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Abstract  
This research compares AUV position estimations using Kalman Filter (KF), Ensemble Kalman Filter 
(EnKF), and Fuzzy Kalman Filter (FKF) algorithm for some specified trajectories. Assessment is 
performed on AUV Segorogeni ITS developed by the Institute Technology of Sepuluh Nopember 
(ITS), Indonesia. The specified trajectories are actual trajectories, i.e., diving, straight, and turning paths. 
The comparisons for each trajectory are made according to the simulation results and the RMSE (Root 
Mean Square Error) values. The best estimation is given by different methods depending on the 
trajectories. Fuzzy Kalman Filter gives the best result on the diving trajectory (Y-position and angle) 
and the straight trajectory. Ensemble Kalman Filter (EnKF) provides the best result on the X-position 
in the diving trajectory. At the same time, Kalman Filter gives the best result on a straight trajectory. 
Keywords: AUV; Kalman Filter (KF); Ensemble Kalman Filter (EnKF); Fuzzy Kalman Filter (FKF); 
AUV Segorogeni ITS. 
 

Abstrak 
Penelitian ini menjelaskan tentang perbandingan estimasi untuk posisi AUV antara algoritma Kalman Filter (KF), 
Ensemble Kalman Filter (EnKF) dan Fuzzy Kalman Filter (FKF) untuk trayektori tertentu. Estimasi 
dilakukan terhadap AUV Segorogeni ITS yang dibuat oleh ITS (Institut Teknologi Sepuluh Nopember), Indonesia. 
Trayektori yang diberikan adalah menyelam, lurus dan lintasan membelok yang merupakan lintasan real. Peneliti 
melakukan perbandingan untuk setiap lintasan berdasarkan hasil simulasi dan Root Mean Square Error (RMSE). 
Pada kasus ini estimasi terbaik diberikan oleh metode yang berbeda. Fuzzy Kalman Filter memberikan hasil terbaik 
untuk lintasan berbelok pada posisi-Y dan pada garis lurus. Ensemble Kalman Filter memberikan estimasi terbaik 
untuk posisi-X pada lintasan menyelam. Sedangkan Kalman Filter memberikan hasil terbaik untuk lintasan lurus.  
Kata kunci: AUV; Kalman Filter (KF); Ensemble Kalman Filter (EnKF); Fuzzy Kalman Filter (FKF); 
AUV Segorogeni ITS. 

 

 

1. INTRODUCTION 

There are many methods for estimating mathematical models, both linear and nonlinear. 
Several ways use data assimilation that combines it with measurement data [1]. We can build 
an estimation based on linear or nonlinear mathematical models using data assimilation. One 
of the data assimilation methods for a linear model is Kalman Filter [2]. Various mathematical 
models need some modification of the Kalman Filter (KF) to solve more accurately. 
Different variations of Kalman Filter (KF) algorithms are Fuzzy Kalman Filter (FKF), 
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Unscented Kalman Filter (UKF), Ensemble Kalman Filter (EnKF), and other modifications. 
EnKF is an algorithm to estimate nonlinear models [3], while FKF is an algorithm to estimate 
linear models with a Fuzzy state variable [4]. This paper investigates the comparison of AUV 
(Autonomous Underwater Vehicle) position estimation between KF, FKF, and EnKF. 

AUV (Autonomous Underwater Vehicle) is one of the Unmanned Underwater Vehicle 
(UUV). UUV has better performance to drive than humans [5]. AUV, a type of UUV, is an 
autonomous underwater vehicle that is moved and controlled by the computer, with a 
propulsion system in the water and has three dimensions of maneuver [6]. Recently, AUV 
has been used for many underwater tasks like underwater biology, geology, and others, and 
it has a reasonable cost for underwater technology [7]. In this research, AUV Segorogeni ITS 
is used for this work (Fig. 1). 

Ngatini et al. [4] had estimated the trajectory of AUV Segorogeni ITS using Ensemble 
Kalman Filter (EnKF) and Fuzzy Kalman Filter (FKF). The AUV position was estimated 
using the model of AUV motion, a nonlinear mathematical model. The estimation result 
showed that EnKF has a better estimation for the AUV position than FKF. In this research, 
the authors develop a comparison between Kalman Filter (KF), Fuzzy Kalman Filter (FKF), 
and Ensemble Kalman Filter (EnKF) to estimate the AUV trajectories. Each error estimation 
and computation time are compared and simulated using GNU Octave-4.2.2 (GUI). Section 
2 describes the dynamical model of AUV motion that consists of the nonlinear mathematical 
model and specification of the AUV Segorogeni ITS. In section 3, the authors explain the 
estimation using the Kalman Filter algorithms, including the state space development, 
linearization, and the steps of the Kalman Filter. In this Section authors also introduce 
previous results for the AUV position estimation using EnKF and FKF in terms of 
description and implementation of both algorithms in the AUV position estimation. The 
estimation comparisons between KF, EnKF, and FKF are given in Section 4. The 
comparison of simulation and error estimation is also explained in this section. Before 
applying the estimation algorithm, we develop three trajectories of the AUV position as the 
actual trajectories. We summarized our research in Section 5. 

 

Figure 1. AUV Segorogeni ITS. Figure 2. AUV coordinates [8, p.14].  
 
2. METHODS 

In this study, the estimation of AUV position was carried out using three methods, namely 
Kalman Filter, Ensemble Kalman Filter, and Fuzzy Kalman Filter. The model of the motion equation 
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of the AUV is nonlinear, so it needs to be linearized before being estimated using the Kalman Filter 
algorithm and Fuzzy Kalman Filter. However, the nonlinear model was not changed for estimation 
using the Ensemble Kalman Filter algorithm. The first stage is the formation of state states from the 
model, which is then continued for the stages of each algorithm. This stage can be seen in the following 
sub-chapter. 

 
2.1 Mathematical model of AUV motion 

AUV is an autonomous underwater vehicle that is moved and controlled by the 
computer, with a propulsion system in the water; and has three dimensions of maneuver [6]. 
The motions of AUV are in 6 degrees of freedom (DOF). They are the position and 
translational motion and the orientation and rotational motion [9]. The AUV coordinates can 
be seen in Fig. 2, while the notation used for AUV is described in Table 1. 

 
Table 1. Notations for AUV [8]. 

DOF Motion 
Forces and 
Moments 

Linear and 
Angular Velocities 

Position and 
Euler Angles 

1 Surge (x-direction) X u x 
2 Sway (y-direction) Y v y 

3 Heave (z-direction) Z w z 

4 Roll (rotation about-x) K p φ 

5 Pitch (rotation about-y) M q θ 

6 Yaw (rotation about-z) N r ψ 

 

According to Yang (2007), the nonlinear models of AUV motion are expressed as           
follows [8]: 
 

• Translation along x-direction: 
𝑚[�̇� − 𝑣𝑟 + 𝑤𝑞 − 𝑥𝐺(𝑞

2 + 𝑟2) + 𝑦𝐺(𝑝𝑞 − �̇�) + 𝑧𝐺(𝑝𝑞 + �̇�)] = 𝑋𝑟𝑒𝑠 + 𝑋𝑢ǀ𝑢ǀ𝑢ǀ𝑢ǀ + 𝑋�̇��̇� + 𝑋𝑤𝑞𝑤𝑞 +

𝑋𝑞𝑞𝑞𝑞 + 𝑋𝑣𝑟𝑣𝑟 + 𝑋𝑟𝑟𝑟𝑟 + 𝑋𝑝𝑟𝑜𝑝 ,               (1) 

• Translation along y-direction: 

𝑚[�̇� − 𝑤𝑝 + 𝑢𝑟 − 𝑦𝐺(𝑟
2 + 𝑝2) + 𝑧𝐺(𝑞𝑟 − �̇�) + 𝑥𝐺(𝑝𝑞 + �̇�)] = 𝑌𝑟𝑒𝑠 + 𝑌𝑣ǀ𝑣ǀ𝑣ǀ𝑣ǀ + 𝑌𝑟ǀ𝑟ǀ𝑟ǀ𝑟ǀ + 𝑌�̇��̇� +

𝑌�̇� �̇� + 𝑌𝑢𝑟𝑢𝑟 + 𝑌𝑤𝑝𝑤𝑝 + 𝑌𝑝𝑞𝑝𝑞 + 𝑌𝑢𝑣𝑢𝑣 + 𝑌𝑢𝑢𝛿𝑟𝑢
2𝛿𝑟,            (2) 

• Translation along z-direction: 
𝑚[�̇� − 𝑢𝑞 + 𝑣𝑝 − 𝑧𝐺(𝑝

2 + 𝑞2) + 𝑥𝐺(𝑟𝑝 − �̇�) + 𝑦𝐺(𝑟𝑞 + �̇�)] = 𝑍𝑟𝑒𝑠 + 𝑍𝑤ǀ𝑤ǀ𝑤ǀ𝑤ǀ + 𝑍𝑞ǀ𝑞ǀ𝑞ǀ𝑞ǀ +

𝑍�̇��̇� + 𝑍�̇��̇� + 𝑍𝑢𝑞𝑢𝑞 + 𝑍𝑣𝑝𝑣𝑝 + 𝑍𝑟𝑝𝑟𝑝 + 𝑍𝑢𝑤𝑢𝑤 + 𝑍𝑢𝑢𝛿𝑠𝑢
2𝛿𝑠,           (3) 

• Rotation along x-direction: 

𝐼𝑥�̇� + (𝐼𝑧 − 𝐼𝑦)𝑞𝑟 +𝑚[𝑦𝐺(�̇� − 𝑢𝑞 + 𝑣𝑝) − 𝑧𝐺(�̇� − 𝑤𝑝 + 𝑢𝑟)] = 𝐾𝑟𝑒𝑠 + 𝐾𝑝ǀ𝑝ǀ𝑝ǀ𝑝ǀ + 𝐾�̇��̇� 

+𝐾𝑝𝑟𝑜𝑝 ,                      (4) 

• Rotation along y-direction: 
𝐼𝑦 �̇� + (𝐼𝑥 − 𝐼𝑧)𝑟𝑝 + 𝑚[𝑧𝐺(�̇� − 𝑣𝑟 + 𝑤𝑞) − 𝑥𝐺(�̇� − 𝑢𝑞 + 𝑣𝑝)] = 𝑀𝑟𝑒𝑠 +𝑀𝑤ǀ𝑤ǀ𝑤ǀ𝑤ǀ +𝑀𝑞ǀ𝑞ǀ𝑞ǀ𝑞ǀ +

𝑀�̇��̇� +𝑀�̇�𝑞 ̇ + 𝑀𝑢𝑞𝑢𝑞 +𝑀𝑣𝑝𝑣𝑝 +𝑀𝑟𝑝𝑟𝑝 +𝑀𝑢𝑤𝑢𝑤 + 𝑀𝑢𝑢𝛿𝑠𝑢
2𝛿𝑠 ,                  (5) 
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• Rotation along z-direction: 

𝐼𝑧 �̇� + (𝐼𝑦 − 𝐼𝑥)𝑝𝑞 +𝑚[𝑥𝐺(�̇� − 𝑤𝑝 + 𝑢𝑟) − 𝑦𝐺(�̇� − 𝑣𝑟 + 𝑤𝑞)] = 𝑁𝑟𝑒𝑠 +𝑁𝑣ǀ𝑣ǀ𝑣ǀ𝑣ǀ + 𝑁𝑟ǀ𝑟ǀ𝑟ǀ𝑟ǀ +

𝑁�̇��̇� + 𝑁�̇�𝑟 ̇ + 𝑁𝑢𝑟𝑢𝑟 + 𝑁𝑤𝑝𝑤𝑝 +𝑁𝑝𝑞𝑝𝑞 + 𝑁𝑢𝑣𝑢𝑣 + 𝑁𝑢𝑢𝛿𝑟𝑢
2𝛿𝑟,           (6) 

where  
𝑚  : total mass of AUV,  

𝑥𝐺 , 𝑦𝐺 , 𝑧𝐺  : the gravity of AUV’s center in body-fixed coordinates,  

�̇�, �̇�, �̇�, �̇�, �̇�, �̇�  : the acceleration,   

𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧   : the inertia moment of the x,y, z-axes, respectively, 

𝑋𝑝𝑟𝑜𝑝     : the thrust force of the propeller, 

𝐾𝑝𝑟𝑜𝑝     : the additional moment of a propeller, 

𝑋𝑢ǀ𝑢ǀ        : the axial drag coefficient, 

𝐾𝑝ǀ𝑝ǀ        : the rolling drag coefficient, 

𝑋𝑟𝑒𝑠 , 𝑌𝑟𝑒𝑠 , 𝑍𝑟𝑒𝑠 , 𝐾𝑟𝑒𝑠 , 𝑀𝑟𝑒𝑠 , 𝑁𝑟𝑒𝑠  : the hydrostatic force, 

𝑋�̇��̇� + 𝑋𝑤𝑞𝑤𝑞 + 𝑋𝑞𝑞𝑞𝑞 + 𝑋𝑣𝑟𝑣𝑟 + 𝑋𝑟𝑟𝑟𝑟   : the added mass force in surge motion, 

𝑌�̇��̇� + 𝑌�̇� �̇� + 𝑌𝑢𝑟𝑢𝑟 + 𝑌𝑤𝑝𝑤𝑝 + 𝑌𝑝𝑞𝑝𝑞  : the added mass force and body lift force in sway 

motion,  

𝑍�̇��̇� + 𝑍�̇��̇� + 𝑍𝑢𝑞𝑢𝑞 + 𝑍𝑣𝑝𝑣𝑝 + 𝑍𝑟𝑝𝑟𝑝  : the added mass force and body lift force in 

heave motion, 

𝐾�̇��̇�  : the added mass force in roll motion, 

𝑀�̇��̇� +𝑀�̇�𝑞 ̇ + 𝑀𝑢𝑞𝑢𝑞 +𝑀𝑣𝑝𝑣𝑝 +𝑀𝑟𝑝𝑟𝑝 +𝑀𝑢𝑤𝑢𝑤  : the added mass force, lift force and body lift 

force in pitch motion, 

𝑁�̇��̇� + 𝑁�̇�𝑟 ̇ + 𝑁𝑢𝑟𝑢𝑟 + 𝑁𝑤𝑝𝑤𝑝 +𝑁𝑝𝑞𝑝𝑞 + 𝑁𝑢𝑣𝑢𝑣    : the added mass force, lift force and body lift 

force in yaw motion, 

𝑌𝑢𝑣𝑢𝑣, 𝑍𝑢𝑤𝑢𝑤 : the lift force (fin lift and body lift) 

𝑌𝑢𝑢𝛿𝑟𝑢
2𝛿𝑟, 𝑍𝑢𝑢𝛿𝑠𝑢

2𝛿𝑠 ,𝑀𝑢𝑢𝛿𝑠𝑢
2𝛿𝑠 , 𝑁𝑢𝑢𝛿𝑟𝑢

2𝛿𝑟 : the lift force (fin lift), 

𝑌𝑣ǀ𝑣ǀ, 𝑍𝑤ǀ𝑤ǀ, 𝑀𝑤ǀ𝑤ǀ , 𝑁𝑣ǀ𝑣ǀ, 𝑌𝑟ǀ𝑟ǀ, 𝑍𝑞ǀ𝑞ǀ, 𝑀𝑞ǀ𝑞ǀ, 𝑁𝑟ǀ𝑟ǀ : the crossflow drag coefficients, 

𝑋𝑤𝑞 , 𝑋𝑞𝑞 , 𝑋𝑣𝑟, 𝑋𝑟𝑟 , 𝑌𝑢𝑟 , 𝑌𝑤𝑝, 𝑌𝑝𝑞 ,𝑍𝑢𝑞 , 𝑍𝑣𝑝, 𝑍𝑟𝑝 : the rolling added mass coefficient, 

𝑀𝑢𝑞 , 𝑀𝑣𝑝, 𝑀𝑟𝑝 , 𝑀𝑢𝑤 , 𝑁𝑢𝑟 , 𝑁𝑤𝑝, 𝑁𝑝𝑞 , 𝑁𝑢𝑣  : the rolling added mass coefficient. 

 
The right-hand side of equations (1)-(6) describes the total force and moment from combining 

the hydrostatic force (subscript 𝑟𝑒𝑠), lift force, added mass force, body lift, and fin lift [8]. These 
equations explain the total force and moment in Table 1. Equations (1) – (6) are nonlinear 
dynamic equations of the AUV motion. These equations can be written by [9]: 

[𝑀𝑅𝐵   + 𝑀𝐴]𝜈˙ + [𝐶𝑅𝐵  (𝜈)  + 𝐶𝐴(𝜈)]𝜈 +  𝐷(𝜈)𝜈 +  𝑔(𝜂)     =     𝜏𝐸   +  𝜏,     (7) 

where 

η = [𝑥, 𝑦, 𝑧, 𝜑, 𝜃, 𝜓]𝑇         : the linear and the angular position vector in the earth-fixed coordinates (EFF), 

ν =  [𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟]𝑇  : the linear and the angular velocity in the body-fixed coordinates (BFF), 

τ = [𝑋, 𝑌, 𝑍, 𝐾,𝑀, 𝑁 ]𝑇   : the forces and the moments acting on the vehicle in the body-fixed frame, 
𝑀𝐴 : added mass matrix, 

𝑀𝑅𝐵  : AUV rigid body mass and inertia matrix, 

𝐶𝑅𝐵 : rigid body Coriolis and centripetal matrix, 

𝐶𝐴  : added mass induced Coriolis-centripetal matrix, 
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D(ν) : damping matrix, 
g(η) : vector of gravitational forces and moments, 

𝜏𝐸  : environmental forces and moments, 
τ : propulsion forces and moments. 

The AUV estimation is performed by calculating the position of AUV from the velocity 
estimation based on the dynamical model. We use the below equations to transform the 
linear and angular velocity into the position and orientation of AUV [10]. 

�̇� = 𝑢𝑐𝑜𝑠(𝜓)  −  𝑣𝑠𝑖𝑛(𝜓), (8) 

�̇� =   𝑢𝑠𝑖𝑛(𝜓) +  𝑣𝑐𝑜𝑠(𝜓), (9) 
�̇� = 𝑤, (10) 

�̇� = 𝑟, (11) 

Where ẋ, ẏ , ż are the linear velocities in the EFF coordinate system, �̇� is the angular velocity 
in the EFF coordinate system, and u, v, w, r are the velocities in the BFF coordinate system. 
 
2.2 AUV Segorogeni ITS 

The AUV Segorogeni ITS is an AUV developed by the Institute Technology of Sepuluh 
Nopember (ITS) (see Fig. 1). That AUV has a propeller on the tail, making the thrust force 
and additional moments [11]. AUV Segorogoeni ITS has several advantages: the unmanned 
vehicle is capable of monitoring underwater conditions, has a hydrodynamic profile, the 
navigation system is equipped with a compass and GPS, and provided a motion sensor IMU. 
The AUV Segorogeni ITS can observe underwater conditions with camera vision and 
wireless cable [12]. The details of AUV Segorogeni ITS are described in Table 2. 
 

Table 2. The specification of AUV Segorogeni ITS [12]. 

Specification Size 

Weight 15 Kg 

Overall Length 980 mm 

Beam 188 mm 

Controller Ardupilot Mega 2.0 

Communication Wireless Xbee 2.4 GHz 

Camera TTL Camera 

Battery Li-Po 11.8 v 

Propulsion 12 V motor DC 

Propeller 3 blades OD; 40 mm 

Speed 1,94 knots (1 m/s) 

 

3. AUV POSITION ESTIMATION 

3.1 AUV Position Estimation using Kalman Filter (KF) 
Kalman Filter is an algorithm to estimate the linear dynamical model constructed by R.E. 

Kalman [1]. For convenient reference, the algorithm is summarized in Table 3. The dynamical 
model of AUV motion is a nonlinear mathematical model, so firstly, we need to do linearization [14] 
for Eq. (1) – (6). We build a state space from those equations as below. 
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�̇� −
𝑚𝑦𝑔�̇�

𝑚−𝑋�̇�
=  

𝑋𝑟𝑒𝑠 + 𝑋𝑢ǀ𝑢ǀ 𝑢ǀ𝑢ǀ+𝑋𝑤𝑞𝑤𝑞+ 𝑋𝑞𝑞𝑞𝑞 

𝑚− 𝑋�̇�
+
𝑋𝑣𝑟𝑣𝑟+𝑋𝑟𝑟𝑟𝑟+ 𝑋𝑝𝑜𝑝−𝑚(−𝑣𝑟+𝑤𝑞)

𝑚− 𝑋�̇�
+

−𝑚(−𝑥𝐺(𝑞
2+𝑟2)+𝑦𝐺(𝑝𝑞)+𝑧𝐺(𝑝𝑟))

𝑚− 𝑋�̇�
               (12) 

�̇� −
𝑚𝑧𝐺�̇�

𝑚−𝑌�̇�
+ 

(𝑚𝑥𝐺−𝑌�̇� )�̇�

𝑚−𝑌�̇�
 =  

𝑌𝑟𝑒𝑠 + 𝑌𝑣ǀ𝑣ǀ 𝑣ǀ𝑣ǀ+𝑌𝑟ǀ𝑟ǀ𝑟ǀ𝑟ǀ+ 𝑌𝑢𝑟𝑢𝑟 

𝑚− 𝑌�̇�
+
𝑌𝑤𝑝𝑤𝑝+𝑌𝑝𝑞𝑝𝑞+ 𝑌𝑢𝑣𝑢𝑣+𝑌𝑢𝑢𝛿𝑟𝑢

2𝛿𝑟

𝑚− 𝑌�̇�
−

 
𝑚(−𝑤𝑝+𝑢𝑟−𝑦𝐺(𝑟

2+𝑝2))

𝑚− 𝑌�̇�
+ 

−𝑚(−𝑧𝐺(𝑞𝑟)+𝑥𝐺(𝑝𝑞))

𝑚− 𝑋�̇�
             (13) 

�̇� −
(𝑍�̇�+𝑚𝑥𝐺)�̇�

𝑚−𝑍�̇�
+ 

𝑚𝑦𝐺�̇�

𝑚−𝑍�̇�
 =  

𝑍𝑟𝑒𝑠 + 𝑍𝑤ǀ𝑤ǀ𝑤ǀ𝑤ǀ+𝑍𝑞ǀ𝑞ǀ𝑞ǀ𝑞ǀ+ 𝑍𝑢𝑞𝑢𝑞 

𝑚−𝑍�̇�
+
𝑍𝑣𝑝𝑣𝑝+𝑍𝑟𝑝𝑟𝑝+ 𝑍𝑢𝑤𝑢𝑤+𝑍𝑢𝑢𝛿𝑠𝑢

2𝛿𝑠

𝑚−𝑍�̇�
+

 
−𝑚(−𝑢𝑞+𝑣𝑝−𝑧𝐺(𝑝

2+𝑞2))

𝑚−𝑍�̇�
+ 

−𝑚(−𝑥𝐺(𝑟𝑝)+𝑦𝐺(𝑟𝑞))

𝑚−𝑍�̇�
            (14) 

�̇� −
𝑚𝑦𝐺�̇�

𝐼𝑥−𝐾�̇�
+ 

𝑚𝑧𝐺�̇�

𝐼𝑥−𝐾�̇�
 =  

𝐾𝑟𝑒𝑠 + 𝐾𝑝ǀ𝑝ǀ 𝑝ǀ𝑝ǀ+𝐾𝑝𝑟𝑜𝑝− (𝐼𝑧− 𝐼𝑦)𝑞𝑟

𝐼𝑥−𝐾�̇�
+
−𝑚(𝑦𝐺(−𝑢𝑞+𝑣𝑝)−𝑧𝐺(−𝑤𝑝+𝑢𝑟))

𝐼𝑥−𝐾�̇�
       (15) 

�̇� + 
𝑚𝑧𝐺�̇�

𝐼𝑦−𝑀�̇�
 −

(𝑀�̇�+𝑥𝐺)�̇�

𝐼𝑦−𝑀�̇�
= 

𝑀𝑟𝑒𝑠 + 𝑀𝑤ǀ𝑤ǀ 𝑤ǀ𝑤ǀ+𝑀𝑞ǀ𝑞ǀ𝑞ǀ𝑞ǀ 

𝐼𝑦−𝑀�̇�
+
𝑀𝑢𝑞𝑢𝑞+𝑀𝑣𝑝𝑣𝑝+𝑀𝑟𝑝𝑟𝑝

𝐼𝑦−𝑀�̇�
+

𝑀𝑢𝑤𝑢𝑤+𝑀𝑢𝑢𝛿𝑠𝑢
2𝛿𝑠−(𝐼𝑥−𝐼𝑧)𝑟𝑝

𝐼𝑦−𝑀�̇�
− 

𝑚(𝑧𝐺(−𝑣𝑟+𝑤𝑞))

𝐼𝑦−𝑀�̇�
+ 

𝑚𝑥𝐺(−𝑢𝑞+𝑣𝑝)

𝐼𝑦−𝑀�̇�
          (16) 

�̇� +
(𝑚𝑥𝐺−𝑁�̇�)�̇�

𝐼𝑧−𝑁�̇�
− 

𝑚𝑦𝐺�̇�

𝐼𝑧−𝑁�̇�
 =  

𝑁𝑟𝑒𝑠 + 𝑁𝑣ǀ𝑣ǀ 𝑣ǀ𝑣ǀ+𝑁𝑟ǀ𝑟ǀ𝑟ǀ𝑟ǀ 

𝐼𝑧−𝑁�̇�
+
𝑁𝑢𝑟𝑢𝑟+𝑁𝑤𝑝𝑤𝑝+𝑀𝑝𝑞𝑝𝑞

𝐼𝑧−𝑁�̇�
+

𝑁𝑢𝑣𝑢𝑣+𝑁𝑢𝑢𝛿𝑟𝑢
2𝛿𝑟−(𝐼𝑦−𝐼𝑥)𝑝𝑞

𝐼𝑧−𝑁�̇�
+ 

−𝑚(𝑥𝐺(−𝑤𝑝+𝑢𝑟))

𝐼𝑧−𝑁�̇�
+ 

𝑚𝑦𝐺(−𝑣𝑟+𝑤𝑞)

𝐼𝑧−𝑁�̇�
          (17) 

 
Table 3. The Kalman Filter Algorithm [13]. 

1. Observation model 

     𝑥𝑘+1  =  𝐶𝑘𝑥𝑘 + 𝜍𝑘  
𝑧𝑘  =  𝐻𝑘𝑥𝑘  +  𝜉𝑘 

𝑥0 ∼ (𝑥0, 𝑃𝑥0), 𝜍𝑘 ∼ (0,𝑄𝑘), 𝜉𝑘 ∼ (0, 𝑅𝑘) 
   where, 

𝑥𝑘      : variable state at the time- 𝑘 

𝜍𝑘 , 𝜉𝑘: Noise of system with mean=0 and covariance = 𝑄𝑘 , 𝑅𝑘 , respectively  

𝐶𝑘 , 𝐵𝑘 , 𝐺𝑘: Coefficient matrix of each variable  

𝑧𝑘   : Observation variable 

𝐻𝑘  : Matrix observation 

𝑃𝑥0  : Initial covariance 

2. Initialization 

𝑃0 = 𝑃𝑥0 , 𝑥0 = �̅�0 
3. Time update (Prediction) 

Covariance of Error:𝑃𝑘+1
− = 𝐶𝑘𝑃𝑘𝐶𝑘

𝑇 +𝑄𝑘  

Estimate 𝑥𝑘+1
− = 𝐶𝑘�̂�𝑘   

4. Measurement update (Correction) 

Kalman Gain: 𝐾𝑘+1=𝑃�̅�+1𝐻𝑘+1
𝑇 (𝐻𝑘+1𝑃�̅�+1𝐻𝑘+1

𝑇 + Rk+1)-1 

Update of error covariance:  𝑃𝑘+1  =  (𝐼 − 𝐾𝑘+1𝐻𝑘+1)𝑃𝑘+1
−   

Estimation update: 𝑥𝑘+1 = 𝑥𝑘+1
− + 𝐾𝑘+1(𝑧𝑘+1  −  𝐻𝑥𝑘+1

− )   

 

From equation (12) – (17), we define the right side as B1, B2, B3, B4, B5, and B6. Meanwhile, we 
build a matrix for the left side. 
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(

 
 
 
 
 
 
 
 

1 0 0 0
𝑚𝑧𝐺

𝑚−𝑋�̇�
−

𝑚𝑦𝐺

𝑚−𝑋 �̇�
 

0 1 0 −
𝑚𝑧𝐺

𝑚−𝑌�̇�
0

(𝑚𝑥𝐺−𝑌�̇�)

𝑚−𝑌�̇�

0 0 1
𝑚𝑦𝐺

𝑚−𝑍𝑤 ̇

(𝑍�̇�+𝑚𝑥𝐺)

𝑚−𝑍�̇�
0

0 −
𝑚𝑧𝐺

𝐼𝑥−𝐾𝑝 ̇

𝑚𝑦𝐺

𝐼𝑥−𝐾𝑝 ̇
1 0 0

𝑚𝑧𝐺

𝐼𝑦−𝑀�̇�
0 −

(𝑀�̇�+𝑥𝐺)

𝐼𝑦−𝑀�̇�
0 1 0

−
𝑚𝑦𝐺

𝐼𝑧−𝑁�̇�

(𝑚𝑥𝐺−𝑁𝑣) ̇

𝐼𝑧−𝑁�̇�
0 0 0 1 )

 
 
 
 
 
 
 
 

(

  
 

�̇�
�̇�
�̇�
�̇�
�̇�
�̇� )

  
 
=

(

  
 

𝐵1
𝐵2
𝐵3
𝐵4
𝐵5
𝐵6)

  
 

           (18) 

In general, that matrix can be written as follows: 

𝐴�̇� = 𝐵, (19) 
where, 
 

𝐴 =

(

 
 
 
 
 
 
 
 

1 0 0 0
𝑚𝑧𝐺

𝑚−𝑋�̇�
−

𝑚𝑦𝐺

𝑚−𝑋 �̇�
 

0 1 0 −
𝑚𝑧𝐺

𝑚−𝑌�̇�
0

(𝑚𝑥𝐺−𝑌�̇�)

𝑚−𝑌�̇�

0 0 1
𝑚𝑦𝐺

𝑚−𝑍𝑤 ̇

(𝑍�̇�+𝑚𝑥𝐺)

𝑚−𝑍�̇�
0

0 −
𝑚𝑧𝐺

𝐼𝑥−𝐾𝑝 ̇

𝑚𝑦𝐺

𝐼𝑥−𝐾𝑝 ̇
1 0 0

𝑚𝑧𝐺

𝐼𝑦−𝑀�̇�
0 −

(𝑀�̇�+𝑥𝐺)

𝐼𝑦−𝑀�̇�
0 1 0

−
𝑚𝑦𝐺

𝐼𝑧−𝑁�̇�

(𝑚𝑥𝐺−𝑁𝑣) ̇

𝐼𝑧−𝑁�̇�
0 0 0 1 )

 
 
 
 
 
 
 
 

           (20) 

 

�̇� =

(

  
 

�̇�
�̇�
�̇�
�̇�
�̇�
�̇� )

  
 

, (21) 
 

𝐵 =

(

  
 

𝐵1
𝐵2
𝐵3
𝐵4
𝐵5
𝐵6)

  
 

. 
(22) 

 

B is a nonlinear equation on the right side of the matrix model consisting of six equations, namely 
B1, B2, B3, B4, B5, and B6. 
 

𝐵1 =  
𝑋𝑟𝑒𝑠 + 𝑋𝑢ǀ𝑢ǀ𝑢ǀ𝑢ǀ+𝑋𝑤𝑞 𝑤𝑞+𝑋𝑞𝑞 𝑞𝑞

𝑚− 𝑋�̇�
+ 

𝑋𝑣𝑟 𝑣𝑟+𝑋𝑟𝑟 𝑟𝑟+𝑋𝑝𝑟𝑜𝑝−𝑚(−𝑣𝑟+𝑤𝑞)

𝑚− 𝑋�̇�
+
−𝑚(−𝑥𝐺(𝑞2+𝑟2)+𝑦𝐺(𝑝𝑞)+𝑧𝐺(𝑝𝑟))

𝑚− 𝑋�̇�
 (23)  
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𝐵2 =  
𝑌𝑟𝑒𝑠 + 𝑌𝑢ǀ𝑣ǀ𝑢ǀ𝑣ǀ+𝑌𝑟ǀ𝑟ǀ𝑟ǀ𝑟ǀ+𝑌𝑢𝑟 𝑢𝑟

𝑚− 𝑌�̇�
+ 

𝑌𝑤𝑝𝑤𝑝+𝑌𝑝𝑞𝑝𝑞+ 𝑌𝑢𝑣𝑢𝑣+𝑌𝑢𝑢𝛿𝑟𝑢
2𝛿𝑟

𝑚− 𝑌�̇�
− 

𝑚(−𝑤𝑝+𝑢𝑟−𝑦𝐺(𝑟
2+𝑝2))

𝑚− 𝑌�̇�
+

 
−𝑚(−𝑧𝐺(𝑞𝑟)+𝑥𝐺(𝑝𝑞))

𝑚− 𝑌�̇�
,               (24) 

𝐵3 =  
𝑍𝑟𝑒𝑠 + 𝑍𝑤ǀ𝑤ǀ 𝑤ǀ𝑤ǀ+𝑍𝑞ǀ𝑞ǀ𝑞ǀ𝑞ǀ+ 𝑍𝑢𝑞𝑢𝑞 

𝑚−𝑍�̇�
+
𝑍𝑣𝑝𝑣𝑝+𝑍𝑟𝑝𝑟𝑝+ 𝑍𝑢𝑤𝑢𝑤+𝑍𝑢𝑢𝛿𝑠𝑢

2𝛿𝑠

𝑚−𝑍�̇�
+ 

−𝑚(−𝑢𝑞+𝑣𝑝−𝑧𝐺(𝑝
2+𝑞2))

𝑚−𝑍�̇�
+

 
−𝑚(−𝑥𝐺(𝑟𝑝)+𝑦𝐺(𝑟𝑞))

𝑚−𝑍�̇�
,               (25) 

𝐵4 =  
𝐾𝑟𝑒𝑠 + 𝐾𝑝ǀ𝑝ǀ 𝑝ǀ𝑝ǀ+𝐾𝑝𝑟𝑜𝑝− (𝐼𝑧− 𝐼𝑦)𝑞𝑟

𝐼𝑥−𝐾�̇�
+
−𝑚(𝑦𝐺(−𝑢𝑞+𝑣𝑝)−𝑧𝐺(−𝑤𝑝+𝑢𝑟))

𝐼𝑥−𝐾�̇�
,         (26) 

𝐵5 =  
𝑀𝑟𝑒𝑠 + 𝑀𝑤𝐼𝑤𝐼 𝑤𝐼𝑤𝐼+𝑀𝑞ǀ𝑞ǀ𝑞ǀ𝑞ǀ 

𝐼𝑦−𝑀�̇�
+
𝑀𝑢𝑞𝑢𝑞+𝑀𝑣𝑝𝑣𝑝+𝑀𝑟𝑝𝑟𝑝

𝐼𝑦−𝑀�̇�
+
𝑀𝑢𝑤𝑢𝑤+𝑀𝑢𝑢𝛿𝑠𝑢

2𝛿𝑠−(𝐼𝑥−𝐼𝑧)𝑟𝑝

𝐼𝑦−𝑀�̇�
− 

𝑚(𝑧𝐺(−𝑣𝑟+𝑤𝑞))

𝐼𝑦−𝑀�̇�
+

 
𝑚𝑥𝐺(−𝑢𝑞+𝑣𝑝)

𝐼𝑦−𝑀�̇�
,               (27) 

𝐵6 =  
𝑁𝑟𝑒𝑠 + 𝑁𝑣𝐼𝑣𝐼 𝑣𝐼𝑣𝐼+𝑁𝑟ǀ𝑟ǀ𝑟ǀ𝑟ǀ 

𝐼𝑧−𝑁�̇�
+
𝑁𝑢𝑟𝑢𝑟+𝑁𝑤𝑝𝑤𝑝+𝑀𝑝𝑞𝑝𝑞

𝐼𝑧−𝑁�̇�
+
𝑁𝑢𝑣𝑢𝑣+𝑁𝑢𝑢𝛿𝑟𝑢

2𝛿𝑟−(𝐼𝑦−𝐼𝑥)𝑝𝑞

𝐼𝑧−𝑁�̇�
+ 

−𝑚(𝑥𝐺(−𝑤𝑝+𝑢𝑟))

𝐼𝑧−𝑁�̇�
 (28) 

 
Equation (19) is a nonlinear model. Therefore, a linearization is carried out to get a linear form. The 
following is derived from the linearization more precisely [15]. 
 

�̇� =  𝐶𝑥 +  𝐷𝑦.    (29) 
 
Matrices C and D are measured by Jacobi Matrix application to the speed and control [12]. 

𝐽𝑥 =  [
ϑF

𝜗𝑥
],    (30) 

𝐽𝑦 = [
ϑF

𝜗𝑢
],             (31) 

where 𝑦 = [𝑋𝑝𝑟𝑜𝑝 , 𝛿𝑟, 𝛿𝑠 , 𝐾𝑝𝑟𝑜𝑝 ,𝛿𝑠, 𝛿𝑅]
𝑇
,  

𝐶 = 𝐴−1. 𝐽𝑥, 

𝐷 = 𝐴−1. 𝐽𝑦. 

(32) 
(33) 

The equation of AUV motion must be changed into a discrete form since Kalman Filter can only 
be implemented on discrete systems. Discretization is applied using the Finite Difference method for 
forwarding difference. This method is obtained from the Taylor series in time-t to form the difference 
quotient [16]. 

𝑥 = 
𝑑𝑥

𝑑𝑡

̇
,      (34) 

≈ 
𝑥𝑘+1− 𝑥𝑘

∆𝑡
 ,     (35) 

𝑥𝑘+1− 𝑥𝑘

∆𝑡
=  𝐶𝑥 + 𝐷𝑦,                   (36) 

𝑥𝑘+1 =  𝑥𝑘 + (𝐶𝑥 + 𝐷𝑦)∆𝑡,         (37) 

𝑥𝑘+1 = (𝐶∆𝑡 + 1)𝑥𝑘 + 𝐷∆𝑡𝑦.                 (38) 
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Equation (38) requires a system and observation model to estimate the AUV position before applying 
the Kalman Filter method. Firstly, we define the x-component and give the initial value for each 
component. 

𝑥 =

(

 
 

𝑢
𝑣
𝑤
𝑝
𝑞
𝑟)

 
 
; 𝑥0 =

(

  
 

𝑢0
𝑣0
𝑤0
𝑝0
𝑞0
𝑟0)

  
 
. 

  (39) 
 

The state-space of the AUV motion is 

𝑥𝑘+1 = (𝐶∆𝑡 + 1)𝑥𝑘 + 𝐷∆𝑡𝑦. 

 
That state space is implemented in the Kalman Filter to get an AUV position estimation. Adding noise 
in the system and observation model is needed, ς and ξ respectively. The estimation steps are as 
follows: 

1. System Model 
System model from the state space added noise is written as follows: 

𝑥𝑘+1 = (𝐶∆𝑡 + 1)𝑥𝑘 +𝐷∆𝑡𝑦 + 𝜍𝑘, (40) 
 

(

  
 

𝑢𝑘+1
𝑣𝑘+1
𝑤𝑘+1
𝑝𝑘+1
𝑞𝑘+1
𝑟𝑘+1)

  
 
= (𝐶∆𝑡 + 1)

(

  
 

𝑢𝑘
𝑣𝑘
𝑤𝑘
𝑝𝑘
𝑞𝑘
𝑟𝑘 )

  
 
+𝐷∆𝑡

(

 
 
 
 

𝑋𝑝𝑟𝑜𝑝
𝛿𝑟
𝛿𝑥
𝐾𝑝𝑟𝑜𝑝
𝛿𝑠
𝛿𝑟 )

 
 
 
 

+ 𝜍𝑘, 
(41) 

 

where C and D result from the matrix Jacobi in the linearization process, and 𝜍𝑘 is a noise system 
generated by Gaussian distribution with mean 0 and covariance Q at the time-k. 

2. Observation Model 

The observation data used in this estimation are 𝑢, 𝑣, 𝑤, and 𝑟. 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝜉𝑘 , 

 𝑧𝑘 = (

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

)

(

  
 

𝑢𝑘
𝑣𝑘
𝑤𝑘
𝑝𝑘
𝑞𝑘
𝑟𝑘 )

  
 
+ 𝜉𝑘 , 

        (42) 
 
 
 
 

(43) 
 

where 𝜉𝑘  is a noise observation following a normal distribution with mean 0 and covariance  R at 
the time-k. 

3. Initialization 

4. We give an initial value for: 
 𝑥0 = 𝑥0,       (44) 

 �̂�0 = 𝑃𝑥0 .      (45) 

5. Prediction Step 
𝑥�̅�+1 = (𝐶∆𝑡 + 1)𝑥𝑘 + 𝐷∆𝑡𝑦, (46) 
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𝑃�̅�+1 = (𝐶∆𝑡)𝑃𝑘(𝐶∆𝑡)
𝑇 + 𝑄𝑘 , (47) 

where 𝑥�̅�−1 is an 𝑛 × 1 matrix, 𝑃�̅�+1 and 𝑄𝑘 are a diagonal 𝑛 × 𝑛 matrix. 

6. Correction Step  
Kalman Gain: 

𝐾𝑘+1 = 𝑃�̅�+1𝐻𝑘+1
𝑇 (𝐻𝑘+1 + 1𝑃�̅�+1𝐻𝑘+1

𝑇 + 𝑅𝑘+1)
−1. (48) 

Estimation update: 
𝑥𝑘+1 = 𝑥�̅�+1 + 𝐾𝑘+1(𝑧𝑘 − 𝐻𝑥𝑘+1).  (49) 

�̂�𝑘+1 is the result of the AUV position estimation. Update of error covariance: 

𝑃𝑘+1 = (𝐼 − 𝐾𝑘+1𝐻𝑘+1)𝑃𝑘+1
− ,  (50) 

where 𝐾𝑘 is an 𝑛 × 𝑚 matrix, 𝑅𝑘  is an 𝑚 ×𝑚 matrix, 𝑧𝑘 is an 𝑚 × 1 matrix, 𝐻𝑘  is an 𝑚 × 𝑛  matrix, 

�̂�𝑘+1 is an 𝑛 × 1 matrix, I is an identity matrix.  

The next step is a transformation of AUV by using equation (8) – (11). 
 
3.2 AUV Position Estimation using ENKF and FKF 

3.2.1 The Ensemble Kalman Filter (EnKF) 

Evensen first constructed the Ensemble Kalman Filter (EnKF) method by generating or using 
several ensembles to estimate the error covariance at the prediction step [17]. It is one of the data 
assimilation methods widely used to estimate various problems in the nonlinear form. It is solved by 
a nonlinear model dynamical system and ample state space. Table 4 summarizes the EnKF algorithm 
for AUV position estimation. The AUV estimation using EnKF is implemented for the nonlinear 
equations of AUV's motion in equation (19) without the linearization process. That equations are the 

system model of 𝑥𝑘+1 that is estimated using the EnKF algorithm. From the Kalman Filter 
algorithm, we get an estimation in the correction step as the result of estimation is 𝑥𝑘. 

 
3.2.2 The Fuzzy Kalman Filter 

Fuzzy Kalman Filter is an algorithm for estimation using fuzzy set and Kalman Filter method 
[12]. From the linearization of state-space formation in equation (38), equation 𝑥𝑘+1 =
 (𝐶∆𝑡 + 1)𝑥𝑘 + 𝐷∆𝑡𝑦 is obtained, where the variable is used to be implemented in the Fuzzy 
Kalman Filter algorithm. The Fuzzy Kalman Filter steps contain a Fuzzification, Fuzzy Logic Rule 
Base, Defuzzification, and The Fuzzy Kalman Filter (FKF) algorithm [18]. The algorithms for 
estimation are described as follows[4]. 

1. Linearization and Discretization 
The first step in the Fuzzy Kalman Filter is a linearization for the nonlinear model of the 
AUV motion. The linearization results are performed using the Jacobian method or Taylor 
series in equation (29). The next step is discretization. The discretization results are shown 
in equation ( 34) – (38). 
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Table 4. The EnKF Algorithm [1]. 

 
1. System model  

𝑥𝑘+1  =  𝑓 (𝑥𝑘 , 𝑢𝑘)  + 𝜍𝑘. 
Observation model 

𝑧𝑘  =  𝐻𝑘𝑥𝑘  + 𝜉𝑘, 

𝜍𝑘 ∼ 𝑁 (0, 𝑄𝑘), 𝜉𝑘 ∼ 𝑁 (0, 𝑅𝑘), 
where 

𝑥𝑘      : variable state at the time- 𝑘, 
𝑓 (𝑥𝑘 , 𝑢𝑘): the non-linear equations, 

𝜍𝑘 , 𝜉𝑘: the noise of system with mean=0 and covariance = 𝑄𝑘 , 𝑅𝑘 , respectively, 

𝑧𝑘   : observation variable, 

𝐻𝑘  : observation matrix. 
2. Initialization 

Generate the n-ensembles of initial estimation 𝑥0,1 = [𝑥0,1 , 𝑥0,2 , 𝑥0,3 , …… 𝑥0,𝑛  ]. 

With  𝑥0,𝑖 ~𝑁(�̅�0, 𝑃0) and 𝑃0  is initial covariance. 

Mean of the initial estimation which generated: 𝑥0  = 
1

𝑛
∑ 𝑥𝑁
𝑖=1 0,1

. 

 
3. The Prediction Step 

𝑥�̅�,𝑖 = 𝑓(𝑥𝑘−1,𝑖 , 𝑢𝑘−1) + 𝑤𝐾,𝐼, 

with 𝑤𝑘,𝑖~𝑁(0, 𝑄𝑘 ) is the noise system. 

Mean: 𝑥�̅� = 
1

𝑛
 ∑ 𝑥�̅�,𝑖
𝑁
𝑖=1 . 

Covariance of the Error: 𝑃�̅� = 
1

𝑛−1
 ∑ (𝑥�̅�,𝑖 − 𝑥�̅�)
𝑁
𝑖=1 (𝑥�̅�,𝑖 − 𝑥�̅�)

𝑇. 

4. The Correction Step 

𝑧𝑘+1 = 𝑧𝑘 + 𝑣𝑘,𝑖 with 𝑣𝑘,𝑖~𝑁(0, 𝑅𝑘). 
Kalman Gain: 𝐾𝑘 = 𝑃�̅�𝐻

𝑇(𝐻𝑃�̅�𝐻
𝑇 + 𝑅𝑘)

−1. 

Update of error covariance: 𝑃𝑘+1 = (𝐼 − 𝐾𝑘+1𝐻𝑘+1)𝑃�̅�+1. 

Estimation correction  𝑥𝑘,𝑖 = 𝑥𝑘,𝑖 + 𝐾𝑘(𝑧𝑘,𝑖 − 𝐻𝑥�̅�,𝑖). 

Mean: 𝑥𝑘 =
1

𝑛
 ∑ 𝑥𝑘,𝑖
𝑁
𝑖=1  with 𝑃𝑘=[1 − 𝐾𝑘𝐻]𝑃�̅�. 

 
 

2. Fuzzification 
Fuzzification is a step to change a crisp form of input to be fuzzy. Variable 𝑥𝑘+1 from 
equation (38) is changed as a membership function in fuzzy form. 

𝑥 ∈  [𝑥−, 𝑥+] (51) 
  

a. The membership function when the velocity is decreasingly to be minimum 

𝜇𝑥 =   {

1, when 𝑥 <  𝑥−;
𝑥 − 𝑥−

𝑥+ − 𝑥−
when 𝑥− ≤ 𝑥 ≤ 𝑥+

0, when 𝑥+ < 𝑥 .

; (52) 

b. The membership function when the velocity is increasingly to be maximum 

𝜇𝑥 = {

1, when 𝑥 <  𝑥+;
𝑥+ − 𝑥

𝑥+ − 𝑥−
when 𝑥− ≤ 𝑥 ≤ 𝑥+

0, when 𝑥− < 𝑥.

 ;     

 
 

(53)  
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3. Fuzzy Logic Rule Base 
The rule base IF-THEN fuzzy logic is below:  

Rulei ∶  IF c is Ci then 𝑥𝑘+1
𝑖 = (𝐶𝑖Δ𝑡 + 1)𝑥𝑘 + 𝐷Δ𝑡𝑦, 

where, 

“c is Ci” stands for “c belongs to the interval C and has a membership value 𝜇𝐶(𝑐)". 
Or 
c: u−, u+, v− , v+, w−,w+, p−, p+, q− , q+, r−, r+, 
0: Initial value for minimum velocity, 
1: Initial value for maximum velocity, 
Ci: 𝜇𝑐(𝑐)𝑐. 
The AUV motion has six variables: u, v, w, p, q, and r. After applying the Fuzzy Logic Rule Base, 
the state variables are 2n or 26 = 64. 

4. The Fuzzy Kalman Filter 
The equation system of AUV motion is 𝑥𝑘+1 = (𝐶Δ𝑡 + 1)𝑥𝑘 +𝐷Δ𝑡𝑦. Meanwhile, matrix C in the 
Fuzzy Kalman Filter Algorithm is transformed in Ci, derived from the Fuzzy Logic Rule Base. The 
equation is then implemented in the algorithm in Table 5. From the algorithm, we get an estimation 
correction below as the estimation result. 

𝑥�̅�+1 = 𝑥�̅�+1 +𝐾𝑘+1(𝑍𝑘+1 −𝐻𝑥�̅�+1).         (54) 
 

Table 5. The FKF Algorithm. 

 
1. System Model 

𝑥𝑘+1 = (𝐶𝑘
𝑖Δ𝑡 + 1)𝑥𝑘 +𝐷Δ𝑡𝑦 + 𝜍𝑘 

Observation Model 

𝑍𝑘 = 𝐻𝑘𝑥𝑘 + 𝜍𝑘 
𝜍𝑘~𝑁(0,𝑄𝑘), 𝜍𝑘~𝑁(𝑂,𝑅𝑘) 

2. Initialization 

𝑥(0) = 𝑥0 ;   𝑃(0) = 𝑃0  
3. The Prediction Step 

𝑥�̅�+1 = (𝐶𝑘
𝑖∆𝑡 + 1)𝑥𝑘 + 𝐷∆𝑡𝑦 

𝑃�̅�+1 = 𝐶𝑘
𝑖𝑃𝑘(𝐶𝑘

𝑖 )𝑇 +𝑄 
4. The Correction Step 

𝐾𝑘+1=𝑃�̅�+1𝐻𝑘+1
𝑇 (𝐻𝑘+1𝑃�̅�+1𝐻𝑘+1

𝑇 +𝑅𝑘+1
𝑇 )-1 

The result estimation: 

𝑥�̅�+1 = 𝑥�̅�+1 +𝐾𝑘+1(𝑍𝑘+1 − 𝐻𝑥�̅�+1)  
Error covariance: 𝑃𝑘+1 = (𝐼 − 𝐾𝑘+1𝐻𝑘+1)𝑃�̅�+1 

 
5. Defuzzification 

The estimation result from equation (54) is fuzzy from �̂��̅�+1. We need to transform to be crisp 
by using Defuzzification. The final result for Eq. (54) is calculated by using a weighted average 
formula, 

𝑥𝑘+1 = 
𝜌1𝑥𝑘+1

1 +𝜌2𝑥𝑘+1
2 +𝜌3𝑥𝑘+1

3 +⋯+𝜌64𝑥𝑘+1
64

𝜌1+ 𝜌2+𝜌3+⋯+𝜌64
, 

      
(55) 

 

where 𝜌𝑖 = 𝜇𝐶
𝑖 (𝑐) represent the weight. 
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Finally, we get the result of AUV’s velocity estimation of AUV. Afterward, we need to transform 
the result estimation of velocity in the position of AUV using equation (8) – (11). 
 

4. RESULTS AND DISCUSSIONS 

This section shows the AUV position estimation computer simulations comparing KF, FKF, and 
EnKF algorithms in the two dimensions. The results explain the trajectory of AUV in the x, y, and z-
axis. The nonlinear model of AUV motion is derived as the state variable in the estimation. We use 
the linear model system as the state variable for Kalman Filter and Fuzzy Kalman Filter methods, so 
we need to linearize the nonlinear model into a linear form. On the other hand, the state variable of 
the Ensemble Kalman Filter uses the nonlinear model without a linearization. The difference between 
Kalman Filter and Fuzzy Kalman Filter is based on the state space of each method, but the Filter 
algorithm is the same. The state variable of the Kalman Filter is a linear model of AUV motion from 
a linearization. At the same time, the state variable of the Fuzzy Kalman Filter is a linear form that is 
applied a fuzzy step before. After getting a state space from each Filter, we use the estimation 
algorithm 

Firstly, we derive the trajectory of AUV, which is an actual number of estimations. This research 
has three trajectories: diving, turning, and straight trajectory. We give a diving trajectory as the 
estimated path in the first case. The path is given to the X-axis and Z-axis by assuming that the AUV 
position is the same as the Y-axis or the sway is constant. The given path is in the first 20 iterations 
made in a straight state, and then the path's slope changes gradually in the next iteration. The motion, 
in this case, tends to turn right with the depth of AUV constantly evolving in the deeper direction, 
which is then the AUV motion tends to be straight again. That turn is given by changing the slope 
gradually every iteration. The second and third cases of the trajectory are a turning and a straight path. 
The paths contain the X-axis and the Y-axis assuming the exact height of the AUV position, so the 
heave motion is considered the same and not changing. These trajectories are in Figure 3 – 5.  

The rudder is 5o, and the angle is 5o with the change of time ∆t = 0.001. The initial value are 
𝑥(0) = 0 m, 𝑦(0) = 0 m and 𝑧(0) = 0 m, 𝑢(0) = 0.1 m/s, 𝑣(0) = 0.1 m/s, 𝑤(0) = 0.1 m/s,        
𝑝(0) = 0.1 rad/s,  𝑞(0) = 0.1 rad/s,  and  𝑟(0) = 0.1 rad/s with the covariance matrix is 10−6. The 
RMSE of each method measures the comparison accuracy. 

 
4.1. Comparison Estimation 

The estimation results are shown in Figures 6-8. We can compare the position estimation with 
the actual trajectories from these figures. The accuracy rate of each method is shown in Table 6-8, 
calculated using the RMSE. The RMSE calculates the error of each position estimation by comparing 
the position of the trajectory with the estimated result (𝑒) from the starting point to the endpoint. The 
RMSE has been used to measure the performance of each algorithm to estimate the given trajectories 
using the following formula [19]. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑒𝑖

2𝑛
𝑖=1  .                                                                   (56) 
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Figure 3. Turning trajectory. 

 

 
Figure 4. Diving trajectory. 

 

 
Figure 5. Straight trajectory. 
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Figure 6. Estimation of trajectory 1. 

 
We can see the estimation result of the first trajectory in Figure 6. It shows the EnKF, FKF, and 

KF estimations are almost the same as the actual trajectory. We can see the accuracy comparison of 
each method from RMSE in Table 6. The EnKF has a more accurate estimation in the X position 
than estimation from FKF and KF. On the other hand, the FKF and KF give similar error/RMSE. It 
is shown from Figure 7 that the path estimation for both KF and FKF are almost the same. The error 
margin between KF and FKF is 3 × 10−3 for the X position, 8 × 10−6 for the Y position, and             

2 × 10−6 for the angle. Their errors are almost the same because the algorithm of FKF is built from 
the Kalman Filter algorithm with fuzzy modification in the state space for FKF.  
 

Table 6. The RMSE of the first trajectory estimation 

Method X Position (m) Y Position (m) Angle (rad) 

EnKF 0.040570 0.008348 0.002545 
FKF 0.044340 0.003524 0.000663 
KF 0.044343 0.003516 0.000661 

 
The error for the second trajectory is shown in Table 7. The best estimation for X position and angle 
is from the FKF and KF methods, but the best estimate for Z position is from the FKF method.  

 
Figure 7. The estimation of trajectory 2 

 

Z (meter) 
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Table 7. The RMSE of the second trajectory estimation 

Method X Position (m) Z Position (m) Angle (rad) 

EnKF 0.098755 0.009732 0.043939 
FKF 0.032415 0.003101 0.002848 
KF 0.032415 0.015067 0.002849 

 
The third trajectory is a straight line. The best estimation for this trajectory is from the FKF and KF 
methods. We can see the difference error between KF and FKF is from the angle estimation. For the 
explanation that KF and FKF give the best estimate for the third trajectory because the straight 
trajectory given is a linear form, and the state space of KF and FKF is linear. 

 

Figure 8. Estimation of trajectory 3. 

 
Table 8. The RMSE of the third trajectory estimation. 

Method X Position (m) Y Position (m) Angle (rad) 

EnKF 0.018777 0.070146 0.010562 
FKF 0.001888 0.001736 0.00005 
KF 0.001888 0.001736 0.000000 

The research from Ngatini et al., 2017 explained the AUV estimation comparison between 
Ensemble Kalman Filter (EnKF) and Fuzzy Kalman Filter (FKF) with the dynamical system of AUV 
as the trajectory. That estimation result indicated that the Ensemble Kalman Filter has a better 
estimation than the FKF. The EnKF was reported to give the best estimation because the state space 
in EnKF was the dynamical system of the AUV equation without any linearization. In this research, 
we consider different trajectories built not from the dynamical system of AUV but form our path 
representing the diving, turning, and straight path. The final results show that the FKF and KF 
estimate the first trajectory best than the EnKF. The best estimation for the second trajectory is given 
by the FKF method. And the KF estimation provides the best estimation for the third trajectory. It 
means that different methods give the best estimate of every trajectory. 
 
5. CONCLUSIONS 

The Kalman Filter (KF), Fuzzy Kalman Filter (FKF), and Ensemble Kalman Filter (EnKF) give 
the estimation of the results of AUV under the specified trajectory. The estimated trajectories are the 
diving, straight, and turning paths which are actual trajectories. The estimation comparison is based 
on the simulation and the RMSE. The first trajectory estimation shows that the KF method gives the 
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best result for the Y position and Angle of AUV motion. The RMSE of KF for Y Position and Angle 
has the slightest error, 0.0035 m and 0.0006 rad, respectively. 

Meanwhile, the smallest RMSE of X position is given by the EnKF method, i.e., 0.04 m. The 
estimation for the second trajectory shows FKF provides the smallest error for X position, Z position, 
and Angle, 0.032 m, 0.003 m, and 0.003 rad, respectively. The estimation for the last trajectory shows 
Kalman Filter gives the best estimate with an error of 0.002 m for X-position, 0.00174 m for Y-
position, and less from 5x10−5 rad for Angle. Every trajectory has a different best method for 
estimation. Hence, in this case, the best estimate is given by other estimation methods. Fuzzy Kalman 
Filter gives the best estimation result for the first trajectory (Y-position and angle) and the second 
trajectory. Ensemble Kalman Filter gives the best estimation result for the X-position in the first 
trajectory. At the same time, Kalman Filter gives the best estimation result for the third trajectory. 
Future research can be developed using other data assimilation methods to make the estimation more 
accurate. 
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