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Abstract  
This paper introduces a new four-parameter distribution called the exponentiated Gompertz generated 

inverted exponential (EGGIE) distribution. Explicit expressions of the structural properties such as the 

ordinary and incomplete moments, probability weighted moments, quantile function, Lorenz and 

Bonferroni curves, entropies, and order statistics are derived. The empirical findings indicate that the 

maximum likelihood procedure dominates the other estimators in the simulation study while the 

Cramer-Von Mises procedure dominates in the two real datasets applications. We demonstrate the 

superiority of the EGGIE distribution over the Gompertz Lomax, odd Fréchet Inverse exponential, 

generalized inverse exponential, generalized inverse exponential, exponential inverse exponential, and 

Gompertz Weibull distribution using the maximum likelihood procedure utilizing two real datasets 

applications. The findings show that the EGGIE distribution yields the best goodness of fit to the two 

datasets. 

Keywords: exponentiated Gompertz generated family; inverse exponential distribution; Kolmogorov-
Smirnov statistic; Anderson-Darling; maximum product spacing. 
 

Abstrak 
Paper ini memperkenalkan distribusi 4-parameter baru yang disebut dengan distribusi exponentiated Gompertz 

generated inverted exponential (EGGIE). Ekspresi eksplisit sifat struktural dari distribusi ini diturunkan, 

seperti momen biasa dan momen tak lengkap, momen probabilitas terboboti, fungsi kuartil, kurva Lorenz dan 

Bonferroni, entropi, dan statistik urutan. Temuan empiris menunjukan bahwa prosedur maksimum likelihood 

mendominasi estimator lainnya pada studi simulasi, sementara prosedur Cramer-Von Mises mendominasi pada 

aplikasi dua dataset nyata. Peneliti menunjukkan keunggulan dari distribusi EGGIE dibandingkan distribusi 

Gompertz Lomax, odd Frechet Inverse exponential, generalized inverse exponential, exponential 

inverse exponential, dan Gompertz Weibull menggunakan metode maksimum likelihood yang diaplikasikan pada 

dua dataset nyata. Hasil menunjukan bahwa distribusi EGGIE menghasilkan kecocokan model yang baik pada kedua 

dataset. 

Kata Kunci: keluarga bangkitan exponentiated Gompertz; distribusi inverse exponential; Kolmogorov-
Smirnov statistic; Anderson-Darling; maximum product spacing. 
 
2020MSC: 62E10 
 
 

1. INTRODUCTION 

Keller and Kamath [1] introduced the inverted-exponential (IE) distribution as a modification of 

the exponential distribution. Also, the IE distribution a sub-distribution of the inverted-Weibull 

distribution is quite a good fit for real-life processes with inverted-bathtub-failure rate characteristics. 

The IE distribution has a non-constant failure rate which stands good for describing real-life events 
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in biomedical sciences, medicine, engineering, and public health. Abouammoh and Alshingiti (2009) 

introduced the generalized form of the IE distribution with the unique properties of the IE 

distribution. Lin et al. [2] cited in Sharifah [3], proved that the IE distribution would be efficient when 

used in strength-data modeling. The cumulative distribution function (CDF) of the IE distribution is 

given by 

( ; ) , 0,y

IEG y e y






          (1) 

and the corresponding probability density function (pdf) is given by 

2
( ; ) , 0,y

IEg y e y
y







            (2) 

where 0   is the scale parameter. 

Several authors attempting to improve the flexibility and modeling capability of the IE 

distribution given its quality (non-constant failure rate) and competitiveness with the exponential 

distribution have proposed various generalizations and extensions. Singh and Goel [4] proposed the 

Beta IE distribution with expressions for the inverse moments, stress-strength reliability, and inverse 

moment generating function. They stated that in comparison to the MLE, the Bayes estimation 

procedure performed better with less error value through the simulation study. Also, the real datasets 

applications showed that the Beta IE distribution is superior to some distributions considered using 

the maximum likelihood estimation (MLE) procedure. Sharifah [3] introduced the odd Fréchet IE 

distribution with some statistical properties and demonstrated its flexibility over some distributions 

using the MLE procedure. Eghwerido et al. [5] introduced the Gompertz Alpha-power IE distribution 

with some statistical properties and demonstrated its flexibility over some distributions using the MLE 

procedure on two real datasets. Leren and Abdullahi [6] proposed the odd Lindley IE distribution 

with decreasing hazard rate function, some statistical properties, and two real datasets considered in 

demonstrating the practical importance of the distribution using the MLE procedure. Abdulkadir et 

al. [7] proposed a two-parameter distribution called the Lomax IE distribution with derived properties 

such as the survival and hazard rate functions, quantile function, and order statistics. The MLE 

procedure utilizes fitting two sets of real datasets. Moreso, Sule [8] proposed the Topp Leone 

Kumaraswamy generalized IE distribution, a four-parameter distribution with an increasing-

decreasing, J-and-reversed-J shaped hazard rate function. The flexibility of the distribution using the 

MLE was demonstrated utilizing three real datasets. Eghwerido [9] introduced the Weibull IE 

distribution with expressions of the moments, probability weighted moments, quantile function and 

then demonstrated its flexibility over some distributions using the MLE procedure.  

This research aims to introduce a new extended IE distribution with unique characteristics 

capable of modeling skewed datasets and also examine the performance of four classical estimation 

procedures such as the maximum likelihood (ML), maximum product spacing (MPS), Cramer-von 

mises (CVM), and Anderson-Darling (ANDA) in estimating the parameters of the new extended IE 

distribution using extensive Monte Carlo simulation and two real datasets applications. Hence, creating 

a standard guideline for selecting the best estimation procedure is believed to be of interest to applied 

statisticians. 

The remaining parts are as follows: Section 2, the exponentiated Gompertz inverted exponential 
(EGGIE) density function, distribution function, and reliability analysis are presented. The linear 
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representations of the EGGIE functions and general structural properties are provided in Section 3. 
The mathematical expressions of the four estimators for the EGGIE distribution are provided in 
Section 4. Monte Carlo simulations for the true parameter estimates of the EGGIE distribution are 
performed using the four classical estimation procedures in Section 5. The comparison of the four 
estimators and the fitness ability of the EGGIE distribution to two real datasets using the MLE 
procedure are provided in Section 6. The conclusion is given in Section 7. 

2. THE EXPONENTIATED GOMPERTZ INVERTED EXPONENTIAL (EGGIE) 
DISTRIBUTION 

Alzaatreh et al. [10] proposed the method of generating classes of distributions, the CDF is given 
by 

 
 

( ) .
H G y

a
F y v t dt

  
                        (3) 

By differentiating Eq (3), the corresponding pdf takes the form 

      
 

        
 

d
f y H G y v H G y

dy
.      (4) 

If    log 1 ,         G y G y   is the link function and  v t  the pdf of the generalized Gompertz (GG) 

distribution. The CDF of the exponentiated Gompertz generated (EGG) family using Eq (3) is given 
by 
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and the corresponding pdf to Eq (5) takes the form 
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where  ;G y  and  ;g y   are the baseline CDF and pdf depending on the parameter vector   [11]. 

Therefore, the CDF of the new EGGIE distribution is developed by inserting Eq (1) into Eq (5): 
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and the corresponding pdf to Eq (7) takes the form 
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where 0   is scale parameter, , , 0     are additional shape parameters and y  . From now 

onward, we will denote a random variable Y having pdf in Eq (8) by  ~ IEY EGG  , where  , , ,      

are the set of parameters.  

Reliability analysis 

The survival function (SF) of the EGGIE distribution is given by 
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.     (9) 

The hazard rate function (HRF) of the EGGIE distribution is given by 

 

1

1 1

1 1

2

1

1 1

1

;

1

1 1











  
                      


   
     
   

 
 
 
 

 
  


    
    

        
  
    

y

y

y

e

e

y

y e

e

e e
y

h y

e

e

















 

 







 .     (10) 

The reversed hazard rate function (RHRF) of the EGGIE distribution is given by 
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The odds function (OF) of the EGGIE distribution is given by  
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The cumulative hazard rate function (CHRF) of the EGGIE distribution is given by 
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3. STRUCTURAL PROPERTIES OF THE EGGIE DISTRIBUTION 

This part inspects some fundamental structural properties of the EGGIE distribution. These 
include the series expansion of the pdf and CDF, quantile function, median, ordinary and incomplete 
moments, moment generating function, Lorenz and Bonferroni curves, Tsallis, Shannon, Rényi 
entropies, order statistics, and probability weighted moments. 

3.1. Mixture representations  
The mixture representations of the EGGIE density function (pdf) and distribution function (CDF) 

are derived in this subpart. According to Cordeiro et al. [11], the linear representation of Eq (5) is 
given by 

   
0





  q q

q

F y b y ,        (14) 

where  q y  denotes the exponential-G CDF with power parameter (q), and  

      0 , ,

1 0

q i j q

i j
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   .     (15) 

 0 q  is considered as an indicator function which takes one if 0q  , and the coefficient 
, ,a b q is given 

by 
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By inserting Eq (7) into Eq (14), the CDF of the EGGIE distribution can be expressed as a linear 
combination of the IE distribution by 
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where 
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Figures 1 and 2 depict the pdf and HRF plots of the EGGIE distribution for selected parameter 
values. The pdf plots depict that the EGGIE distribution is unimodal, right-skew, decreasing, and 
increasing. In contrast, the HRF plots show an increasing and concave increasing failure rate function 
for the EGGIE distribution. 

The    
s

F y  for the EGGIE distribution can be expressed as a linear combination of the inverted 

exponential (IE) distribution by 
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Figure 1. The EGGIE pdf plots for selected values of the parameters. 

 

 

Figure 2. The EGGIE HRF plots for selected values of the parameters. 

 
According to Cordeiro et al. [11], the linear representation of the density function (pdf) of the 

EGG family of distributions is given by 

   1 1
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where        1 ; 1 ; ;  
l

lh y l g y G y   denote the exponential-G pdf with power parameter  1l  . 

Therefore, by inserting Eq (7) and Eq (8) into Eq (19), we have the pdf of the EGGIE distribution 
given by 
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where 
       1
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3.2. Quantile function 

Let Y denote a random variable such that  ~ IEY EGG  . The quantile function    ,  0,1Q u u  is 

obtained by inverting Eq (7). The quantile function of the EGGIE distribution is given by 

 

 
 

1

1

, , 0,1 .

log 1

log 1 1

Q u u

u













  
 

  
     
   

  

   (21) 

By setting 0.5u  in Eq (21), the median (M) function of the EGGIE distribution is given by  
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           (22) 

Most statistical software can generate uniform random variables. Hence, the quantile function Eq 
(21) is considered very valuable in simulating random values from the EGGIE distribution. The 
quantile function Eq (21) can be utilized in estimating the skewness and kurtosis of the EGGIE 
distribution. The expressions of the Bowley skewness [12] and Moor’s kurtosis [13] are given by 
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  (23) 

where (.)Q is the EGGIE quantile function Eq (21).  

Numerical values of the median, 25th, and 75th percentiles, skewness, and kurtosis for selected 
parameter values using (21), (22), and (23) are provided in Table 1. There are positively decreasing 
skew values and negatively increasing kurtosis values as the parameter values ,   and    increase, 

independent of the scale parameter  . 

Table 1. Median (M), 25th and 75th percentiles, skewness (Sk), and kurtosis (Ks) for selected parameter values. 

        M 25th  75th Sk Ks 

0.5 0.1 0.1 1.0 0.160 0.076 0.451 0.550 -2.488 
1.1 0.4 0.5 1.0 0.661 0.348 1.369 0.387 -1.153 
1.5 0.9 1.2 1.0 0.979 0.628 1.519 0.212 -0.570 
2.5 1.8 1.9 1.0 0.808 0.609 1.053 0.104 -0.277 
3.5 2.5 2.5 1.0 0.709 0.571 0.868 0.070 -0.187 
4.5 3.0 3.2 1.0 0.656 0.549 0.777 0.056 -0.150 
5.5 4.5 4.2 1.0 0.597 0.520 0.678 0.033 -0.088 
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Figures 3-5 depict the three-dimensional plots of the skewness and kurtosis measures. The plots 
confirm the positivity of the skewness values and the negativity of the kurtosis values. 
 

 
Figure 3. Bowley’s skewness (left) and Moors’ kurtosis (right) plots with θ = varied, γ = varied,  0.5, 

 1.   

 

 

Figure 4. Bowley’s skewness (left) and Moors’ kurtosis (right) plots with θ = varied, γ = 1.5, α = varied, 1 

. 

 

 

Figure 5. Bowley’s skewness (left) and Moors’ kurtosis (right) plots with θ = 0.7, γ = vaaried, α = varied, 1.   

3.3. Moments and moment generating function 
This subpart presents the expressions of the ordinary and incomplete moments, and the moment-

generating function (MGF) for the EGGIE distribution.  

Theorem 1. If  ~ IEY EGG  , then the rth ordinary moment (OM) of Y is given by 
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Proof. Let Y be a random variable following the EGGIE distribution, the OM of Y can be derived as 
follows: 
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By inserting Eq (20) into Eq (25) gives 
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Let 1z y , then Eq (26) takes the form 
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The moments are found by substituting 1,2,3,r   into Eq (27).  

Theorem 2. If  ~ IEY EGG  , then the MGF of Y is given by  
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Proof. The moment generating function is defined as 
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By inserting Eq (27) into Eq (29) gives 
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Theorem 3. If  ~ IEY EGG  , then the sth lower and upper incomplete moments (IMs) are given by 

     
0
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For any s , the sth lower incomplete moment (LIM) of EGGIE distribution using Eq (31) is given 
by 
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where,   1

0
,   

t
s yv s t y e dy is the lower incomplete gamma function.  

Likewise, the sth upper incomplete moment (UIM) of the EGGIE distribution using Eq (32) is 
given by 
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where   1,


   
s y

t
s t y e dy  is the upper incomplete gamma function. 

The IMs are used in the calculation of other valuable statistical measures such as the mean deviation 

about the mean  1 1X    and about the median  2 X M    . The first LIM given as  1  is 

useful in defining the mean deviation of X about the mean  1  and median  M . 

       1 1 1 1 1 1 1
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where 

1   is the mean found by injecting 1r  in the OM Eq (24), 

M is the median gotten by inserting 0.5u  in the quantile function Eq (22), 

   1
0

t

t xf x dx   is the first LIM that can be obtained by inserting 1s  in the LIM Eq (33). 

   
3.4. Bonferroni and Lorenz curves 

The Bonferroni and Lorenz curves are defined using the quantile function. The Bonferroni curve 
for the EGGIE distribution using the quantile function Eq (21) is given by 
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and the Lorenz curve is given by  
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3.5. Order Statistics 

Let 1 2, , , ny y y be a random sample from a continuous distribution, and 1: 2: :  n n n ny y y are 

order statistics (O.S) obtained from the sample. According to David [14], the zth O.S is given by 
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where  G y  and  g y  are the CDF and pdf of the EGGIE distribution, and  .,.  is the beta function. 

Expanding  1
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G y , the O.S takes the form 
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By inserting Eq (7) and Eq (8) into Eq (38) and expanding the O.S equation. The expression for the 
O.S is given by  
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The minimum and maximum O.S are found by setting 1p   and p n  in Eq (39). The rth moment of 

the order statistics for the EGGIE distribution is given by 
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By inserting Eq (39) into Eq (40), the rth moment of the order statistics is given by 
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3.6. Probability Weighted Moment (PWM) 

The PWM of a random variable (r.v) Y is a very useful mathematical quantity in mathematical 
statistics [15]. The PWM of the EGGIE distribution is given by 
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Proof. The PWM of a r.v Y is given by 
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Introducing Eq (18) and Eq (20) into Eq (43) gives 
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Therefore, the PWM of the EGGIE distribution is given by 
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3.7. Entropy 

This subpart, the most popular entropy (EPY) measures known as the Shannon, Tsallis and Rényi 
entropies ( [16] [17] [18])  are derived. The Shannon EPY is given by 

  log     ES f y .                   (47) 

The Shannon EPY for the EGGIE distribution is given by 
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The Rényi EPY is given by  
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 , where 0   and 1  . 

The Rényi for the EGGIE is derived as follows: 
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Thus, the Rényi EPY for the EGGIE distribution is given by 
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Likewise, the Tsallis EPY for the EGGIE distribution using Eq (51) is given by 
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4. ESTIMATION METHODS 

This part discusses four classical estimation procedures for estimating the parameters of the 
EGGIE distribution. These estimators are the maximum likelihood (ML), maximum product-spacing 
(MPS), Anderson-Darling (ANDA), and Cramer-von mises (CVM) procedures. 

 
4.1. The ML 

Let 1 2, , , ny y y be the sample values from the EGGIE distribution with an unknown parameter 

vector  , , ,
T

     . The log-likelihood function  l of the EGGIE density function (pdf) is given by 
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. Score function components gotten by differentiating the nonlinear Eq (53) 

are given by 
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and 
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4.2. The MPS 

The MPS proposed by Cheng and Amin [19] [20] and developed by Ranneby [21], is a good 
substitute to the ML. Let      1: 2: :

, , ,
n n n n

y y y  be the ordered sample from the EGGIE distribution with 

parameter vector  , , ,      and the uniform spacing for this random sample. The expression of 

the MPS is given by 
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The MPS estimates of ˆ
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The EGGIE parameter estimates using MPS can be found by solving the following nonlinear equations 
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It is important to state that t , for 1,2,3,4t   can be obtained numerically. 

 
4.3. The ANDA  

The ANDA [22] estimates of the EGGIE distribution with parameters vector  , , ,      can 

be found by minimizing the function 
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Solving the following nonlinear equations, the ANDA estimates ˆ
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where  1   ,  2   ,  3    and  4    are given in (58).  

 
4.4. The CVM  

The CVM ( [22] [23]) estimates of the EGGIE distribution with parameters vector  , , ,      

can be found by minimizing function 
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Solving the following nonlinear equations, the CVM estimates ˆ
CVM , ˆCVM , ˆ

CVM  and ˆ
CVM   can also be 

found using 
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where  1   ,  2   ,  3    and  4    are given in (58).  

 
5. SIMULATION STUDY 

The ML, MPS, ANDA, and CVM for the EGGIE distribution are evaluated using Monte Carlo 
simulations. The performance of the procedures was evaluated using the average estimates (AEs), 
Root Mean Square Errors (RMSE), absolute biases (ABS), and Mean Square Errors (MSE) for 
different sample sizes. 3000N Samples are generated from the EGGIE distribution, each sample size 

20,50,150,300,1000n  for selected parameter values 1.0  , 1.2  , 1.0   and 2.5  . These 

parameter values are arbitrarily chosen to assess the procedures' ability to estimate the parameters of 
the EGGIE distribution with a minimum bias for small and large data samples. The ABS, MSE, and 

RMSE are computed for ˆ ˆ ˆˆ ˆ, , ,S      using 

1
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  . 

The simulation results are provided in Table A1 (Appendix A). The results show that the MSE 
and RMSE values decrease as the sample size increase for all the procedures. 

 
6. APPLICATION 

The flexibility and superiority of the EGGIE distribution in relation to some existing competing 
distributions are demonstrated using two real datasets applications. The first dataset consists of 63 
observations of the strengths of 1.5 cm glass fibers obtained by employees at the UK National Physical 
Laboratory. The observations are as follows: 
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0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 1.27, 1.28,1.29, 1.48, 1.36, 1.39, 1.42, 
1.48, 1.51, 1.49, 1.49, 1.50, 1.50,1.55, 1.52, 1.53, 1.54, 1.55, 1.61, 1.58, 1.59, 1.60, 1.61, 1.63,1.61, 1.61, 
1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 1.68,1.68, 1.69, 1.70, 1.78, 1.73, 1.76, 1.76, 1.77, 1.89, 1.81, 
1.82,1.84, 1.84, 2.00, 2.01, 2.24. Recently, the dataset had been studied by Abouelmagd et al. [24], 
Mead et al. [25], Zelibe et al. [26] and Eghwerido [9]. 

The second dataset consists of the breaking stress of carbon fibers of 50 mm length (GPa). The 
observations are as follows: 
0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35, 2.41, 
2.43, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87, 2.88, 2.93, 2.95, 
2.96, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.56, 3.60, 
3.65, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90. The dataset was recently studied by                                 
AL-Bastian et al. [27]. 

The EGGIE distribution parameters are estimated using the maximum likelihood estimation 
procedure. We compare the EGGIE distribution with the following competing distributions such as 
the Gompertz Lomax (GOLOM) by Oguntunde et al. [28], Odd Fréchet Inverse exponential (OFIE) 
by Sahrifah [3], exponentiated generalized inverse exponential (EGIE) by Oguntunde et al. [29], 
generalized inverse exponential (GIE) by Abouammoh and Alshingiti [30], exponential inverse 
exponential (EIE) by Oguntunde et al. [31], Gompertz Weibull (GOWE) by [32]. The following 
performance measures such as the Akaike Information Criterion (AIC), Bayesian Information 
Criterion (BIC), Consistent Akaike Information Criterion (CAIC), Hannan-Quinn information 
criterion (HQIC), negative log likelihood (-LL), Anderson Darling statistic (ANDA), Cramer-von 
Mises statistic (CVM), and Kolmogorov-Smirnov test (KS) and its p-value are computed using the R-
environment (AdequacyModel package). The distribution with the least performance measure values 
produces the best goodness of fit for the datasets.  

The descriptive statistics of the datasets are provided in Tables 2 and 3. From the tables, it is 
observed that both datasets are left skewed and leptokurtic. 

Table 2. Descriptive statistics (first dataset). 

Mean Median Min Max 1st Qu 3rd Qu skewness Kurtosis 

1.507 1.590 0.550 2.240 1.375 1.685 -0.899 0.924 

 
Table 3. Descriptive statistics (second dataset). 

Mean Median Min Max 1st Qu 3rd Qu skewness Kurtosis 

2.760 2.835 0.390 4.900 2.178 3.277 -0.131 0.223 

 
The box plots in Figures 7a and 9a show that the first and second datasets are left skewed. The 

total time on test (TTT) plots in Figures 7b and 9b depict concave increasing failure rates for the first 
and second datasets. The ML parameter estimates and the standard errors (SEs) of the distributions 
using the first and second datasets are provided in Tables 4 and 5.  
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Table 4. The first dataset: MLEs and SE (in parentheses). 

Model MLE and SE 

 , , ,IEEGG      1.055 (0.337) 2.023 (1.371) 0.243 (0.685) 11.304 (5.436) 

 ,EIE    1.187 (91.427) 1.187 (91.427) - - 

 ,GIE    106.381 (44.324) 7.486 (0.689) - - 

 , ,EGIE     144.004 (106.243) 8.177 (1.502) 0.821 (0.233) - 

 ,OFIE    1.038 (0.086) 0.894 (0.115) - - 

 , , ,GOLO      1.516 (0.450) 0.507 (0.153) 0.005 (0.002) 8,179 (2.298) 

 , , ,GOWE      0.798 (0.514) 5.615 (0.510) 0.223(0.812) 0.009 (0.046) 

 
Table 5. The second dataset: MLEs and SE (in parentheses). 

Model MLE and SE 

 , , ,IEEGG      0.999 (0.365) 1.041 (0.678) 0.022 (0.037) 4.182 (1.222) 

 ,EIE    1.516 (145.850) 1.516 (145.850) - - 

 ,GIE    13.279 (4.264) 7.600 (0.904) - - 

 , ,EGIE     36.688 (0.100) 12.914 (0.016) 0.444 (0.055) - 

 ,OFIE    1.129 (0.085) 0.703 (0.087) - - 

 , , ,GOLO      0.605 (1.160) 0.898 (0.812) 0.013 (0.013) 8.002 (13.942) 

 , , ,GOWE      0.321 (0.122) 3.399 (0.577) 1.048 (0.546) 0.020 (0.008) 

 
The measures used in evaluating the fitness performance of the distributions on the two datasets 

are provided in Tables 6 and 7. The empirical results in Tables 6 and 7 show that the EGG IE 
distribution has the lowest measure values for the two datasets, implying that the EGGIE distribution 
provides a better fit to the two datasets than the other competing distributions previously mentioned.  

Table 6. The first dataset:  Performance measures. 

Model     AIC    CAIC     BIC HQIC ANDA CVM    -LL   KS   p-value 

 , , ,IEEGG      36.054 36.744 44.627 39.426 0.946 0.169 14.027 0.133 0.214 

 ,EIE    182.878 183.078 187.165 184.564 4.666 0.860 89.439 0.488 1.886e-13 

 ,GIE    48.745 48.965 53.051 50.451 2.812 0.514 22.382 0.207 0.009 

 , ,EGIE     48.680 49.087 55.111 51.209 2.622 0.480 21.340 0.221 0.004 

 ,OFIE    148.767 148.967 153.054 150.453 6.254 1.179 72.384 0.438 6.468e-11 

 , , ,GOLO      37.005 37.695 45.578 40.377 0.946 0.168 14.502 0.154 0.100 

 , , ,GOWE      38.377 39.066 46.949 41.748 1.283 0.233 15.188 0.152 0.109 

 
Figures 6 and 8 depict the fitted density function (pdf) plot, distribution function (CDF) plot, 

probability-probability (PP) plot, and quantile-quantile (QQ) plot of the EGGIE distribution for the 
two datasets. The plots support the results presented in Tables 6 and 7, the EGGIE distribution 
provides the best goodness of fit to the two datasets. The hazard rate and survival function plots in 
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Figures 7(c, d) and 8(c, d), reveal that the EGGIE distribution is very relevant in reliability and survival 
studies. Additionally, the confidence interval of the parameter estimates for the EGGIE distribution 
provided in Table 8 indicates that the estimated parameter values are within the confidence bounds. 

Table 7. The second dataset: Performance measures. 

Model    AIC   CAIC    BIC HQIC ANDA CVM      -LL   KS   p-value 

 , , ,IEEGG      179.177 179.833 187.935 182.638 0.464 0.076 85.588 0.081 0.775 

 ,EIE    276.057 276.247 280.436 277.787 3.863 0.684 136.028 0.383 8.124e-9 

 ,GIE    203.240 203.431 207.620 204.971 2.384 0.425 99.620 0.167 0.050 

 , ,EGIE     195.111 195.499 201.681 197.708 1.689 0.301 94.555 0.169 0.046 

 ,OFIE    277.059 277.249 281.438 278.789 7.979 1.448 136.529 0.405 7.643e-10 

 , , ,GOLO      179.345 180.001 188.103 182.806 0.441 0.068 85.672 0.085 0.722 

 , , ,GOWE      180.127 180.783 188.886 183.588 0.528 0.093 86.064 0.082 0.761 

 

 
Figure 6. Fitted density function (pdf) plot (top left panel), Fitted distribution function (CDF) plot (top right 

panel), Fitted PP plot (bottom left panel) and Fitted QQ plot (bottom right panel) for the EGGIE 
distribution using the first dataset. 

 
Figure 7. Cont. 
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Figure 7. Box plot (top left panel), TTT plot (top right panel), fitted hazard rate function plot (bottom left 

panel), and fitted survival function plot (bottom right panel) for the EGGIE distribution using the 
first dataset. 

 
Table 8. Parameter estimates confidence intervals for the EGGIE distribution. 

CI ̂  ̂  ̂  ̂  

First dataset     

95%   1.0996 1.5856   0.6494 21.9586   0.3945 1.7155   0.6549 4.7195  

99%   1.5174 2.0034   2.6665 25.2745   0.1889 1.9211   1.4912 5.5558  

Second dataset 

95%   0.0505 0.0945   1.7869 6.5771   0.2836 1.7144   0.2879 2.3699  

99%   0.0731 0.1171   1.0415 7.3225   0.0609 1.9370   0.7015 2.7835  

 
 

 

 
Figure 8.  Fitted density function (pdf) plot (top left panel), Fitted distribution function (CDF) plot (top right 

panel), Fitted PP plot (bottom left panel) and Fitted QQ plot (bottom right panel) for the EGGIE 
distribution using the second dataset. 
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Figure 9.  Box plot (top left panel), TTT plot (top right panel), fitted hazard rate function plot (bottom left 

panel), and fitted survival function plot (bottom right panel) for the EGGIE distribution using the 
second dataset. 

 
The EGGIE is fitted to the two real datasets using MLE, MPSE, CVME, and ANDE procedures. 

Tables 9 and 10 provide the estimated parameter values, the K.S test statistic, and the p-value for the 
K.S statistic. From Tables 9 and 10, the K.S test statistic and p-values show that the CVME is the 
best, followed by ANDE among all the procedures considered. The histograms and fitted pdfs for the 
first and second datasets are presented in Figures 10 and 11. The plots confirm the CVM procedure 
provides the best-estimated parameter values for the first and second datasets. 

Table 9. The first dataset: Parameter estimates of the EGGIE distribution with the four procedures. 

Model 
Parameter estimates Goodness of fit 

̂  ̂  ̂  ̂  K. S p-value 

CVME 0.0414 12.9362 1.0413 1.6796 0.081 0.804 
ANDE 0.0457 15.2839 0.7649 1.9488 0.107 0.465 
MLE 0.2433 11.3041 1.0552 2.0233 0.133 0.214 

MPSE 0.2464 10.4682 0.9932 1.9726 0.144 0.148 

 
Table 10. The second dataset: Parameter estimates of the EGGIE distribution with the four procedures. 

Model 
Parameter estimates Goodness of fit 

̂  ̂  ̂  ̂  K. S p-value 

CVME 0.3211 11.9372 0.6666 4.3901 0.070 0.905 
ANDE 0.0512 4.4329 1.0824 1.3731 0.072 0.879 
MLE 0.0224 4.1824 0.9993 1.0406 0.081 0.775 

MPSE 0.0128 3.9358 0.9313 0.8354 0.092 0.628 
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Figure 10. The EGGIE fitted density function on the first dataset histogram with the four procedures. 

 

 
Figure 11. The EGGIE fitted density function on the second data histogram with the four procedures. 
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7. CONCLUSIONS 

This paper introduces a new four-parameter distribution called the exponentiated Gompertz 

generated inverted exponential (EGGIE) distribution. The explicit expressions of some structural 

properties of the EGGIE distribution are derived. The parameters of the EGGIE distribution using 

some classical estimators are estimated. Hence, an evaluation of the four procedures in estimating 

parameters of the EGGIE distribution through a Monte Carlo simulation using the finite sample 

performance. The importance of the EGGIE distribution is demonstrated by fitting two real datasets, 

showing that the EGGIE distribution provides better goodness of fit than some competing 

distributions considered in this study. The empirical findings indicate that the maximum likelihood 

procedure dominates the other estimators in the simulation study while the Cramer-Von Mises 

procedure dominates in the two real datasets applications. Hence, we suggest using the EGGIE 

distribution on datasets with characteristics such as skewness and increasing hazard rates. 
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APPENDIX A 
 

Table A1. Simulation study for the EGGIE distribution using the four classical estimation procedures. 

n Par 
MLE MPSE ANDE CVME 

AE ABS MSE RMSE AE ABS MSE RMSE AE ABS MSE RMSE AE ABS MSE RMSE 

20 ̂  1.108 0.108 0.331 0.576 1.714 0.714 17.165 4.143 2.240 1.240 34.667 5.888 1.782 0.782 3.081 1.755 

 ̂  1.425 0.225 0.484 0.696 4.115 2.915 132.880 11.527 4.909 3.709 204.958 14.314 3.619 2.419 22.258 4.718 

 ̂  1.116 0.116 0.082 0.286 1.575 0.575 7.748 2.784 1.664 0.664 8.992 2.999 2.523 1.523 4.179 2.044 

 ̂  2.556 0.056 0.774 0.880 4.259 1.759 22.082 4.699 5.539 3.039 64.612 8.038 1.215 1.285 2.273 1.508 

50 ̂  1.095 0.095 0.174 0.417 1.310 0.310 4.138 2.034 1.614 0.614 7.475 2.734 1.687 0.687 2.166 1.472 

 ̂  1.284 0.084 0.176 0.420 1.693 0.493 8.425 2.902 1.845 0.645 7.547 2.747 2.700 1.500 7.256 2.694 

 ̂  1.078 0.078 0.035 0.817 1.208 0.208 3.383 1.839 1.368 0.368 4.547 2.132 2.237 1.237 2.918 1.708 

 ̂  2.519 0.019 0.494 0.703 3.799 1.299 10.502 3.241 5.407 2.907 49.943 7.067 1.372 1.128 1.974 1.405 

150 ̂  1.059 0.059 0.055 0.235 1.012 0.012 1.312 1.163 1.711 0.711 5.438 2.332 1.580 0.580 1.434 1.198 

 ̂  1.218 0.018 0.054 0.232 1.238 0.038 0.468 0.684 1.466 0.266 1.491 1.221 1.938 0.738 1.378 1.174 

 ̂  1.043 0.043 0.013 0.118 0.956 0.043 1.173 1.083 1.531 0.531 3.812 1.952 1.900 0.900 1.891 1.389 

 ̂  2.502 0.002 0.206 0.454 3.289 0.789 3.707 1.925 3.984 1.484 17.120 4.138 1.705 0.795 1.605 1.267 

300 ̂  1.049 0.049 0.030 0.173 0.905 0.095 0.493 0.702 1.601 0.601 3.781 1.944 1.437 0.437 0.983 0.992 

 ̂  1.202 0.002 0.025 0.157 1.171 0.029 0.082 0.286 1.331 0.131 0.131 0.575 1.616 0.416 0.495 0.704 

 ̂  1.032 0.032 0.008 0.088 0.867 0.133 0.435 0.659 1.476 0.476 2.873 1.695 1.629 0.629 1.231 1.120 

 ̂  2.512 0.012 0.099 0.315 3.031 0.531 1.593 1.262 3.561 1.061 9.608 3.100 1.994 0.506 1.531 1.237 

1000 ̂  1.021 0.021 0.007 0.084 0.969 0.031 0.067 0.260 1.506 0.506 2.804 1.675 1.411 0.411 0.965 0.982 

 ̂  1.200 0.000 0.007 0.087 1.189 0.011 0.013 0.113 1.280 0.080 0.117 0.342 1.408 0.208 0.159 0.399 

 ̂  1.013 0.013 0.003 0.052 0.961 0.039 0.047 0.216 1.412 0.412 2.094 1.447 1.485 0.485 1.062 1.031 

 ̂  2.509 0.009 0.038 0.194 2.579 0.079 0.125 0.354 2.968 0.468 3.759 1.939 2.253 0.247 1.403 1.185 

 
 

 


