|og[§e KJ}N y} b (,-(+ 1))(,-+1)!( i j{%}e r
_e{l__g s (Y (alj{m”” Lalaryo g () {(i +1)0]' & )
v v i(i+2) i y y o ()
0 [t+a+1
{E i Jto}'
The Rényi EPY is given by
R(5)_(1 5) Iogj dy,where 6>0 and 6 #1.
The Rényi for the EGGig is derived as follows
Les) = =(1-5) '09[77.,kf y 2ol dY} (49)
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- _ i+j+k - j _ B o M
where Mok = Z aagsﬂs( 1) j{|(lj+ 5)9} (§(O!I 1)]( 5(7';'(1) 71}3 v
i,].k=0 ly

Let z=y™, then

N ) [ (1-25)
7 7% dz=n, ., ———. 50
,Jka.o Ik [ﬂ(k+5):|25 1 ( )
Thus, the Rényi EPY for the EGGig distribution is given by
_ I'(1-25)
I, =(1-8)"log|n ., ——— . 51
R(5) ( ) |: ok [ﬂ(k+5)}20 1:| ( )

Likewise, the Tsallis EPY for the EGGig distribution using Eq (51) is given by

Y'ogliol s F@=20) ||
o Ig{l {n [ﬂ(k+Q)Tq_1]

H, (52)

4. ESTIMATION METHODS

This part discusses four classical estimation procedures for estimating the parameters of the
EGGue distribution. These estimators are the maximum likelihood (ML), maximum product-spacing
(MPS), Anderson-Darling (ANDA), and Cramer-von mises (CVM) procedures.

4.1. The ML
Let y,,¥,,..., Y, be the sample values from the EGGig distribution with an unknown parameter

vector & =(6,a,7, ) . The log-likelihood function (1) of the EGGu: density function (pdf) is given by

n 7£ n
I =log L(§)=n|oga+n|og€+2log(§e % J—(7+1)Zlog(ci)

) (53)
+> log(1-b)+(a —1)221“Iog(bi )

i1
5[17(17{% )*YJ

where b =1-¢’ and ¢ =(1-e”™). The associated score function is provided by

.
(&)= {%?;—I%} . Score function components gotten by differentiating the nonlinear Eq (53)
y oo

are given by

od n 13 _,
- 4= 1—-(c) 7 )= , A
R CCIM ) ) : (54)
ol u n b(/) n b(}/)
—=->1 ) — ! _)) Yy
5, = 2lou(c) 2ty (55)
2013 log () (56)
a ia

and
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2 B
a_l_ln(xi—ﬂ)_ nog nﬂ
o8 ) I % (7/+1); X; (Ci ) " = i (57)
B g{lf[c_] r}

4.2. The MPS
The MPS proposed by Cheng and Amin [19] [20] and developed by Ranneby [21], is a good
substitute to the ML. Let Y, Yo0)--1 Yoy D€ the ordered sample from the EGGu distribution with

parameter vector & =(60,a,7,) and the uniform spacing for this random sample. The expression of
the MPS is given by
D, (£)=F (¥, |€)-F (), for i=12...n+1,

n+l
where F (y(o) |§> =0, F (y(nﬂ) |§) =1, such that Zl: D, (£)=1. Then,
HHMW

The MPS estimates of Gy, Fyps » Gups ANd fyyes are found by maximising with respect to 6,7, and

.

a

F(V(i)|§)= 1-e and F(y(i71)|§)= 1-e

n+l

1
N+l 1 +1
a@-([To(0)" wd  HE-2 3 ee(0(9)
The EGGii: parameter estimates using MPS can be found by solving the following nonlinear equations

1 “Z“L@t (0 l€)=A (v 5 1€)) =0, for t=12.34.

n+14D,(£)
where
A1<y(i)|§) =%F(y(i)|§),
Az(y(i)|§)=ai;/|:(y(i)|§>:
’ 58)
A (v 1€) ZQF(VM‘?&)'
A4(y<i>|5):%':(y<i>|‘f)'

It is important to state that A, for t=12,34 can be obtained numerically.

4.3. The ANDA
The ANDA [22] estimates of the EGGye distribution with parameters vector & =(6,a,7,8) can

be found by minimizing the function
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AD(¢) =—n—%g(2i ~1){1og| F(y,,[£) | +10g[1-F (¥ [£) ]}

Solving the following nonlinear equations, the ANDA estimates Oupon, 7aons Ganos A0d Bapn  CaN

" (2i—1)<A‘(y“’|§)— &Y ) >:o, for t,k=12,34.
F(y(i)|§) l_F(y(n+1—i)|§)

where A, (-|£), A,(-[€), A(-|¢) and A, (&) are given in (58).

also be found using

4.4. The CVM
The CVM ( [22] [23]) estimates of the EGGx distribution with parameters vector & =(6,a,7, /)

can be found by minimizing function

C(f)Z%Jf :1 <{%}‘F(yﬁ>|§)>z ’

Solving the following nonlinear equations, the CVM estimates Ot > Tom » G and S,y can also be
found using

Y 2i-1

;<F (y(') |§)_{ on }>At (y(.) |§) =0, for t =12,3,4.

where A, (-|£), A,(+[€), A(-|¢) and A, (&) are given in (58).

5. SIMULATION STUDY

The ML, MPS, ANDA, and CVM for the EGGye distribution are evaluated using Monte Carlo
simulations. The performance of the procedures was evaluated using the average estimates (AEs),
Root Mean Square Errors (RMSE), absolute biases (ABS), and Mean Square Errors (MSE) for
different sample sizes. N =3000 Samples are generated from the EGGix distribution, each sample size
n = 20,50,150,300,1000 for selected parameter values 6=1.0, y=12, =10 and a=25. These
parameter values are arbitrarily chosen to assess the procedures' ability to estimate the parameters of
the EGGii distribution with a minimum bias for small and large data samples. The ABS, MSE, and
RMSE are computed for S=6, 7.a, [5’ using

. MISE, :%IZN;(S]—S)Z, RMSE, = %ﬁl“(s}—s)z .

. 18 .
AbsBias, = = 3|8, -
N =

The simulation results are provided in Table A1 (Appendix A). The results show that the MSE
and RMSE values decrease as the sample size increase for all the procedures.

6. APPLICATION

The flexibility and superiority of the EGGx distribution in relation to some existing competing
distributions are demonstrated using two real datasets applications. The first dataset consists of 63
observations of the strengths of 1.5 cm glass fibers obtained by employees at the UK National Physical
Laboratory. The observations are as follows:
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0.55,0.74,0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 1.27, 1.28,1.29, 1.48, 1.36, 1.39, 1.42,
1.48, 1.51, 1.49, 1.49, 1.50, 1.50,1.55, 1.52, 1.53, 1.54, 1.55, 1.61, 1.58, 1.59, 1.60, 1.61, 1.63,1.61, 1.61,
1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 1.68,1.68, 1.69, 1.70, 1.78, 1.73, 1.76, 1.76, 1.77, 1.89, 1.81,
1.82,1.84, 1.84, 2.00, 2.01, 2.24. Recently, the dataset had been studied by Abouelmagd et al. [24],
Mead et al. [25], Zelibe et al. [26] and Eghwerido [9].

The second dataset consists of the breaking stress of carbon fibers of 50 mm length (GPa). The

observations are as follows:
0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35, 2.41,
2.43,2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87, 2.88, 2.93, 2.95,
2.96,2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.50, 3.60,
3.65, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90. The dataset was recently studied by
AL-Bastian et al. [27].

The EGGie distribution parameters are estimated using the maximum likelihood estimation
procedure. We compare the EGGie distribution with the following competing distributions such as
the Gompertz Lomax (GOLOM) by Oguntunde et al. [28], Odd Fréchet Inverse exponential (OFIE)
by Sahrifah [3], exponentiated generalized inverse exponential (EGIE) by Oguntunde et al. [29],
generalized inverse exponential (GIE) by Abouammoh and Alshingiti [30], exponential inverse
exponential (EIE) by Oguntunde et al. [31], Gompertz Weibull (GOWE) by [32]. The following
performance measures such as the Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), Consistent Akaike Information Criterion (CAIC), Hannan-Quinn information
criterion (HQIC), negative log likelihood (-LL), Anderson Darling statistic (ANDA), Cramer-von
Mises statistic (CVM), and Kolmogorov-Smirnov test (KS) and its p-value are computed using the R-
environment (AdequacyModel package). The distribution with the least performance measure values
produces the best goodness of fit for the datasets.

The descriptive statistics of the datasets are provided in Tables 2 and 3. From the tables, it is
observed that both datasets are left skewed and leptokurtic.

Table 2. Descriptive statistics (first dataset).

Mean Median Min Max 1st Qu 314 Qu skewness Kurtosis
1.507 1.590 0.550 2.240 1.375 1.685 -0.899 0.924

Table 3. Descriptive statistics (second dataset).

Mean Median Min Max 1st Qu 3rd Qu skewness  Kurtosis
2.760 2.835 0.390 4.900 2.178 3.277 -0.131 0.223

The box plots in Figures 7, and 9, show that the first and second datasets are left skewed. The
total time on test (T'T'T) plots in Figures 7, and 9 depict concave increasing failure rates for the first
and second datasets. The ML parameter estimates and the standard errors (SEs) of the distributions
using the first and second datasets are provided in Tables 4 and 5.
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Table 4. The first dataset: MLEs and SE (in parentheses).

Model MLE and SE
EGG (a, 8,0,7)  1.055 (0.337) 2.023 (1.371) 0.243 (0.685) 11.304 (5.436)
EIE(a, B) 1.187 (91.427) 1.187 (91.427) - -

GIE(a, B) 106.381 (44.324) 7.486 (0.689) - -
EGIE(a,p,0) 144.004 (106.243) 8.177 (1.502) 0.821 (0.233) -

OFIE(a, ) 1.038 (0.086) 0.894 (0.115) - -

GOLO(«, B,6,7)  1.516 (0.450) 0.507 (0.153) 0.005 (0.002) 8,179 (2.298)
GOWE (a,,0,7) 0.798 (0.514) 5.615 (0.510) 0.223(0.812) 0.009 (0.046)

Table 5. The second dataset: MLLEs and SE (in parentheses).

Model MLE and SE
EGG (a,ﬁ, 9,7/) 0.999 (0.365) 1.041 (0.678) 0.022 (0.037) 4.182 (1.222)
EIE(a,/)’) 1.516 (145.850) 1.516 (145.850) - -
GIE (a,ﬂ) 13.279 (4.264) 7.600 (0.904) - -
EGIE(a,ﬂ,H) 36.688 (0.100) 12.914 (0.0106) 0.444 (0.055) -
OFIE(a,[;’) 1.129 (0.085) 0.703 (0.087) - -
GOLO(a,ﬁ,9,7) 0.605 (1.160) 0.898 (0.812) 0.013 (0.013) 8.002 (13.942)
GOWE(a,,B,@,]f) 0.321 (0.122) 3.399 (0.577) 1.048 (0.5406) 0.020 (0.008)

The measures used in evaluating the fitness performance of the distributions on the two datasets
are provided in Tables 6 and 7. The empirical results in Tables 6 and 7 show that the EGGx
distribution has the lowest measure values for the two datasets, implying that the EGGg distribution
provides a better fit to the two datasets than the other competing distributions previously mentioned.

Table 6. The first dataset: Performance measures.

Model AIC CAIC BIC HQIC ANDA CVM -LL KS p-value
EGG (a, B.0, )/) 36.054 36.744 44.627 39.426 0946 0.169 14.027 0.133 0.214
EIE(a,ﬁ) 182.878 183.078  187.165  184.564 4.666 0.8060 89.439 0.488  1.886e-13
GIE (0(, ,3) 48.745 48.965 53.051 50.451 2812  0.514 22382 0.207 0.009
EG|E(O(,,3,9) 48.680 49.087 55.111 51.209 2.622 0480 21.340 0.221 0.004
OFIE(a,ﬁ) 148.767 148967 153.054  150.453 6.254 1.179 72384 0.438  6.468e-11
GOLO (a,/i’, 0, 7/) 37.005 37.695 45.578 40.377 0946 0.168 14502 0.154 0.100
GOWE(a,,B,H,]/) 38.377 39.066 46.949 41.748 1.283  0.233 15188 0.152 0.109

Figures 6 and 8 depict the fitted density function (pdf) plot, distribution function (CDF) plot,
probability-probability (PP) plot, and quantile-quantile (QQ) plot of the EGGyx: distribution for the
two datasets. The plots support the results presented in Tables 6 and 7, the EGG distribution
provides the best goodness of fit to the two datasets. The hazard rate and survival function plots in
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Figures 7 ¢ and 8 4, reveal that the EGG distribution is very relevant in reliability and survival
studies. Additionally, the confidence interval of the parameter estimates for the EGGg distribution
provided in Table 8 indicates that the estimated parameter values are within the confidence bounds.

Table 7. The second dataset: Performance measures.

Model AIC CAIC BIC HQIC ANDA CVM -LL KS p-value
EGG,E(a,ﬂﬂ,}/) 179177 179.833  187.935 182.638 0.464 0.076 85.588  0.081 0.775
EIE(a,ﬁ) 276.057 276247 280436 277.787 3.8063 0.684 136.028 0.383 8.124¢-9
GIE(O!,,B) 203.240 203431 207.620 204.971 2.384 0.425 99.620  0.167 0.050
EGIE(a,ﬂ,H) 195111 195499 201.681 197.708 1.689  0.301 94555  0.169 0.046
OFIE(a,ﬂ) 277.059 277.249 281438  278.789 7979 1448 136529 0405 7.643e-10
GOLO(a,ﬁ,H,V) 179.345 180.001 188.103  182.806 0.441  0.068 85.672  0.085 0.722
GOWE(O(,,B,@J/) 180.127  180.783  188.886  183.588 0.528  0.093 86.064  0.082 0.761
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Figure 6. Fitted density function (pdf) plot (top left panel), Fitted distribution function (CDF) plot (top right
panel), Fitted PP plot (bottom left panel) and Fitted QQ plot (bottom right panel) for the EGGix:
distribution using the first dataset.
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Figure 7. Box plot (top left panel), TTT plot (top right panel), fitted hazard rate function plot (bottom left
panel), and fitted survival function plot (bottom right panel) for the EGGig distribution using the

first dataset.

T'able 8. Parameter estimates confidence intervals for the EGGrg distribution.

cI é 7 a B

First dataset
95% [—1.0996 1.5856] [0.6494 21.9586] [0.3945 1.7155] [—0.6549 4.7195]
99% [—1.5174 2.0034] [—2.6665 25.2745] [0.1889 1.9211] [—1.4912 5.5558]
Second dataset
95% [—0.0505 0.0945] [1.7869 6.5771] [0.2836 1.7144] [—0.2879 2.3699]
99% [—0.0731 0.1171] [1.0415 7.3225] [0.0609 1.9370] [—0.7015 2.7835]
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Figure 8. Fitted density function (pdf) plot (top left panel), Fitted distribution function (CDF) plot (top right
panel), Fitted PP plot (bottom left panel) and Fitted QQ plot (bottom right panel) for the EGGix

distribution using the second dataset.
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Figure 9. Box plot (top left panel), TTT plot (top right panel), fitted hazard rate function plot (bottom left
panel), and fitted survival function plot (bottom right panel) for the EGGig distribution using the
second dataset.

The EGGue is fitted to the two real datasets using MLE, MPSE, CVME, and ANDE procedures.
Tables 9 and 10 provide the estimated parameter values, the K.S test statistic, and the p-value for the
K.S statistic. From Tables 9 and 10, the K.S test statistic and p-values show that the CVME is the
best, followed by ANDE among all the procedures considered. The histograms and fitted pdfs for the
first and second datasets are presented in Figures 10 and 11. The plots confirm the CVM procedure
provides the best-estimated parameter values for the first and second datasets.

Table 9. The first dataset: Parameter estimates of the EGGig distribution with the four procedures.

Parameter estimates Goodness of fit

Model 0 7 a B K. S p-value
CVME 0.0414 12.9362 1.0413 1.6796 0.081 0.804
ANDE 0.0457 15.2839 0.7649 1.9488 0.107 0.465
MLE 0.2433 11.3041 1.0552 2.0233 0.133 0.214
MPSE 0.2464 10.4682 0.9932 1.9726 0.144 0.148

Table 10. The second dataset: Parameter estimates of the EGGig distribution with the four procedures.

Parameter estimates Goodness of fit

Model 6 7 a B K. S p-value
CVME 0.3211 11.9372 0.6666 4.3901 0.070 0.905
ANDE 0.0512 4.4329 1.0824 1.3731 0.072 0.879
MLE 0.0224 4.1824 0.9993 1.0406 0.081 0.775
MPSE 0.0128 3.9358 0.9313 0.8354 0.092 0.628
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Figure 10. The EGG fitted density function on the first dataset histogram with the four procedures.
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Figure 11. The EGGe fitted density function on the second data histogram with the four procedures
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7. CONCLUSIONS

This paper introduces a new four-parameter distribution called the exponentiated Gompertz
generated inverted exponential (EGGig) distribution. The explicit expressions of some structural
properties of the EGG distribution are derived. The parameters of the EGG distribution using
some classical estimators are estimated. Hence, an evaluation of the four procedures in estimating
parameters of the EGGig distribution through a Monte Catlo simulation using the finite sample
performance. The importance of the EGGie distribution is demonstrated by fitting two real datasets,
showing that the EGG distribution provides better goodness of fit than some competing
distributions considered in this study. The empirical findings indicate that the maximum likelihood
procedure dominates the other estimators in the simulation study while the Cramer-Von Mises
procedure dominates in the two real datasets applications. Hence, we suggest using the EGGig
distribution on datasets with characteristics such as skewness and increasing hazard rates.
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APPENDIX A

, The Gompertz Weibull distribution. Properties and application, Unpublished.

Table Al. Simulation study for the EGGie distribution using the four classical estimation procedures.

MLE MPSE ANDE CVME
n | Par AE (ABS| MSE | RMSE| AE | ABS | MSE (RMSE| AE | ABS | MSE |RMSE | AE | ABS| MSE |RMSE
20 0 [1.108]0.108| 0.331 0.576 [1.714| 0.714 | 17.165 | 4.143 [2.240| 1.240 | 34.667 | 5.888 [1.782(0.782| 3.081 | 1.755
7 (1.425]0.225| 0.484 | 0.696 |4.115| 2,915 |132.880 | 11.527 [4.909| 3.709 |204.958 | 14.314 |3.619|2.419| 22.258 | 4.718
B |1.116]0.116| 0.082 | 0.286 [1.575| 0.575 | 7.748 | 2.784 [1.664| 0.664 | 8.992 | 2.999 |2.523[1.523| 4.179 | 2.044
a |2.55610.056| 0.774 | 0.880 |4.259| 1.759 | 22.082 | 4.699 |5.539| 3.039 |064.612 | 8.038 [1.215|1.285| 2.273 | 1.508
50 6 [1.095]0.095| 0.174 | 0.417 [1.310| 0.310 | 4.138 | 2.034 [1.614| 0.614 | 7.475 | 2.734 |1.687|0.687| 2.166 | 1.472
7 |1.2840.084| 0.176 0.420 [1.693| 0.493 | 8.425 | 2902 [1.845| 0.645 | 7.547 | 2.747 [2.700|1.500| 7.256 | 2.694
B [1.078 [0.078 | 0.035 0.817 [{1.208 | 0.208 | 3.383 | 1.839 [1.368| 0.368 | 4.547 | 2.132 [2.237|1.237| 2.918 | 1.708
a [2.519]0.019] 0.494 | 0.703 [3.799 | 1.299 | 10.502 | 3.241 [5.407 | 2.907 [49.943 | 7.067 [1.372|1.128| 1.974 | 1.405
150 | 6 |1.059 [0.059 0.055 0.235 {1.012 0.012 | 1.312 | 1.163 [1.711| 0.711 | 5.438 | 2.332 [1.580(0.580| 1.434 | 1.198
7 (1218 0.018| 0.054 | 0.232 |1.238| 0.038 | 0.468 | 0.684 [1.466| 0.266 | 1.491 1.221 [1.938]0.738| 1.378 | 1.174
B [1.043]0.043| 0.013 0.118 [0.956| 0.043 | 1.173 | 1.083 [1.531| 0.531 | 3.812 | 1.952 [1.900(0.900| 1.891 | 1.389
a [2.502]0.002| 0.206 0.454 [3.289 0.789 | 3.707 | 1.925 [3.984| 1.484 [17.120 | 4.138 [1.705(0.795| 1.605 | 1.267
300 | 6 |1.049]0.049| 0.030 | 0.173 [0.905| 0.095 | 0.493 | 0.702 |1.601| 0.601 | 3.781 1.944 (1.4370.437| 0.983 | 0.992
7 (1.202]0.002 | 0.025 0.157 {1.171| 0.029 | 0.082 | 0.286 [1.331| 0.131 | 0.131 | 0.575 [1.616|0.416| 0.495 | 0.704
A |1.032]0.032| 0.008 0.088 [0.867 | 0.133 | 0.435 | 0.659 [1.476| 0.476 | 2.873 | 1.695 [1.629(0.629| 1.231 | 1.120
a |2.512]0.012| 0.099 0.315 [3.031| 0.531 | 1.593 | 1.262 [3.561| 1.061 | 9.608 | 3.100 [1.994|0.506| 1.531 | 1.237
1000 | 6 |1.0210.021| 0.007 0.084 [0.969 | 0.031 | 0.067 | 0.260 [1.506| 0.506 | 2.804 | 1.675 [1.411|0.411| 0.965 | 0.982
7 |1.200 | 0.000| 0.007 0.087 (1.189 0.011 | 0.013 | 0.113 [1.280| 0.080 | 0.117 | 0.342 [1.408(0.208| 0.159 | 0.399
B [1.013]0.013 | 0.003 0.052 [0.961 | 0.039 | 0.047 | 0.216 [1.412| 0.412 | 2.094 | 1.447 [1.485|0.485| 1.062 | 1.031
a [2.50910.009| 0.038 0.194 (2,579 0.079 | 0.125 | 0.354 |2.968| 0.468 | 3.759 | 1.939 |2.253(0.247| 1.403 | 1.185
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