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Abstract  
Floods, which cause a lot of damage, are a natural phenomenon that often occurs during the rainy 

season. Flood occurs because the discharge entering the channel exceeds the channel capacity. If the 

discharge data in the upstream area that will enter the channel is known, we can determine the flow 

behavior in the downstream area using a mathematical model. In this study, we proposed using 

simplified Saint Venant equations to simulate the flow routing in a prismatic channel with a rectangular 

section. This model is solved numerically using the finite difference method. Here, the numerical 

scheme used succeeds in simulating the flow behavior in the channel due to the discharge entering it. 

The simulation results show that the discharge entering the channel will propagate downstream with 

decreasing discharge quantity. Information on the amount of discharge at locations along the channel 

is useful as supporting data for flood control and prevention systems that will be conveyed to residents 

along the channel. 

Keywords: flood routing; prismatic channel; Saint Venant Equations; finite difference method. 

 

Abstrak 
Banjir yang menimbulkan banyak kerusakan merupakan fenomena alam yang sering terjadi pada musim hujan. Banjir 

terjadi karena debit yang masuk ke dalam kanal melebihi kapasitas kanalnya. Jika data debit di daerah hulu yang 

akan masuk ke dalam kanal diketahui, maka kita dapat menentukan perilaku aliran di daerah hilir dengan 

menggunakan model matematika. Dalam studi ini, kami mengusulkan untuk menggunakan persamaan Saint Venant 

yang disederhanakan untuk mensimulasikan penelusuran aliran pada saluran prismatik dengan penampang persegi 

panjang. Model ini diselesaikan secara numerik dengan menggunakan metode beda hingga. Di sini, skema numerik yang 

digunakan berhasil mensimulasikan perilaku aliran pada saluran akibat debit yang masuk. Hasil simulasi 

menunjukkan bahwa debit yang masuk ke saluran akan merambat ke hilir dengan kuantitas debit yang semakin 

berkurang. Informasi jumlah debit di lokasi sepanjang saluran ini berguna sebagai data pendukung pada sistem 

pengendalian dan pencegahan banjir yang akan disampaikan kepada penduduk di sepanjang kanal. 

Kata kunci: penelusuran banjir; saluran prismatik; persamaan Saint Venant; metode beda hingga. 

 

 

1. INTRODUCTION 

Floods can cause damage to agricultural areas, industrial areas, and cities. Floods also disrupt human 

activities, damage facilities and infrastructure, loss of property and even human lives. In general, flooding occurs 

because the channel is unable to accommodate the discharge entering the channel. To prevent damage from 

flooding, water structures such as embankments, weirs, etc., are usually constructed at several locations along 

the channel. To design a water structure, information is always required about the amount of discharge at the 
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location where the water structure will be erected. Information on the amount of discharge is essential to 

determine the strength of the water structure to be built so that it does not break. 

Many ways or methods can determine the amount of discharge at the required locations along 

the channel. In this study, we propose using a mathematical model that can describe the flow behavior 

in the channel in the form of the Saint Venant equations. The Saint Venant equations are composed 

of two hyperbolic partial differential equations: the continuity and momentum equations. This model 

is a nonlinear system of equations, and the analytical solution has not been found. Therefore, in 

practice, some researchers simplify the Saint Venant equations by ignoring part of the terms from the 

momentum equation to be excluded from the modeling. Thus, various research models emerged, 

including the kinematic model [1], [2], [3], the diffusion model [4], and the Keskin model [5], [6]. 

Meanwhile, other researchers developed certain numerical methods for solving Saint Venant's 

equations without simplification. Among the numerical methods used include the characteristic 

method [7], [8], the finite difference method [9], [10], [11], the finite element method [12], [13], the 

finite volume method [14], [15], and the finite volume method on the grid staggered [16], [17]. 

Using the complete Saint Venant equations without simplification to describe unsteady flow 

behavior in an open channel will give reliable results if the underlying assumptions are fulfilled. 

However, this model requires a rather complex solution method and a relatively large amount of data 

characterizing the channel shape and flow conditions [18]. For these reasons, we proposed using 

simplified Saint Venant equations to obtain a model that requires less input information, a simpler 

numerical method, and only applies to prismatic channel shapes. 

In this research, the simulation of flow routing in the prismatic channel was carried out using the 

Saint Venant equations with a simplification called the Keskin model. Unlike other simplification 

models, the simulation results from the Keskin model have high compatibility with the simulation 

results from the model without simplification [5], do not require a lot of computation time, and can 

be solved by relatively simple numerical methods.  

 
2. METHOD 

2.1. Governing Equation  
The mathematical model that can be used to describe the flow behavior in a channel is the Saint Venant 

equations [7]. This equation is composed of two simultaneous equations, namely the continuity equation and 
the momentum equation. The Saint Venant equations can be written as  

𝜕𝐴

𝜕𝑡
+
𝜕𝑄

𝜕𝑥
= 0,   (1) 

𝜕𝑄

𝜕𝑡
+

𝜕

𝜕𝑥
(
𝑄2

𝐴
) + 𝑔𝐴

𝜕ℎ

𝜕𝑥
+ 𝑔𝐴(𝑆𝑓 − 𝑆0) = 0,  (2) 

where 𝐴 is the wet cross-sectional area, 𝑄 is the discharge, ℎ is the water level, 𝑆𝑓 is the slope of 

friction, 𝑆0 is the slope of the bottom channel, 𝑔 is the acceleration due to gravity, 𝑡 is coordinate of 

time, and 𝑥 is the coordinate of distance. 

For flood routing problems in a prismatic channel (it is assumed that the channel width 𝑏 is 
constant) with a rectangular section, the wet cross-sectional area 𝐴 can be written as 

𝐴 = 𝑏ℎ.  (3) 
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Equation (3) is derived concerning 𝑥, then we obtain 

𝜕𝐴

𝜕𝑥
= 𝑏

𝜕ℎ

𝜕𝑥
.  (4) 

Substitute equation (4) into equation (2) so we obtain 

𝜕𝑄

𝜕𝑡
+ 2

𝑄

𝐴

𝜕𝑄

𝜕𝑥
+ (

𝑔𝐴

𝑏
−

𝑄2

𝐴2
)
𝜕𝐴

𝜕𝑥
+ 𝑔𝐴(𝑆𝑓 − 𝑆0) = 0.  (5) 

When the flow occurs in an open channel, due to the roughness of the walls and bottom of the 
channel as a barrier where the flow is located, there will be a resistance flow from upstream to 
downstream which will have a direct effect on the magnitude of the velocity. Calculation of flow 
velocity through an open channel can only be done using empirical formulas because many variables 
change. In this regard, experts such as Chezy, Manning, or Strickler provide empirical formulas built 
on a steady uniform flow formula. If we choose the Manning formula, then this formula represents 
the resistance of flow can be written as 

𝑆𝑓 =
𝑛2𝑢2

𝑅4/3
,  (6) 

where 𝑛 denotes the Manning coefficient, 𝑅 denotes the hydraulic radius, and 𝑢 denotes the velocity. 
For a channel with a rectangular cross-section, the following relationships apply 

𝑅 =
𝐴

𝑃
 ,  (7) 

  

𝑃 = 2ℎ + 𝑏,  (8) 

with 𝑃 denotes the wet perimeter of the cross-section. Furthermore, equations (6), (7), and (8) are 

derived partially concerning 𝑥, obtained 

𝜕𝑃

𝜕𝑥
= 2

𝜕ℎ

𝜕𝑥
 , (9) 

𝜕𝑅

𝜕𝑥
=

1

𝑃
(1 −

2𝐴

𝑏𝑃
)
𝜕𝐴

𝜕𝑥
 ,  (10) 

𝜕𝑢

𝜕𝑥
=

2

3

1

𝑛
𝑅−

1

3𝑆𝑓
1

2
𝜕𝑅

𝜕𝑥
+
1

2

1

𝑛
𝑅
2

3𝑆𝑓
−
1

3
𝜕𝑆𝑓

𝜕𝑥
 .  (11) 

According to [5], the value of  
𝜕𝑆𝑓

𝜕𝑥
 is very small when compared to the values of other terms, so that 

the second term on the right side of equation (11) can be ignored. Therefore, Equation (11) can be 
rewritten as 

𝜕𝑢

𝜕𝑥
=

2

3

1

𝑛
𝑅−

1

3𝑆𝑓
1

2
𝜕𝑅

𝜕𝑥
 . (12) 

In a steady flow, the discharge is defined as 𝑄 =  𝐴𝑢. If it is derived partially concerning 𝑥, it is 
obtained 

𝜕𝑄

𝜕𝑥
= 𝐴

𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝐴

𝜕𝑥
 . (13) 
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Then substitute equations (9), (10), and (12) into equation (13) and be rearranged of the equation, we 
obtain 

𝜕𝐴

𝜕𝑥
=

1
𝑄

𝐴
(
5

3
−
4

3

𝑅

𝑏
)

𝜕𝑄

𝜕𝑥
.              (14) 

Next, substitute equation (14) into equation (5) and be rearranged of the equation, we get 

𝜕𝑄

𝜕𝑡
+ 𝛼

𝜕𝑄

𝜕𝑥
+ 𝛽 = 0, (15) 

where 

𝛼 = (2
𝑄

𝐴
+

𝑔𝐴

𝑏
−
𝑄2

𝐴2

𝑄

𝐴
(
5

3
−
4

3

𝑅

𝑏
)
),                (16) 

and 

𝛽 = 𝑔𝐴(𝑆𝑓 − 𝑆0). (17) 

The momentum equation has two variables related to the cross-sectional area and the discharge of the 
channel. Therefore, Equations (1) and (15) can be solved using different numerical methods until they 
follow the initial and boundary conditions. 

2.2. Numerical Method 
The Saint Venant equations (1) and (15) will be solved numerically using the finite difference 

method. With this method, the equation will be converted into a different equation that only applies 
to specific points in the domain of the solution. Since these equations contain the independent 
variables 𝑥 and 𝑡, an approximation of the difference equation is made by creating the number of the 
grid on the 𝑥 − 𝑡 plane. 

If the partial differential equation has an exact solution 𝑓(𝑥, 𝑡), then the differential equation will 

have an approximate solution of 𝑓(𝑥𝑖 , 𝑡
𝑘). Here, any function 𝑓(𝑥, 𝑡) and its partial derivatives will be 

discretized by an explicitly different method (forward time and backward space) using the following 
rules. 

𝑓(𝑥, 𝑡) ≈ 𝑓(𝑥𝑖 , 𝑡
𝑘) = 𝑓𝑖

𝑘 ,  (18) 
  

𝜕𝑓(𝑥,𝑡)

𝜕𝑡
≈

𝜕𝑓

𝜕𝑡
|
𝑖

𝑘

=
𝑓𝑖
𝑘+1−𝑓𝑖

𝑘

Δ𝑡
,  (19) 

  
𝜕𝑓(𝑥,𝑡)

𝜕𝑥
≈

𝜕𝑓

𝜕𝑥
|
𝑖

𝑘

=
𝑓𝑖
𝑘−𝑓𝑖−1

𝑘

Δ𝑥
,  (20) 

where 𝑥 and 𝑡 are the length of the interval in the direction 𝑥 and the length of the interval in the 
direction 𝑡, respectively. Substitute equations (18), (19), (20) into the momentum equation (15) and 
the continuity equation (1), we get 

𝑄𝑖
𝑘+1 = 𝑄𝑖

𝑘 −
Δ𝑡

Δ𝑥
(𝛼𝑖

𝑘)(𝑄𝑖
𝑘 − 𝑄𝑖−1

𝑘 ) − 𝛽𝑖
𝑘Δ𝑡,   (21) 

  

𝐴𝑖
𝑘+1 = 𝐴𝑖

𝑘 −
Δ𝑡

Δ𝑥
(𝑄𝑖

𝑘+1 − 𝑄𝑖−1
𝑘+1),   (22) 
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where 

𝛼𝑖
𝑘 = 2

𝑄𝑖
𝑘

𝐴𝑖
𝑘 +

𝑔𝐴𝑖
𝑘

𝑏
−(

𝑄𝑖
𝑘

𝐴𝑖
𝑘
)

2

𝑄𝑖
𝑘

𝐴𝑖
𝑘
(
5

3
−
4

3

𝑅𝑖
𝑘

𝑏
)

,    (23) 

  

𝛽𝑖
𝑘 = 𝑔𝐴𝑖

𝑘 (𝑆𝑓𝑖
𝑘 − 𝑆0).   (24) 

From the explanation above, it can be seen that each pair of values of 𝛼𝑖
𝑘 and 𝛽𝑖

𝑘 can be calculated 
from Equations (23) and (24) using the initial condition data and the boundary conditions that are 

known at the beginning (𝑖, 𝑘) so that the value 𝑄𝑖
𝑘+1 can be obtained from Equation (21). Finally, 

using the value 𝑄𝑖
𝑘+1, the value 𝐴𝑖

𝑘+1 can be calculated from Equation (22). This technique will be 

repeated sequentially for the values of (𝑖, 𝑘). 

  
Figure 1. Discharge from the staggered numerical model (blue) and the simplified model (red) for 𝑥 = 600 𝑚. 

Before being used for simulation, it is necessary to test it first to ensure that the proposed 
numerical scheme can be applied. The proposed model is validated with a staggered numerical model 
[17]. The validation results show (see Figure 1) that the simulation results of the two models generally 
have a good agreement. These slight differences take place because of the simplifications considered 
in the proposed model. 

3. RESULT AND DISCUSSION 

The numerical schemes from equations (21) and (22) will be applied to flow routing in a prismatic 
channel. A prismatic channel with a rectangular cross-section is fed by water from the upstream 
direction. By utilizing the discharge data that enters the prismatic channel, the downstream area will 
observe changes in the behavior of two water flow variables, namely discharge and water level 
elevation. The general components used for numerical simulations are as follows: channel length 𝐿 =
2000 m, constant channel width 𝑏 = 5 m, channel base slope 𝑆𝑓 =  0.0005, Manning roughness 

coefficient 𝑛 = 0.0138, gravitational acceleration 𝑔 = 9 , 81 𝑚/𝑠2, space step ∆𝑥 = 1 m, time step 
∆𝑡 = 0.1 s and the simulation is carried out for 60 units of time, 𝑇 =  60 𝑠. 

The next presentation is a simulation of water flow routing in a prismatic channel due to variations 
in the incoming inflow hydrograph, namely triangular, trapezoidal, and curvature. Then investigate the 
behavior of the water flow variable that will be observed in the form of discharge at certain locations 

in the downstream area, for example, at 𝑥 = 600 m. 
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3.1   Triangular Inflow Hydrograph 
A prismatic channel with a rectangular cross-section is fed by water from the upstream direction. 

From the upstream direction, a triangular inflow hydrograph is recorded into the channel with the 
following data, 

𝑄(0, 𝑡) = {

3 +
9

10
𝑡 for 0 ≤ 𝑡 < 10 

12 −
9

10
(𝑡 − 10) for 10 ≤ 𝑡 < 20

3 for 𝑡 ≥ 20

 , (25) 

where the initial condition is 𝑄 (𝑥, 0) = 3 𝑚3/𝑠, 𝐴 (𝑥, 0) = 3 𝑚3/𝑠. The hydrograph inflow profile 
that enters the prismatic channel can be seen in Figure 1. 

Figure 2 shows the discharge quantity that will gradually enter the prismatic channel over 20 s, 
0 < 𝑡 ≤ 20 s. Initially, the discharge entering the prismatic channel is relatively small, which is             

𝑄 = 3 𝑚3/𝑠. As time increases, the incoming debit to fill the channel gets bigger until it reaches its 
peak when 𝑡 = 10 s, which is 𝑄 = 12 𝑚3/𝑠. After that, the incoming debit gradually decreases until 
no more debit enters the channel, and this happens when 𝑡 = 20 s. Based on upstream discharge data 
like this, in the following discussion, several simulation results will be displayed regarding changes in 
the behavior of water flow variables in the form of discharge (outflow hydrograph) in the downstream 
area. 

  
Figure 2. The hydrograph inflow profile is triangular that enters a prismatic channel. 

The simulation results of changes in water flow variables in the form of hydrograph outflow along 
the channel can be seen in Figure 3. The figure shows an animation of downstream flow movements 
for a time of 0 < 𝑡 ≤ 60 s due to the triangular hydrograph inflow that enters the channel for               
0 < 𝑡 ≤ 20 s. 

From Figure 3, it can be seen that the discharge that enters the channel will propagate downstream 
for each unit of time, with the quantity of discharge that is getting smaller and smaller until the effect 
of the hydrograph inflow is gone. The hydrograph inflow will experience damping along the canal due 
to the influence of friction between the water and the bottom and walls of the canal. The farther from 
the source of discharge, the greater the shrinkage of the discharge. 
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Figure 3. Discharge profile due to a triangular hydrograph inflow. 

  
Figure 4. A comparison between a triangular hydrograph inflow and discharge at 𝑥 = 600 m: indicates a 

decrease in peak discharge. 

Figure 4 is presented a triangular hydrograph inflow and a hydrograph outflow observed at a 
location 600 m from the upstream. From the figure, it can be seen that the maximum discharge has 

decreased from 𝑄 =  12 𝑚3/𝑠 to 𝑄 =  7.38 𝑚3/𝑠, and the time of the maximum discharge has also 
shifted from 𝑡 =  10 s to 𝑡 =  18 s. 

3.2. Trapezoidal Inflow Hydrograph 
A prismatic channel with a rectangular cross-section is fed by water from the upstream direction. 

From the upstream direction, a trapezoidal-shaped hydrograph inflow is recorded into the channel 
with the following data,  

𝑄(0, 𝑡) =

{
 
 

 
 3 +

9

10
𝑡 for 0 ≤ 𝑡 < 10

12 for 10 ≤ 𝑡 < 15

12 −
9

5
(𝑡 − 15)

3

for
for

15 ≤ 𝑡 < 20
𝑡 ≥ 20

 ,        (26) 

where the initial condition is 𝑄 (𝑥, 0)  =  3 𝑚3/𝑠, 𝐴 (𝑥, 0)  =  3 𝑚3/𝑠. The hydrograph inflow profile 
that enters the prismatic channel can be seen in Figure 5. Figure 5 shows the quantity of discharge 
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that will enter the channel gradually over 20 s. Initially, the incoming discharge is small at 𝑄 = 3 𝑚3/𝑠, 
as time goes on, the incoming discharge gets bigger until it reaches its peak when 𝑡 = 10 𝑠, is 𝑄 = 12 

𝑚3/𝑠. The discharge input of 𝑄 = 12 𝑚3/𝑠 is maintained to fill the channel up to when 𝑡 = 15 𝑠. 

After that, the incoming discharge has decreased to 𝑄 = 3 𝑚3/𝑠 when 𝑡 = 20 𝑠. 

 

Figure 5. The hydrograph inflow profile is trapezoidal that enters a prismatic channel. 

  

Figure 6. Discharge profile due to a trapezoidal hydrograph inflow. 

Figure 6 shows that the discharge entering the channel will propagate downstream for each unit 
of time. The discharge quantity decreases from time to time until the influence of the incoming 
hydrograph flow disappears. The amount of debit depreciation depends on the distance from the 
source of the debit. The further away from the source, the greater the shrinkage.  

Figure 7 is presented a trapezoidal inflow hydrograph and a hydrograph outflow observed at a 
location 600 m from the upstream. From the figure, it can be seen that the maximum discharge has 

decreased from 𝑄 = 12 𝑚
3

𝑠⁄   to 𝑄 = 8.45 𝑚
3

𝑠⁄  and the time of maximum discharge has also shifted 
from 𝑡 = 10 𝑠 to 𝑡 = 22 𝑠. This maximum discharge shrinkage and time-shift occurred at each location 
along the channel. 
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Figure 7. A comparison between trapezoidal hydrograph inflow and discharge at 𝑥 = 600 𝑚: indicates a 

decrease in peak discharge. 

3.3. Curvature Inflow Hydrograph 
A prismatic channel with a rectangular cross-section is fed by water from the upstream direction. 

From the upstream direction, a curvature inflow hydrograph is recorded into the channel with the 
following data, 

𝑄(0, 𝑡) =

{
 

 18/4sin (
𝜋𝑡

10
−
𝜋

2
) +

30

4
, for 0 ≤ 𝑡 < 10 

18/4cos (
1.4𝜋𝑡

14
−

𝜋

100
) +

30

4
, for 10 ≤ 𝑡 < 20

3, for 𝑡 ≥ 20

 ,   (27) 

  

where the initial condition is 𝑄 (𝑥, 0)  =  3 𝑚3/𝑠, 𝐴 (𝑥, 0)  =  3 𝑚3/𝑠. The hydrograph inflow profile 
that enters the prismatic channel can be seen in Figure 8. Figure 8 shows the amount of discharge that 
will enter the channel gradually over 20 s. Initially, the incoming discharge is small at 𝑄 = 3 𝑚3/𝑠; 

over time, the incoming discharge gets bigger until it reaches its peak, namely  𝑄 = 12 𝑚3/𝑠 when 𝑡 =
10 𝑠. After that, the incoming discharge decreases to 𝑄 = 3 𝑚3/𝑠 when 𝑡 = 20 𝑠. 

From Figure 9, it can be seen that the discharge that enters the channel will propagate downstream 
for each unit of time, with the quantity of discharge that is getting smaller and smaller until the effect 
of the hydrograph inflow is gone. The hydrograph inflow will experience damping along the canal due 
to the influence of friction between the water and the bottom and walls of the canal. The farther from 
the source of discharge, the greater the shrinkage of the discharge. 

  
Figure 8. The hydrograph inflow profile is a curvature in shape that enters a prismatic channel. 
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Figure 9. Discharge profile due to a curvature hydrograph inflow. 

  

Figure 10.  A comparison between curvature hydrograph inflow and discharge at 𝑥 = 600 𝑚: indicates a 
decrease in peak discharge. 

Figure 10 is presented a triangular hydrograph inflow and a hydrograph outflow observed at a 
location 600 m from the upstream. From the figure, it can be seen that the maximum discharge has 
decreased from 𝑄 = 12 𝑚3/𝑠 to 𝑄 = 7.78 𝑚3/𝑠 and the time of the maximum discharge has also 

shifted from 𝑡 = 10 s to 𝑡 = 19 s. 

4. CONCLUSION 

The Saint Venant equations are mathematical models that can describe the phenomenon of water 
flow in an open channel. The model is built based on two natural laws: the law of conservation of 
mass and the law of conservation of momentum. These two laws are commonly expressed in 
mathematical equations known as the continuity equation and the momentum equation. 

Based on the observation of the numerical simulation results in this research, it can be concluded 
that the hydrograph inflow that enters the prismatic channel will experience shrinkage along the 
channel due to friction between the water flow and the bottom and walls of the channel. The farther 
from the discharge source, the greater the shrinkage of the water flow variable. For observations at a 
specific location, the size of the variable quantity of water flow depends on the size of the incoming 
hydrograph inflow quantity. 

For the same observation location, the greater volume of the inflow hydrograph, the greater the 
outflow hydrograph. If we sort from the smallest: the triangular hydrograph produces a peak discharge 
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𝑄 = 7.38 𝑚3/𝑠 at time 𝑡 = 18 s, the curvature hydrograph produces a peak discharge 𝑄 = 7.78 𝑚3/𝑠 

at time 𝑡 = 19 𝑠, and the trapezoidal hydrograph produces a peak discharge 𝑄 = 8.45 𝑚3/𝑠 at time 

𝑡 = 22 𝑠. 
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