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Abstract 
In this paper, we investigate the numerical results between Implicit and Crank-Nicolson method for 
Laplace equation. Based on the numerical results obtained, we get the conclusion that the absolute error 
of Crank-Nicolson method is smaller than the absolute error of Implicit method for uniform and non-
uniform grids which both refer to the analytical solution of Laplace equation obtained by separable 
variable method. 
Keywords: Crank-Nicolson; Implicit; Laplace equation; separable variable method; uniform and non-
uniform grids. 
 

Abstrak 
Dalam makalah ini, kami menyelidiki hasil numerik antara etode Implisit dan Crank-Nicolson untuk persamaan 
Laplace. Berdasarkan hasil numerik yang diperoleh, kita mendapatkan kesimpulan bahwa kesalahan absolut metode 
Crank-Nicolson lebih kecil daripada kesalahan absolut metode Implisit untuk grid seragam dan tak-seragam yang 
keduanya mengacu pada solusi analitik persamaan Laplace yang diperoleh dengan metode separable. 
Kata kunci: Crank-Nicolson; Implisit; persamaan Laplace; metode variable terpisah; grid seragam dan tak-
seragam. 

 
 

1. INTRODUCTION 

All Mathematics was branch of science having the important role to solve the problem for many 

fields. The real phenomenon will be represented into the mathematical model that can be solved into 

analytical or numerical forms. In differential equations, mathematical models are divided into ordinary 

differential and partial differential equations.  

In this research, the partial differential equations are studied to find the analytical solutions and 
numerical solutions. Many mathematical models are included into the category of partial differential 
equations. Laplace equation is one of this case where the second-order partial differential equation 
was discovered by a French mathematician and astronomer Pierre-Simon Laplace (1749-1827). In 
mathematics, Laplace equation is often written as 𝛥𝜙 = 0 where 𝛥 is Laplace operator or Laplacian 
and 𝜙 is a scalar function. Laplace equation has been widely used for many problems of 
electromagnetism, astronomy, and fluid dynamic, because they can be used to describe the behavior 
of electric, gravitational, and fluid potential. The analytical solution of Laplace equation can be 
established by applying the Separation Variable Method (SVM) and Fourier series. However, it needs 
much time to find the analytical solution with the boundary conditions given. For that reason, there 
are some numerical methods which can be used to solve numerically Laplace equation. 

The last studies of numerical solutions for Laplace equation were studied by Marchi, etc. 
employing the Richardson extrapolation repeated for 2D Laplace equation [1], which is able to make 
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the discretization error smaller. Rangogni [2] applied the boundary element method to the generalized 
Laplace equation. The study stated that the generalized Laplace equation can be overcame by 
employing the coupling boundary element method and perturbation method. Moreover, Rangogni 
and Occhi [3] establish the numerical results for the Laplace equation generalized using boundary 
element method. The procedure is applied to solve numerically three test problems of analytical 
solutions. Wei, etc. [4] applied new method of regularization according to the finite dimension of 
subspace. An appropriate choice was given to regularize the parameter and to give assumption of a-
priori bound. A new a posteriori Fourier method was proposed to Laplace equation with 
nonhomogeneous Neumann which was studied by Fu, etc. [5]. Shojaei, etc. [6] studied the Laplace 
equation by using geometrical transformation and graph products. 

Moreover, sometimes the numerical computations became very difficult to be established because 
there is no an a priori on the solution. It needs the regularization technique to get the stable 
approximation solution. Then, the various numerical methods were proposed to handle the ill-
posedness problem, such as quasi-reversibility [7] [8] [9] [10], conjugate gradient [11], Tikhonov 
regularization [12] and finite difference method [13] [14], regularization of Lavrentiev [15], methods 
of moment [16] [11] [17], method of energy regularization [18]. 

Based on the last studies, we use Crank-Nicolson and Implicit method for Laplace equation, and 
using Thomas algorithm to establish the unknown values. The numerical results are then compared 
to analytical solution which is solved using separation of variable method. Moreover the rest of this 
paper consists of some Section. In Section 2, we discuss the discretization for the numerical method 
of Crank-Nicolson and Implicit. Then we apply the Thomas algorithm to find the unknown values. 
Section 3, we establish the numerical results and compare the results with the analytical solution. In 
this section, we use some various grid 𝑁𝑥 × 𝑁𝑦 which is not necessary same for those two grid of 𝑁𝑥 

and 𝑁𝑦. 

2. DISCRETIZATION OF MATHEMATICAL MODEL 

Given the following Laplace equation 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0                                                                          (1) 

with the boundary conditions 

𝑢(𝑥 = 0, 𝑦) = 0,    𝑢(𝑥 = 1, 𝑦) = 0

𝑢(𝑥, 𝑦 = 0) = 0,    𝑢(𝑥, 𝑦 = 1) = 𝑓(𝑥) = 𝑥(1 − 𝑥) sin(𝑥)
                          (2) 

We further apply the Implicit method to (1), obtained 

𝜕2𝑢

𝜕𝑥2
=

𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

𝛥𝑥2
                                                           (3) 

𝜕2𝑢

𝜕𝑦2
=

𝑢𝑖,𝑗−1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗+1

𝛥𝑦2
                                                           (4) 

where the positions for each 𝑢 with respect to 𝑖 and 𝑗 can be shown the following stencil of Implicit 
method.  
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Figure 1. Stencil of Implicit method 

 

Based on Figure 1, we use central difference for second derivate in space, where index 𝑖 represents 

the axis-𝑥 and index 𝑗 represents the axis-𝑦. Moreover, 𝑢(𝑖, 𝑗) is the projection result at the axis-𝑧 of 

index (𝑖, 𝑗) on the plane-𝑥𝑦. Then, by combining (3) and (4), we have 

(𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗)𝑟 + (𝑢𝑖,𝑗−1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗+1) = 0                                (5) 

where 𝑟 = (
𝛥𝑦

𝛥𝑥
)
2

. 

Rearranging (5) to get 

−𝑟𝑢𝑖−1,𝑗 − 𝑟𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗−1 − 𝑢𝑖,𝑗+1 + 2(1 + 𝑟)𝑢𝑖,𝑗 = 0                                (6) 

To establish the numerical solution of Implicit method for the Laplace equation, we first bring 

the discretization (6) into the tridiagonal matrix with index 𝑖 = 1,2, . . . , 𝑁𝑥 for axis-𝑥 and 𝑗 = 1,2, . . . , 𝑁𝑦 

for axis-𝑦. Based on the iteration result for discretization (6) and boundary conditions (2), we have 
the following block matrix system 

𝑨𝑿 = 𝑩                                                                             (7) 
where 

𝑨 =

[
 
 
 
 
𝑨𝟏 𝑪𝟏 𝟎 ⋯ 𝟎
𝑫𝟏 𝑨𝟐 𝑪𝟐 ⋯ 𝟎
𝟎 𝑫𝟐 ⋱ ⋱ 𝟎
⋮ ⋮ ⋱ 𝑨𝒏−𝟏 𝑪𝒏

𝟎 𝟎 ⋯ 𝑫𝒏 𝑨𝒏]
 
 
 
 

, 𝑩 =

[
 
 
 
 

𝑩𝟏

𝑩𝟐

⋮
𝑩𝒏−𝟏

𝑩𝒏 ]
 
 
 
 

, 𝑿 =

[
 
 
 
 

𝑿𝟏

𝑿𝟐

⋮
𝑿𝒏−𝟏

𝑿𝒏 ]
 
 
 
 

                          (8) 

𝑨𝒊 =

[
 
 
 
 
2(1 + 𝑟) −𝑟 0 ⋯ 0

−𝑟 2(1 + 𝑟) −𝑟 ⋯ 0
0 −𝑟 ⋱ ⋱ 0
⋮ ⋮ ⋱ 2(1 + 𝑟) −𝑟
0 0 ⋯ −𝑟 2(1 + 𝑟)]

 
 
 
 

,                                                          

𝑪𝒊 = 𝑫𝒊 =

[
 
 
 
 
−1 0 0 ⋯ 0
0 −1 0 ⋯ 0
0 0 ⋱ ⋱ 0
⋮ ⋮ ⋱ −1 0
0 0 ⋯ 0 −1]
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𝑩𝟏 =

[
 
 
 
 

𝑟𝑢0,1 + 𝑢1,0

𝑢2,0

⋮
𝑢𝑁𝑥−1,0

𝑟𝑢𝑁𝑥+1,1 + 𝑢𝑁𝑥,0]
 
 
 
 

, 𝑩𝒏 =

[
 
 
 
 
 

𝑟𝑢0,𝑁𝑦
+ 𝑢1,𝑁𝑦+1

𝑢2,𝑁𝑦+1

⋮
𝑢𝑁𝑥−1,𝑁𝑦+1

𝑟𝑢𝑁𝑥+1,𝑁𝑦
+ 𝑢𝑁𝑥,𝑁𝑦+1]

 
 
 
 
 

 ,  𝑩𝒒 =

[
 
 
 
 

𝑟𝑢0,𝑝

0
⋮
0

𝑟𝑢𝑁𝑥+1,𝑝]
 
 
 
 

                  (9) 

for 𝟐 ≤ 𝒑 ≤ 𝑵𝒚 − 𝟏 and 𝟐 ≤ 𝒒 ≤ 𝒏 − 𝟏.  

To find the unknown values 𝑿 in (7), we can use the Thomas algorithm. By using Gauss to 

eliminate the block matrix 𝑨, 𝑩, 𝑿 in (8) first, one has 

[
 
 
 
 
𝑨𝟏

∗ 𝑪𝟏 𝟎 ⋯ 𝟎

𝟎 𝑨𝟐
∗ 𝑪𝟐 ⋯ 𝟎

𝟎 𝟎 ⋱ ⋱ 𝟎
⋮ ⋮ ⋱ 𝑨𝒏−𝟏

∗ 𝑪𝒏

𝟎 𝟎 ⋯ 𝟎 𝑨𝒏
∗ ]
 
 
 
 

[
 
 
 
 

𝑿𝟏

𝑿𝟐

⋮
𝑿𝒏−𝟏

𝑿𝒏 ]
 
 
 
 

=

[
 
 
 
 

𝑩𝟏
∗

𝑩𝟐
∗

⋮
𝑩𝒏−𝟏

∗

𝑩𝒏
∗ ]

 
 
 
 

                                        (10) 

where 
𝑨𝟏

∗ = 𝑨𝟏,   𝑩𝟏
∗ = 𝑩𝟏 

𝑨𝒊
∗ = 𝑨𝒊 − 𝑪𝒊−𝟏

𝑫𝒊

𝑨𝒊−𝟏
∗                                                            (11) 

𝑩𝒊
∗ = 𝑩𝒊 − 𝑩𝒊−𝟏

∗ 𝑫𝒊

𝑨𝒊−𝟏
∗ , 𝑓𝑜𝑟 𝒊 = 𝟐,𝟑,… , 𝒏 − 𝟏,𝒏                                            

Then, by using backward substitution for 𝑿, we have 

𝑿𝒏 =
𝑩𝒏

∗

𝑨𝒏
∗ ;  𝑿𝒌 =

𝑩𝒌
∗ − 𝑪𝒌𝑿𝒌+𝟏

𝑨𝒌
∗ , 𝑓𝑜𝑟 𝒌 = 𝒏 − 𝟏,𝒏 − 𝟐,… , 𝟐, 𝟏                       (12) 

Moreover, by applying the Crank-Nicolson method to (1), we get 

𝜕2𝑢

𝜕𝑥2
=

𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

2𝛥𝑥2
+

𝑢𝑖−1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖+1,𝑗+1

2𝛥𝑥2
                        (13) 

𝜕2𝑢

𝜕𝑦2
=

𝑢𝑖,𝑗−1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗+1

2𝛥𝑦2
+

𝑢𝑖+1,𝑗−1 − 2𝑢𝑖+1,𝑗 + 𝑢𝑖+1,𝑗+1

2𝛥𝑦2
                        (14) 

By combining (13) and (14), one has 

𝑠𝑢𝑖−1,𝑗 + 𝑠𝑢𝑖−1,𝑗+1 + 𝑢𝑖,𝑗−1 + 𝑢𝑖+1,𝑗−1 − 2(𝑠 + 1)𝑢𝑖,𝑗 + (𝑠 − 2)𝑢𝑖+1,𝑗 +

(1 − 2𝑠)𝑢𝑖,𝑗+1 + (𝑠 + 1)𝑢𝑖+1,𝑗+1 = 0
             (15) 

where 𝑠 =
𝛥𝑦2

𝛥𝑥2 and the positions for each 𝑢 with respect to 𝑖 and 𝑗 can be shown the following 

stencil of Crank-Nicolson method.  
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Figure 2. Stencil of Crank-Nicolson method 

 
Based on Figure 2, we use average of central difference for second derivate in space, where index 

𝑖 represents the axis-𝑥 and index 𝑗 represents the axis-𝑦. Moreover, 𝑢(𝑖, 𝑗) is the projection result at 

the axis-𝑧 of index (𝑖, 𝑗) on the plane-𝑥𝑦. 
Similarly, to establish the numerical solution of Crank-Nicolson method for the Laplace equation, 

we first bring the discretization result (15) into the tridiagonal matrix with index 𝑖 = 1,2, . . . , 𝑁𝑥 for 

axis-𝑥 and 𝑗 = 1,2, . . . , 𝑁𝑦 for axis-𝑦. Based on the iteration result for discretization (15) and boundary 

conditions (2), we have the following block matrix system 

𝑭𝑿 = 𝑮                                                                      (16) 
where 

𝑭 =

[
 
 
 
 
𝑭𝟏 𝑷𝟏 𝟎 ⋯ 𝟎
𝑸𝟏 𝑭𝟐 𝑷𝟐 ⋯ 𝟎
𝟎 𝑸𝟐 ⋱ ⋱ 𝟎
⋮ ⋮ ⋱ 𝑭𝒏−𝟏 𝑷𝒏

𝟎 𝟎 ⋯ 𝑸𝒏 𝑭𝒏]
 
 
 
 

, 𝑮 =

[
 
 
 
 

𝑮𝟏

𝑮𝟐

⋮
𝑮𝒏−𝟏

𝑮𝒏 ]
 
 
 
 

, 𝑿 =

[
 
 
 
 

𝑿𝟏

𝑿𝟐

⋮
𝑿𝒏−𝟏

𝑿𝒏 ]
 
 
 
 

                      (17) 

𝑭𝒊 =

[
 
 
 
 
−2(1 + 𝑠) 𝑠 − 2 0 ⋯ 0

𝑠 −2(1 + 𝑠) 𝑠 − 2 ⋯ 0
0 𝑠 ⋱ ⋱ 0
⋮ ⋮ ⋱ −2(1 + 𝑠) 𝑠 − 2
0 0 ⋯ 𝑠 −2(1 + 𝑠)]

 
 
 
 

 

𝑷𝒊 =

[
 
 
 
 
1 − 2𝑠 𝑠 + 1 0 ⋯ 0

𝑠 1 − 2𝑠 𝑠 + 1 ⋯ 0
0 𝑠 ⋱ ⋱ 0
⋮ ⋮ ⋱ 1 − 2𝑠 𝑠 + 1
0 0 ⋯ 𝑠 1 − 2𝑠]

 
 
 
 

, 𝑸𝒊 =

[
 
 
 
 
1 1 0 ⋯ 0
0 1 1 ⋯ 0
0 0 ⋱ ⋱ 0
⋮ ⋮ ⋱ 1 1
0 0 ⋯ 0 1]

 
 
 
 

        (18) 
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𝑮𝟏 =

[
 
 
 
 

−𝑠𝑢0,1 − 𝑠𝑢0,2 − 𝑢2,0

−𝑢2,0 − 𝑢3,0

⋮
−𝑢𝑁𝑥−1,0 − 𝑢𝑁𝑥,0

−(𝑠 − 2)𝑢𝑁𝑥+1,1 − 𝑢𝑁𝑥+1,0 − 𝑢𝑁𝑥,0 − 𝑢𝑁𝑥+1,0]
 
 
 
 

   

𝑮𝒏 =

[
 
 
 
 
 

−𝑠𝑢0,𝑁𝑦
− 𝑢0,𝑁𝑦+1 − (1 − 2𝑠)𝑢1,𝑁𝑦+1 − (𝑠 + 1)𝑢2,𝑁𝑦+1

−𝑠𝑢1,𝑁𝑦+1 − (1 − 2𝑠)𝑢2,𝑁𝑦+1 − (𝑠 + 1)𝑢3,𝑁𝑦+1

⋮
−𝑠𝑢𝑁𝑥−2,𝑁𝑦+1 − (1 − 2𝑠)𝑢𝑁𝑥−1,𝑁𝑦+1 − (𝑠 + 1)𝑢𝑁𝑥,𝑁𝑦+1

−𝑢𝑁𝑥+1,𝑁𝑦−1 − 𝑠𝑢𝑁𝑥−1,𝑁𝑦+1 − (𝑠 − 2)𝑢𝑁𝑥+1,𝑁𝑦
− (1 − 2𝑠)𝑢𝑁𝑥,𝑁𝑦+1 − (𝑠 + 1)𝑢𝑁𝑥+1,𝑁𝑦+1]

 
 
 
 
 

 

𝑮𝒒 =

[
 
 
 
 

−𝑠𝑢0,𝑝 − 𝑠𝑢0,𝑝+1

0
⋮
0

−𝑢𝑁𝑥+1,𝑝−1 − (𝑠 − 2)𝑢𝑁𝑥+1,𝑝 − (𝑠 + 1)𝑢𝑁𝑥+1,𝑝+1]
 
 
 
 

    

for 𝟐 ≤ 𝒑 ≤ 𝑵𝒚 − 𝟏 and 𝟐 ≤ 𝒒 ≤ 𝒏 − 𝟏.  

To find the unknown values 𝑿 in (16), we can use the Thomas algorithm. By using Gauss to 

eliminate the block matrix 𝑭, 𝑮,𝑿 in (17) first, one gets 

[
 
 
 
 
𝑭𝟏

∗ 𝑷𝟏 𝟎 ⋯ 𝟎

𝟎 𝑭𝟐
∗ 𝑷𝟐 ⋯ 𝟎

𝟎 𝟎 ⋱ ⋱ 𝟎
⋮ ⋮ ⋱ 𝑭𝒏−𝟏

∗ 𝑷𝒏

𝟎 𝟎 ⋯ 𝟎 𝑭𝒏
∗ ]
 
 
 
 

[
 
 
 
 

𝑿𝟏

𝑿𝟐

⋮
𝑿𝒏−𝟏

𝑿𝒏 ]
 
 
 
 

=

[
 
 
 
 

𝑮𝟏
∗

𝑮𝟐
∗

⋮
𝑮𝒏−𝟏

∗

𝑮𝒏
∗ ]

 
 
 
 

                                        (19) 

where 
𝑭𝟏

∗ = 𝑭𝟏,   𝑮𝟏
∗ = 𝑮𝟏  

𝑭𝒊
∗ = 𝑭𝒊 − 𝑷𝒊−𝟏

𝑸𝒊

𝑭𝒊−𝟏
∗                                                                    (20) 

𝑮𝒊
∗ = 𝑮𝒊 − 𝑮𝒊−𝟏

∗ 𝑸𝒊

𝑭𝒊−𝟏
∗ , 𝑓𝑜𝑟 𝒊 = 𝟐, 𝟑,… , 𝒏 − 𝟏, 𝒏 

Then, by using backward substitution for 𝑿, we have 

𝑿𝒏 =
𝑮𝒏

∗

𝑭𝒏
∗ ;  𝑿𝒌 =

𝑮𝒌
∗ − 𝑷𝒌𝑿𝒌+𝟏

𝑭𝒌
∗ , 𝑓𝑜𝑟 𝒌 = 𝒏 − 𝟏,𝒏 − 𝟐,… , 𝟐, 𝟏                           (21) 

 
We further present the following algorithm which represents all the processes to get the numerical 

solutions. 
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Algorithm 1. Implicit method 

Set: 𝑁𝑥 ,𝑁𝑦 and step size 𝑑𝑥, 𝑑𝑦 

Determine: 

𝑟 =  (𝑑𝑦/𝑑𝑥)^2 

% Tridiagonal block matrix 𝑨,𝑪,𝑫 

for 𝑖 = 1 to 𝑁𝑋 do 

      for 𝑗 = 1 to 𝑁𝑦 do 

           if (𝑖 = 𝑗) 
           𝑨(𝑖, 𝑗) = 2 ∗ (𝑟 + 1) 
           else 

           𝑨(𝑖, 𝑗) = 0 
           end if 

           if (𝑖 = 𝑗 + 𝑁𝑦 − 2) 

           𝑪(𝑖, 𝑗) = −𝑟 
           else 

           𝑪(𝑖, 𝑗) = 0 
           end if 

           if (𝑗 = 𝑖 + 𝑁𝑦 − 2) 

           𝑫(𝑖, 𝑗) = −𝑟 
           else 

           𝑫(𝑖, 𝑗) = 0 
           end if 
      end for 
end for 

% Boundary conditions 𝐵 

for 𝑖 = 1 to 𝑁𝑥 do 

      for 𝑗 = 1 to 𝑁𝑦 do 

      𝑩(𝑖, 𝑗) = 0;  𝑩(𝑁𝑥 , 𝑗) = 0;  𝑩(𝑖, 1) = 0;  𝑩(𝑖, 𝑁𝑦) = 𝑥(𝑖) − (1 − 𝑥(𝑖)) 

      end for 
end for 
% Final step 

for 𝑖 = 1 to 𝑁𝑥 do 

      for 𝑗 = 1 to 𝑁𝑦 do 

     𝑨∗(1,1) = 𝑨(1,1);   𝑩∗(1,1) = 𝑩(1,1) 

     𝑨∗(𝑖, 𝑗) = 𝑨(𝑖, 𝑗) − 𝑪(𝑖 − 1, 𝑗 − 1)
𝑫(𝑖,𝑗)

𝑨∗(𝑖−1,𝑗−1)
 

     𝑩∗(𝑖, 𝑗) = 𝑩(𝑖, 𝑗) − 𝑩∗(𝑖 − 1, 𝑗 − 1)
𝑫(𝑖,𝑗)

𝑨∗(𝑖−1,𝑗−1)
 

     end for 
end for 

for 𝑖 = 𝑁𝑥 − 1 down to 1 do 

     for 𝑗 = 𝑁𝑦 − 1 down to 1 do 

     𝑿(𝑁𝑥 , 𝑁𝑦) =
𝑩∗(𝑁𝑥,𝑁𝑦)

𝑨∗(𝑁𝑥,𝑁𝑦)
;   𝑿(𝑖, 𝑗) =

𝑩∗(𝑖,𝑗)−𝑪(𝑖,𝑗)𝑿(𝑖+1,𝑗+1)

𝑨∗(𝑖,𝑗)
 

     end for 
end for 

 

Algorithm 2. Crank-Nicolson method 

Set: 𝑁𝑥 ,𝑁𝑦 and step size 𝑑𝑥, 𝑑𝑦 

Determine: 

𝑟 =  (𝑑𝑦/𝑑𝑥)^2 
𝛽 = −2 ∗ (1 + 0.5 ∗ ((𝑑𝑦/𝑑𝑥)^2)) 

𝛼 = 0.5 ∗ ((𝑑𝑦/𝑑𝑥)^2) 

% Tridiagonal block matrix 𝑭,𝑷,𝑸 
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for 𝑖 = 1 to 𝑁𝑥 do 

      for 𝑗 = 1 to 𝑁𝑦 do 

           if (𝑖 = 𝑗) 
           𝑭(𝑖, 𝑗) = 𝛽 
           else 

           𝑭(𝑖, 𝑗) = 0 
           end if 

           if (𝑖 = 𝑗 + 𝑁𝑦 − 2) 

           𝑷(𝑖, 𝑗) = 𝛼 
           else 

           𝑷(𝑖, 𝑗) = 0 
           end if 

           if (𝑗 = 𝑖 + 𝑁𝑦 − 2) 

           𝑸(𝑖, 𝑗) = 𝛼 
           else 

           𝑸(𝑖, 𝑗) = 0 
           end if 
      end for 
end for 

% Boundary conditions 𝐺 

for 𝑖 = 1 to 𝑁𝑥 do 

      for 𝑗 = 1 to 𝑁𝑦 do 

      𝑮(𝑖, 𝑗) = 0;  𝑮(𝑁𝑥 , 𝑗) = 0;  𝑮(𝑖, 1) = 0; 𝑮(𝑖, 𝑁𝑦) = 𝑥(𝑖) − (1 − 𝑥(𝑖))  

      end for 
end for 
% Final step 

for 𝑖 = 1 to 𝑁𝑥 do 

      for 𝑗 = 1 to 𝑁𝑦 do 

     𝑭∗(1,1) = 𝑭(1,1);   𝑮∗(1,1) = 𝑮(1,1) 

     𝑭∗(𝑖, 𝑗) = 𝑭(𝑖, 𝑗) − 𝑷(𝑖 − 1, 𝑗 − 1)
𝑸(𝑖,𝑗)

𝑭∗(𝑖−1,𝑗−1)
 

     𝑮∗(𝑖, 𝑗) = 𝑮(𝑖, 𝑗) − 𝑮∗(𝑖 − 1, 𝑗 − 1)
𝑸(𝑖,𝑗)

𝑭∗(𝑖−1,𝑗−1)
 

     end for 
end for 

for 𝑖 = 𝑁𝑥 − 1 down to 1 do 

     for 𝑗 = 𝑁𝑦 − 1 down to 1 do 

     𝑿(𝑁𝑥 , 𝑁𝑦) =
𝑮∗(𝑁𝑥 ,𝑁𝑦)

𝑭∗(𝑁𝑥,𝑁𝑦)
;   𝑿(𝑖, 𝑗) =

𝑮∗(𝑖,𝑗)−𝑷(𝑖,𝑗)𝑿(𝑖+1,𝑗+1)

𝑭∗(𝑖,𝑗)
 

     end for 
end for 

 

3. RESULTS AND DISCUSSIONS 

We first present the following analytical solution obtained by separable variable method. 

𝑢(𝑥, 𝑦) = ∑ 𝑀𝑛

∞

𝑛=1

sin(
𝑛𝜋𝑥

𝑎
) sinh(

𝑛𝜋𝑦

𝑎
) , 𝑀𝑛 =

2

𝑎 sinh(
𝑛𝜋
𝑎 𝑏)

∫ 𝑓
𝑎

0

(𝑥)sin (
𝑛𝜋𝑦

𝑎
)        (22) 

(see Appendix for more detail of analytical solution by using SVM). Then, by using the boundary 

conditions (2) and the interval (𝑥, 𝑦) ∈ [0,𝑎] × [0, 𝑏] = [0,1] × [0,1], (22) reduces to 
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𝑢(𝑥, 𝑦) = ∑ 𝑀𝑛

∞

𝑛=1

2 sin(𝑛𝜋𝑥) sinh(𝑛𝜋𝑦)

sinh(𝑛𝜋)
                                               (23) 

where 

𝑀𝑛 = −
1

2((𝑛𝜋 − 1)3(𝑛𝜋 + 1)3)
(cos(𝜋𝑛 − 1)𝑛4𝜋4 − cos(𝜋𝑛 + 1)𝑛4𝜋4 + 2cos(𝜋𝑛 − 1)𝑛3𝜋3)

 −
1

2((𝑛𝜋 − 1)3(𝑛𝜋 + 1)3)
(−2sin(𝜋𝑛 − 1)𝑛3𝜋3 + 2cos(𝜋𝑛 + 1)𝑛3𝜋3 + 2sin(𝜋𝑛 + 1)𝑛3𝜋3)

 −
1

2((𝑛𝜋 − 1)3(𝑛𝜋 + 1)3)
(4𝑛3𝜋3 − 6sin(𝜋𝑛 − 1)𝑛2𝜋2 − 6sin(𝜋𝑛 + 1)𝑛2𝜋2)

 −
1

2((𝑛𝜋 − 1)3(𝑛𝜋 + 1)3)
(−2cos(𝜋𝑛 − 1)𝑛𝜋 − 6sin(𝜋𝑛 − 1)𝑛𝜋 − 2cos(𝜋𝑛 + 1)𝑛𝜋)

 −
1

2((𝑛𝜋 − 1)3(𝑛𝜋 + 1)3)
(6sin(𝜋𝑛 + 1)𝑛𝜋 − 4𝑛𝜋 − cos(𝜋𝑛 − 1) − 2sin(𝜋𝑛 − 1))

 −
1

2((𝑛𝜋 − 1)3(𝑛𝜋 + 1)3)
(cos(𝜋𝑛 + 1) − 2sin(𝜋𝑛 + 1))

 

Then, we can establish the following numerical results and compare for each the numerical results 
of Implicit and Crank-Nicolson method with the analytical solution (22). 

The simulation of analytical solutions (a) in Figure 3 to Figure 4 are obtained by using the iteration 

technique with grid 𝑁𝑥 × 𝑁𝑦, where this grid of 𝑁𝑥 × 𝑁𝑦 is not always necessary same. Moreover, the 

numerical results (b), (c) in Figure 3 to Figure 4 are obtained by using the finite difference method 
Implicit and Crank-Nicolson respectively. To do that, we first bring the discretization results into the 
block tridiagonal matrix. Moreover, to obtain the unknown values, we use the iteration technique of 
Thomas algorithm. Meanwhile, the absolute error (AE) values between Implicit and Crank-Nicolson 
(C-N) method which refer to analytical solution of Laplace equation are shown the table 1. 

Based on the absolute error of Implicit and Crank-Nicolson on Table 1, we can conclude that the 
absolute error of Crank-Nicolson is always smaller than the absolute error of Implicit for all grids 

𝑁𝑥 × 𝑁𝑦. Implicit method reaches the smallest absolute error of 0.0184 on the grid (𝑁𝑥 = 20,𝑁𝑦 =

10). Moreover, Crank-Nicolson method reaches the smallest absolute error of 0.0012 on the grid 
(𝑁𝑥 = 20,𝑁𝑦 = 10). 

 
Table 1. Comparison of absolute error for Implicit and Crank-Nicolson 

𝑁𝑥 𝑁𝑦 Analytical Solution 

at maximum iteration 

Implicit 

at maximum iteration 

C-N 

at maximum iteration 

AE  

Implicit 

AE  

C-N 

20 10 0.5250 0.5434 0.5261 0.0184 0.0012 

30 30 1.0397 1.0697 1.0577 0.0300 0.0180 

30 40 1.1893 1.2225 1.2128 0.0332 0.0235 

40 30 1.2058 1.2417 1.2265 0.0359 0.0207 

40 40 1.3792 1.4191 1.4063 0.0398 0.0270 
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(a) Simulation of analytical solution 𝑢(𝑥, 𝑦) 
 
 

 

 
 

 
(b) Simulation of numerical solution  

(Crank-Nicolson method) 
(c) Simulation of numerical solution  

(Implicit method) 

 
Figure 3. Simulation of analytical and numerical solutions on grid [20 × 10]. 
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(a) Simulation of analytical solution 𝑢(𝑥, 𝑦) 
 

 

  

 

(b) Simulation of numerical solution  
(Crank-Nicolson method) 

(c) Simulation of numerical solution  
(Implicit method) 

 

Figure 4. Simulation of analytical and numerical solutions on grid [30 × 30] 
 

4. CONCLUSIONS 

Based on the results in Table 1, Figure 3 to Figure 4, we can conclude that Crank-Nicolson is 
more stable than Implicit method, where these ones can be shown that the absolute error for each 
grid (uniform and non-uniform grids) of Crank-Nicolson is smaller than Implicit method. Moreover, 
it implies that Crank-Nicolson is more stable than Implicit method by achieving the smallest absolute 
error 0.0012 on the grid (𝑁𝑥 = 20,𝑁𝑦 = 10). 

A. APPENDIX (ANALYTICAL SOLUTION OF LAPLACE EQUATION) 

In this section, we will derive the analytical solution of Laplace equation by using Separation 
Variable Method (SVM). We first consider the boundary conditions as shown in (2), and present the 
following illustration in a diagram. 
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Figure 5. Diagram of the boundary conditions of Laplace equation 

 
Based on the Figure 5, one has the interval (𝑥, 𝑦) ∈ [0, 𝑎] × [0, 𝑏] = [0,1] × [0,1]. Then, we directly 

apply the SVM by substituting 𝑢(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦) to get 
 

𝜕2𝐹(𝑥)

𝜕𝑥2

1

𝐹(𝑥)
= −

𝜕2𝑢

𝜕𝑦2

1

𝐺(𝑦)
= −𝑘                                                   (𝐴1) 

which gives two ordinary differential equations 

𝜕2𝐹(𝑥)

𝜕𝑥2
+ 𝑘𝐹(𝑥) = 0                                                                  (𝐴2) 

and 
𝜕2𝐺(𝑦)

𝜕𝑦2
− 𝑘𝐺(𝑦) = 0                                                                 (𝐴3) 

 
We solve ordinary differential equations of (A2) and (A3) respectively by the standard ways, then 

one has the following solutions: 
 
(1)   The solution of (A2)  

Based on (A2), one has 

𝐹(𝑥) = 𝐴 cos √𝑘 𝑥 + 𝐵 sin√𝑘 𝑥 

 

By applying the boundary conditions in Figure 5: 𝐹(0) = 0 ⇒ 𝐴 = 0 and 𝐹(𝑎) = 𝐵 sin √𝑘 𝑥 =

0 which implies that 𝑘 = (
𝑛𝜋

𝑎
)

2

, 𝑛 ∈ ℤ. Then, we finally have the following solution of (A2) 

𝐹𝑛(𝑥) = 𝐵𝑛 sin(
𝑛𝜋

𝑎
𝑥) , 𝑛 ∈ ℤ                                                       (𝐴4) 

(2)   The solution of (A3)  

Based on (A3) and 𝑘 = (
𝑛𝜋

𝑎
)

2

, 𝑛 ∈ ℤ, one has 

 𝐺𝑛(𝑦) = 𝐴𝑛𝑒
𝑛𝜋

𝑎
𝑦 + 𝐵𝑛𝑒−

𝑛𝜋

𝑎
𝑦 , 𝑛 ∈ ℤ 

 

By applying the boundary conditions in Figure 5: 𝐺𝑛(0) = 0 ⇒ 𝐴𝑛 = −𝐵𝑛 which gives 

𝐺𝑛(𝑦) = 𝐴𝑛 (𝑒
𝑛𝜋
𝑎

𝑦 − 𝑒−
𝑛𝜋
𝑎

𝑦) , 𝑛 ∈ ℤ 

Once again, by applying 𝑒𝑎𝑦 − 𝑒−𝑎𝑦 = 2 sinh 𝑎𝑦, one has the following solution of (A3) 



Mohammad Ghani 
 

134 | InPrime: Indonesian Journal of Pure and Applied Mathematics 
 

𝐺𝑛(𝑦) = 𝐴𝑛 sinh(
𝑛𝜋

𝑎
𝑦) , 𝑛 ∈ ℤ                                                        (𝐴5) 

We combine the solution 𝐹𝑛(𝑥) and 𝐺𝑛(𝑦), then one has 

𝑢(𝑥, 𝑦) = ∑ 𝑀𝑛

∞

𝑛=1

sinh(
𝑛𝜋

𝑎
𝑦)sin (

𝑛𝜋

𝑎
𝑥)                                              (𝐴6) 

where 𝑀𝑛 = 𝐴𝑛 ∙ 𝐵𝑛. By substituting the boundary conditions at the top 𝑢(𝑥, 𝑦 = 𝑏) = 𝑓(𝑥) to 
(A6), one has  

𝑢(𝑥, 𝑏) = ∑ 𝑀𝑛

∞

𝑛=1

sinh(
𝑛𝜋

𝑎
𝑏) sin (

𝑛𝜋

𝑎
𝑥) = 𝑓(𝑥) 

Since 𝑀𝑛 sinh (
𝑛𝜋

𝑎
𝑏) = 𝐶𝑛 is the constant, which gives 

∑ 𝐶𝑛 sin (
𝑛𝜋

𝑎
𝑥)

∞

𝑛=1 

= 𝑓(𝑥) 

By employing the following Fourier series for 𝐶𝑛 

𝐶𝑛 =
2

𝑎
∫ 𝑓(𝑥) sin(

𝑛𝜋

𝑎
𝑥)

𝑎

0

𝑑𝑥 = 𝑀𝑛 sinh(
𝑛𝜋

𝑎
𝑏) 

one has 

𝑀𝑛 =
2

𝑎 sinh(
𝑛𝜋
𝑎

𝑏)
∫ 𝑓(𝑥) sin (

𝑛𝜋

𝑎
𝑥)

𝑎

0

𝑑𝑥                                             (𝐴7) 

Finally, we can derive the following general solution of Laplace equation by using Separation 
Variable Method 

𝑢(𝑥, 𝑦) = ∑ (
2

𝑎 sinh(
𝑛𝜋
𝑎

𝑏)
∫ 𝑓(𝑥) sin (

𝑛𝜋

𝑎
𝑥)

𝑎

0

𝑑𝑥)

∞

𝑛=1

sinh(
𝑛𝜋

𝑎
𝑦)sin (

𝑛𝜋

𝑎
𝑥)            (𝐴8) 
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