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Abstract  
In this paper, uncoupled two agents modeling is proposed using an optimal bilinear control approach. 

The model is proposed using assumptions: an absence of the multi agent leader, each agent cannot 

control the others, each agent never collides with the others, and each agent has the same properties. 

The special functional cost consisting of a repellent cost is considered. The Pontryagin Maximum 

Principle is used to determine the optimal path for each agent. After control and optimal path for each 

agent are obtained some of the simulation results are exposed in this paper. 

Keywords: uncoupled agent; modeling; bilinear system. 
 

Abstrak 
Dalam penelitian ini, pemodelan dua agen yang tidak berpasangan disajikan dengan pendekatan kontrol optimal bilinear. 
Model yang diusulkan dalam paper ini ditulis dengan asumsi: tidak adanya pemimpin dalam sistem multi agen, setiap 
agen tidak dapat mengendalikan atau mempengaruhi agen yang lain, setiap agen tiak boleh bertabrakan satu sama lain, 
dan para agen mempunyai sifat-sifat yang identik. Fungsional biaya khusus yang membuat para agen tidak bertabrakan 
dipertimbangkan dalam penulisan paper ini. Prinsip maksimum Pontryagin digunakan dalam penentuan lintasan 
optimal dari para agen.  Beberapa hasil simulasi disajikan dalam paper ini. 
Kata Kunci: agen tak berpasangan; pemodelan; sistem bilinear. 

 

 

1. INTRODUCTION 

A cluster phenomenon is a natural phenomenon happening in groups of animals. The other 
phenomena like schooling, flocking, and herding are similar. Only the place where the phenomenon 
occurs is different. Some animals like bees, geese, fish, zooplankton, birds, wolves, and other 
organisms perform together moving. The clustering phenomenon is also happening in a group of 
animals. The clustering phenomenon has happened on UAVs, robots, and airplane. The phenomenon 
can be viewed as a multi agent system in more general modeling. This paper exposes uncoupled agents 
which move together and use bilinear optimal control. The author's motivation to present bilinear 
optimal control in this paper is to imitate what is in nature. It will be efficient and optimal when 
applied in an artificial system, as exemplified by nature. 

Some research papers that expose a topic close to this paper can be listed as follows. [1] wrote 
linear coupled model, different from this paper which uses a bilinear model. Next, in  [2], web design 
is used for design control for a coupled system. This paper uses the Pontryagin Maximum Principle 
to design the control. After that, [3] temporal logic time is applied to control a coupled system, and 
this paper uses continuous time. Moreover, in [4] PID control used for coupled system control design, 
this paper uses an optimal control approach. Also paper [5] utilized a coupled system in food, this 
paper utilizes an optimal path design. As well as [6],  stability in a coupled system is considered, 
different from this paper, we do not consider stability. Next, [7] described the application of a coupled 
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system in signal processing, this paper exposes the optimal path of an uncoupled system. Besides this, 
[8] wrote a coupled system in Hammerstein integral equations. Besides [9] revealing a coupled 
constraint in a multi agent system, this paper does not expose a coupled constraint, but the uncoupled 
system has initial and final conditions. With [10] exposed a coupled demand, the demand can be 
viewed as a constraint, but this paper has an uncoupled system. The system considered in this paper 
is a coupled system. Along with [11] optimized for a network of the coupled systems, this paper 
optimizes the path of the uncoupled system. Furthermore,  [12] exposed a discrete model for the 
coupled system, this paper considers a bilinear continuous system. Besides [13] decentralized discrete-
time for a coupled system, so different from this paper that considers continuous time. Too [14] 
reported globally coupled constraint, this paper exposes the bilinear uncoupled system. Furthermore, 
[15] used on line optimization for a coupled inequality constraint; however, in this paper, the 
uncoupled is the system, not the constraint. 

2. METHODS 

The modeling method used in this paper uses a bilinear system approach. The multi agent model 

as bilinear control generally is described as a function of 𝑡 as follows 
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Consider (1), generally , 1,2, ,n

ix n k R , if n=1, we obtain uncoupled multi agents in R. Here 

𝑘 is a finite integer number. Still from (1), iu  and iv are the controls for the i-th agent, iA   and iB  are 

scalar in R. Through the system of equation (1), the initial and boundary value conditions can be listed 
as follows 
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The trajectory is optimized with respect to a cost functional defined as follows 

             1 1 1 2 2

0

1
( ,..., ) ( , , , ..., , ) .

2

T

m m mJ g x x h u v u v u v dt                                  (3) 

In this modeling, 
.

ix   is the dynamic equation of the i-th agent, iS  is the initial position of the      

i-th swarm agent, and iQ  is the final position of the i-th agent. The solutions of the system of 

differential equations are  , 1,2, ,ix t i m  and  ix t  describe equations of trajectory or path of the 

i-th agent.   
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We want to minimize cost functional (3), and we use the Pontryagin Maximum Principle and then 
maximize the negative of cost functional. The cost functional (3) is also a model to describe collective 
behavior for two agents. The agent must move from the initial to a determined position without 
collision.    In cost functional (3), generally consists of a function g  and h . The function g  denotes 

a function that makes two agents do not collide one each other, and the function h  describes the 
control of each agent.  

The model's assumptions, which are translated into a model, can be detailed as follows. First, an 

absence of the multi agent leader can be translated into the independent equation of  ix t  means that 

 ix t  is not influenced by  jx t . The model (1-3) does not exist a special equation for the leader. 

Second, each agent cannot control the others. The agent depends on the other agents in collective 
duty, like migrating from a place to the other warmer place, catching prey for more effective hunting. 
The collective responsibility is to search for food or forage for food, avoid predators, or another 
special duty. Third, each agent never collides with one of the others and can be translated in function 
g in cost functional (3). The last one is each agent has the same properties, translated in among the 

equations of  ix t  it is similar. 

The next step is to combine (1) and (3) in Hamiltonian System and solve the Hamiltonian system 
for each control for each agent. Moreover, each agent obtains the optimal path equation, and the 
optimal trajectory can be plotted in simulation results. 

 

3. RESULTS AND DISCUSSIONS 

In this section, the main result will be exposed. The main result of this paper is the solution to 
this paper's main problem. What is the main problem of this paper? This paper's main problem is the 
control of two uncoupled agents modeled through bilinear optimal control. The two agents, move 
from the starting point to the specified endpoint without colliding with each other. The main result 
consists of two parts, the first part in R and the second part in R2. Therefore, this section is divided 
into two subsections. 

3.1 Uncoupled Two Agents in R 
Follows (1), uncoupled two agents in R model as bilinear control is described as follows 
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For simulation, the values of 1A  and 2A  are 10. Still, also for simulation, the values of 1B  and 2B       

are 5. The initial and boundary conditions for an uncoupled agent in R given as follows: 

1 1

2 2

(0) 3, (1) 4,

(0) 4, (1) 5.

x x

x x
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The cost functional is defined by 
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In this paper   is a control constant, and for simulation, it is given a value of 1. Next,   is a repellent 

constant which is currently also given a value of 1 for simulation. The Hamiltonian function, which 
combines the bilinear model and the functional cost is 

    2 2 2 2 0
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In the Hamiltonian function above, 
0p =-1, next as a consequence of optimal control, we get the 

additional co-state variables 1p , and 2 .p  The Hamiltonian System is derived as follows 
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Based on the Pontryagin Maximum Principle, the necessary condition such that the Hamiltonian 
System optimal is 
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From the condition of the Hamiltonian system optimal, each agent's control is obtained. For i = 1 
and 2 the control for each agent can be written as follows. 
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After the control for each agent is obtained and substituted in the Hamiltonian System, then the 
Hamiltonian system can be solved. The movement equation of agents 1 and 2 are found, and plot the 

result given in Figure 1. From figure 1, it can be seen that the initial position of agent 1 is  1 0 3x   

and the final position of agent 1 is  1 1 4x  . Also, the initial position of agent 2 is  2 0 4x   and the 

final position of agent 1 is  2 1 5x  . The simulation result in Figure 1 shows that the simulation is 

successful.   

3.2 Uncoupled Two Agents in R2 

The uncoupled two agents model as bilinear control in R2 is described as follows. 
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 
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Figure 1. The optimal path of  a coupled agents in R. 

Consider the equation  
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Similarly, from equation 

.
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Similar to the uncoupled two agents' model in R, for simulation, the values of 1A  and 2A are 10. Still, 

also for simulation, the values of 1B  and 2B  are 5. Next, the initial and boundary conditions of two 

agents are given as follows 
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The functional cost is defined by 
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The constant   is a control constant and similar to simulation in R, for simulation in R2 it is given a 
value of 1. Next,  is a repellent constant which is currently also given a value of 1 for simulation. The 

Hamiltonian function is 
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Consider the Hamiltonian function above, 0 1p    and appears co-state variables of ip  for 1,2,3,4.i   

The Hamiltonian System is  
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Based on the Pontryagin Maximum Principle, the necessary condition such that the system optimum 
is 
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The control of each agent can be written as follows: 
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The obtained controls can be substituted to Hamiltonian System and its system solved, then the 
movement equation agent 1 and 2 are found, and the result is a plot in figure 2. 
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Figure 2. The optimal path of a coupled agent in R2 

From Figure 2, it can be seen that the simulation of a pair of agents in R2 can run well. Each agent 
does not collide one to the other. Agents can move from the initial position to the final position in 
pairs without crashing.  

4. CONCLUSIONS 

The modeling of uncoupled agents with optimal control bilinear system has been successfully 
carried out. The bilinear dynamics model and the cost functional are combined in the Hamilton 
function. from the Hamilton function is derived to the Hamilton system. Control for agents was 
obtained using Pontryagin's Maximum Principle. After the control is obtained, the equations of 
motion of the agents are also obtained. Then it was done in two simulations. The simulation was 
successfully performed for the pair of moving agents in R and in R2. In both simulations, the agents 
managed to move from the starting position to the end without hitting each other. 
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