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Abstract  
We are concerned with the study the differential equation problem of space-time and motion for the 

case of advection-diffusion equation. We derive the advection-diffusion equation from the conservation 

of mass, where this can be represented by the substance flow in and flow out through the medium. In 

this case, the concentration of substance and rate of flow of substance in a medium are smooth 

functions which is useful to generate advection-diffusion equation. A special case of the advection-

diffusion equation and numerical results are also given in this paper. We use explicit and implicit finite 

differences method for numerical results implemented in MATLAB. 

Keywords: advection-diffusion; space-time; motion; finite difference method. 
 

Abstrak 
Kami tertarik untuk mempelajari masalah persamaan diferensial ruang-waktu, dan gerak untuk kasus persamaan 

adveksi-difusi. Kita menurunkan persamaan adveksi-difusi dari kekekalan massa, di mana hal ini dapat diwakili oleh 

aliran zat yang masuk dan keluar melalui media. Dalam hal ini konsentrasi zat dan laju aliran zat dalam suatu 

medium merupakan fungsi halus yang berguna untuk menghasilkan persamaan adveksi-difusi. Sebuah kasus khusus 

persamaan adveksi-difusi dan hasil numerik juga diberikan dalam makalah ini. Kami menggunakan metode beda hingga 

explisit dan implisit untuk hasil numerik yang diimplementasikan dalam MATLAB. 

Kata kunci: adveksi-difusi; ruang-waktu; gerak; metode beda hingga. 

 

 

1. INTRODUCTION 

Space-time and motion have been widely studied by researchers for linear, non-linear, and 

quasilinear cases. Z. Erich [2] classified the linear second order of partial differential equations into 

three types according to the criteria of discriminant sign, they are hyperbolic, parabolic, and elliptic 

type, where for each type respectively has criteria of discriminant sign (more than), (equal to), and (less 

than) zero. Moreover, the example for all those three types are respectively wave equation, diffusion 

equation, and Laplace’s equation. In this paper, we focus on the advection-diffusion equation and the 

related two representative examples of advection-diffusion equation in real life. Burger’s equation is 

one equation related to advection-diffusion with the second order nonlinear advection. R. Mickens 

and K. Oyedeji [6] studied the Burger’s equation and the non-diffusion Fisher equation as given the 

following system 

𝑢𝑡 + 𝑎1√𝑢𝑢𝑥 = 𝐷1𝑢𝑥𝑥 , 

𝑢𝑡 + 𝑎2√𝑢𝑢𝑥 = 𝜆1√𝑢 − 𝜆2𝑢, 
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where the above system contains square root √𝑢 in the advection term. Other related works containing 

the square root √𝑢 in advection term were studied by L. Debnath [1], P.M. Jordan [5], and G.B. 

Whitham [8]. The coupled of modified advection-equation, which was also so-called coupled Burger’s 

equation, was also studied by Y. Hu [4] as shown the following system 

𝑢𝑡 +
1

2
(𝑢2 + 𝑏2)𝑥 = 𝜇𝑢𝑥𝑥 , 

𝑏𝑡 + (𝑢𝑏)𝑥 = 𝜈𝑏𝑥𝑥.  

The paper [4] investigated the stability of traveling waves of the above system by using the energy 

method under small perturbation and large wave length.  

Another example of advection-diffusion equation is the model for pollution in a river and its 

remediation and aeration studied by Pimpunchat, et.al. [7]. The coupled reaction-diffusion-advection 

is shown in the following system of equations 

𝜕(𝐴𝑃)

𝜕𝑡
= 𝐷𝑃

𝜕2(𝐴𝑃)

𝜕𝑥2
−

𝜕(𝜈𝐴𝑃)

𝜕𝑥
− 𝐾1

𝑋

𝑋 + 𝑘
𝐴𝑃 + 𝑞𝐻(𝑥) 

𝜕(𝐴𝑋)

𝜕𝑡
= 𝐷𝑋

𝜕2(𝐴𝑋)

𝜕𝑥2
−

𝜕(𝜈𝐴𝑋)

𝜕𝑥
− 𝐾2

𝑋

𝑋 + 𝑘
𝐴𝑃 + 𝛼(𝑆 − 𝑋) 

where 𝐻(𝑥) is the Heaviside function 

𝐻(𝑥) = {
1,             𝑥 > 0
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Pimpunchat, et. al. [6] were interested in the study of effect of aeration on the degradation of pollutant. 

The idea of that coupled equation is based on the reactions between oxygen and pollutant to produce 

harmless compounds.  

2. MATHEMATICAL MODELING 

In this paper, we consider that all motions are only in the 𝑥-axis direction. The basic equation is 

derived by using the principle of conservation of mass. The problem of space-time, and motion along 

direction of the 𝑥-axis are in our real life, such like: heat along a flat plate, and pollutant down a river. 

Let 𝜌(𝑥, 𝑡) be the concentration of the substance and 𝑞(𝑥, 𝑡) be flow rate in space and time of 𝑥 and 

𝑡. Moreover, 𝑞 ≥ 0 indicates that the net flow is from left to right, and also we assume that 𝜌(𝑥, 𝑡) and 

𝑞(𝑥, 𝑡) are smooth functions. Based on the mass conservation, there are no additions or subtractions 

of mass, and also change of the rate of mass in an interval of Δ𝑥 for the medium. 

Since ∫ 𝜌(𝑠, 𝑡)
𝑥+Δ𝑥

𝑥
𝑑𝑠 is the total of mass in an interval of size Δ𝑥, then the variation in time of 

this quantity is given by  

𝑑

𝑑𝑡
∫ 𝜌(𝑠, 𝑡)

𝑥+Δ𝑥

𝑥
𝑑𝑠 = 𝑞(𝑥, 𝑡) − 𝑞(𝑥 + Δ𝑥, 𝑡)            (1) 

The righthand side (1) represents the net flow in and out from left to right which across the 

boundary of Δ𝑥 at fixed time of 𝑡. We consider that (1) is positive by assuming 𝑞(𝑥, 𝑡) ≥ 𝑞(𝑥 + Δ𝑥, 𝑡) 

in an interval of Δ𝑥 and (1) which indicates that the mass inside the interval of Δ𝑥 is increased. 
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Moreover, we consider that some of substance can move into or out for the given medium with 

the length of Δ𝑥. This problem indicates that there is an additional source or sinks which must be 

calculated (for example, the heat imposed to center of flat plate is reduced because of dispersion of 

heat to the around flat plate, and the pollutants moving along the river from upstream to downstream, 

will increase because of dispersion which this pollutant is conversely proportional to the concentration 

of dissolved oxygen). Therefore, we consider 𝑘(𝑥, 𝑡) be the rate of change for density of source or 

sinks. Moreover, assume 𝑘 be smooth and known function, where 𝑘 ≥ 0 and 𝑘 ≤ 0 indicates a net 

source and a net sink respectively. 

In fact, all sources or sinks are not distributed smoothly (for example, the heat imposed to flat 

plate is not precisely at the center of flat plate, and the pollutants dumped into at some specific sewage 

outfall). Therefore, we consider the point sources or sinks be well separately. 

Proposition 2.1. Let ∫ 𝑘(𝑠, 𝑡)
𝑥+Δ𝑥

𝑥
𝑑𝑠 be rate of change for density of source or sinks through the 

medium with the length of Δ𝑥. We apply this rate of change for density 𝑘(𝑥, 𝑡) to the righthand side 

(1) to establish the balance of mass. Then, one has 

𝜕𝜌(𝑥,𝑡)

𝜕𝑡
= −

𝜕𝑞(𝑥,𝑡)

𝜕𝑥
+ 𝑘(𝑥, 𝑡)      (2) 

Proof. It is a simple way to prove (2). We rewrite (1) by considering rate of change for density of 

source or sinks through the medium to get 

𝑑

𝑑𝑡
∫ 𝜌(𝑠, 𝑡)

𝑥+Δ𝑥

𝑥
𝑑𝑠 = 𝑞(𝑥, 𝑡) − 𝑞(𝑥 + Δ𝑥, 𝑡) + ∫ 𝑘(𝑠, 𝑡)

𝑥+Δ𝑥

𝑥
𝑑𝑠.        (3) 

Noting that 

𝑑

𝑑𝑡
∫ 𝜌(𝑠, 𝑡)

𝑥+Δ𝑥

𝑥
𝑑𝑠 = ∫

𝜕𝜌(𝑠,𝑡)

𝜕𝑡

𝑥+Δ𝑥

𝑥
𝑑𝑠,              (4) 

and  

𝑞(𝑥, 𝑡) − 𝑞(𝑥 + Δ𝑥, 𝑡) = − ∫
𝜕𝑞(𝑠,𝑡)

𝜕𝑠

𝑥+Δ𝑥

𝑥
𝑑𝑠      (5) 

We substitute (4) and (5) into (3) to get 

∫
𝜕𝜌(𝑠, 𝑡)

𝜕𝑡

𝑥+Δ𝑥

𝑥

𝑑𝑠 = − ∫
𝜕𝑞(𝑠, 𝑡)

𝜕𝑠

𝑥+Δ𝑥

𝑥

𝑑𝑠 + ∫ 𝑘(𝑠, 𝑡)

𝑥+Δ𝑥

𝑥

𝑑𝑠                                                     

0 = ∫
𝜕𝜌(𝑠, 𝑡)

𝜕𝑡

𝑥+Δ𝑥

𝑥

𝑑𝑠 + ∫
𝜕𝑞(𝑠, 𝑡)

𝜕𝑠

𝑥+Δ𝑥

𝑥

𝑑𝑠 − ∫ 𝑘(𝑠, 𝑡)

𝑥+Δ𝑥

𝑥

𝑑𝑠                      

0 = ∫ (
𝜕𝜌(𝑠, 𝑡)

𝜕𝑡
+

𝜕𝑞(𝑠, 𝑡)

𝜕𝑠
− 𝑘(𝑠, 𝑡))

𝑥+Δ𝑥

𝑥

 𝑑𝑠                                             

0 = (
𝜕𝜌(𝑥,𝑡)

𝜕𝑡
+

𝜕𝑞(𝑥,𝑡)

𝜕𝑠
− 𝑘(𝑥, 𝑡))  Δ𝑥 + 𝑜(Δ𝑥)      (6) 

 

We finally divide (6) by Δ𝑥 and take the limit Δ𝑥 ⟶ 0, then we complete the proof of (2).         ∎ 
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Furthermore, the negative sign of flow rate 
𝜕𝑞(𝑥,𝑡)

𝜕𝑥
 in (2) is reasonable, because the flow rate 

through the medium Δ𝑥 should be decreasing. Moreover, let 𝑞 be a smooth function of 𝜌 which is 

written as 𝑞 ≡ 𝑞(𝜌), then the equation (2) becomes 

𝜕𝜌

𝜕𝑡
= −

𝑑𝑞(𝑥,𝑡)

𝑑𝜌(𝑥,𝑡)

𝜕𝜌(𝑥,𝑡)

𝜕𝑥
+ 𝑘(𝑥, 𝑡),       (7) 

where the equation (7) is still considered general. Noting that the term of 
𝑑𝑞(𝜌)

𝑑𝜌
 is typically a nonlinear 

function of  𝜌. 

In the present paper, two special cases are very interesting to be studied. Firstly, for some 𝑢(𝑥, 𝑡), 

the case of 𝑞 as a function of 𝜌 is advection, where 𝑞 = 𝑢𝜌. We consider function of 𝑢(𝑥, 𝑡) as the 

velocity of the substance moving along the 𝑥-axis. For simplification of advection case, we assume 

that the velocity of 𝑢(𝑥, 𝑡) be constant with the constant velocity of 𝑐. Then 
𝑑𝑞

𝑑𝜌
 is identical to constant 

velocity of 𝑐. Moreover, we can also interpret it into another way. In time of Δ𝑡, the substance moving 

with the distance Δ𝑥 = 𝑐Δ𝑡, then the integration bound of (1) becomes 

∫ 𝜌(𝑠, 𝑡)
𝑥+𝑐Δ𝑡

𝑥
𝑑𝑠             (8) 

 
which represents all the substance moving along the 𝑥-axis during the time of Δ𝑡.  

Proposition 2.2. It follows from (8), we divide it by Δ𝑡 and let Δ𝑡 goes to zero, then the total of mass 

in (8) changing along the 𝑥-axis is equal to flow rate of 𝑞(𝑥, 𝑡). Therefore (8) becomes 

𝑞(𝑥, 𝑡) = lim
Δ𝑡⟶0

1

Δ𝑡
∫ 𝜌(𝑠, 𝑡)

𝑥+𝑐Δ𝑡

𝑥
𝑑𝑠 = 𝑐𝜌(𝑥, 𝑡)         (9) 

Proof. Similarly, we can employ the same technique in Proposition 2.1, that is 

∫ 𝜌(𝑠, 𝑡)
𝑥+𝑐Δ𝑡

𝑥
𝑑𝑠 = 𝜌(𝑠, 𝑡) cΔ𝑡 + 𝑜(cΔ𝑡)     (10) 

We further divide (10) by Δ𝑡 and take the limit Δ𝑡 ⟶ 0, then the proof of (9) is completed.         ∎ 

Secondly, for the case of 𝑞 as a function of 𝜌 is diffusion, where 𝑞 = −𝜈
𝜕𝜌

𝜕𝑥
 (for example, heat 

flow which is changing to time and space). Moreover, this heat flow is always from a higher to a lower 

temperature, where it is mathematically stated as follows 

𝑞(𝑥, 𝑡) = −𝜈
𝜕𝜌(𝑥,𝑡)

𝜕𝑥
            (11) 

for a constant of proportionality of 𝜈 > 0. The minus sign shows of  
𝜕𝜌

𝜕𝑥
 indicates that heat imposed 

to the center of medium reduces at specific time 𝑡 because of heat diffusion. Finally, based on the 

previous discussion of two cases for advection and diffusion, we substitute the advection term 𝑞 =

𝜌𝑢, and diffusion term 𝑞 = −𝜈
𝜕𝜌

𝜕𝑥
 into (7), then respectively we have 

𝜕𝜌

𝜕𝑡
= −

𝜕(𝜌𝑢)

𝜕𝑥
+ 𝑘        (12) 
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for the advection equation, and 

𝜕𝜌

𝜕𝑡
= 𝜈

𝜕2𝜌

𝜕𝑥2 + 𝑘,                 (13) 

 

for diffusion equation. Combining (12) and (13), then we have the following advection-diffusion 

equation 

𝜕𝜌

𝜕𝑡
= 𝜈

𝜕2𝜌

𝜕𝑥2 −
𝜕(𝜌𝑢)

𝜕𝑥
+ 𝑘.          (14) 

 

3. NUMERICAL RESULTS 

In this section, we establish the numerical results of equation (14), where 𝑘 is assumed to be zero 

for the simplicity. First, we give an example of advection-diffusion equation for case of the pollutant 

in the river, where 𝑢 is the pollutant flow rate and 𝜈 is the dispersion of pollutant. 

𝜕𝜌

𝜕𝑡
= 𝜈

𝜕2𝜌

𝜕𝑥2 − 𝑢
𝜕𝜌

𝜕𝑥
 ,       0 ≤ 𝑥 ≤ 80, 0 ≤ 𝑡 ≤ 60        (15) 

 

We discretize (15) by using the finite difference method by explicit, central differences for the 

second derivative in space 𝑥, forward differences in time 𝑡, and backward differences for the first 

derivative, namely, 

𝜌𝑖,𝑗+1 − 𝜌𝑖,𝑗 =
𝜈Δ𝑡

Δ𝑥2
[𝜌𝑖−1,𝑗 − 2𝜌𝑖,𝑗 + 𝜌𝑖+1,𝑗] −

𝑢Δ𝑡

Δ𝑥
[𝜌𝑖,𝑗 − 𝜌𝑖−1,𝑗] 

By grouping the same terms for 𝑗 and 𝑗 + 1, then 

𝜌𝑖,𝑗+1 = 𝜌𝑖,𝑗 +
𝜈Δ𝑡

Δ𝑥2
[𝜌𝑖−1,𝑗 − 2𝜌𝑖,𝑗 + 𝜌𝑖+1,𝑗] −

𝑢Δ𝑡

Δ𝑥
[𝜌𝑖,𝑗 − 𝜌𝑖−1,𝑗] 

 
The analytical solution of (15) is the Gaussian distribution given as 

𝜌(𝑥, 𝑡) = h ⋅ exp (−
𝑥−20−𝑢𝑡

20
) ,      (16) 

where h = 1 is the height of Gaussian distribution and (16) is a modified version of analytical solution 

given in [3]. Then, we present the following initial condition and boundary conditions of (16), 

respectively 

𝜌(𝑥, 𝑡 = 0) = exp (−
𝑥−20

20
)               (17) 

and 

𝜌(𝑥 = 0, 𝑡) = 𝜌(𝑥 = 80, 𝑡) = 0      (18) 

The numerical results are given as follows with the various of the rate of pollutant flow (𝑢) and 

dispersion of pollutant (𝜈).  
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Table 1.  Comparison results for the change of concentration of pollutant for various the rate of                  
pollutant flow and dispersion of pollutant. 

Time (𝑡) 
Rate of pollutant 

flow (𝑢) 

𝜌(𝑥, 𝑡) at the top 
and fixed value 

𝜈 = 2.5 

Time (𝑡) 
Dispersion of 

pollutant (𝜈) 

𝜌(𝑥, 𝑡) at the top 
and fixed value 

𝑢 = 2.5 
10.6667 0.5 0.3844 19.2000 0.5 0.4727 

9.2903 1.5 0.3890 11.5200 1.5 0.4097 

8.2286 2.5 0.3964 8.2286 2.5 0.3964 

7.3846 3.5 0.4040 6.4000 3.5 0.3912 

6.6977 4.5 0.4126 5.2364 4.5 0.3883 

6.1277 5.5 0.4205 4.4308 5.5 0.3873 
5.6471 6.5 0.4290 3.8400 6.5 0.3864 

5.2364 7.5 0.4366 3.3882 7.5 0.3856 

4.8814 8.5 0.4448 3.0316 8.5 0.3850 

 
Figure 1 to Figure 4 represents the changes of the concentration of the pollutant in the river from 

the initial time to final time. It can be seen that, the more increase the time is, the more declined the 

graph is for each time 𝑡. This indicates that, there is diffusion of pollutant while the pollutant is moving 

along the river for time 𝑡. Figure 1 and Figure 2 show the changes of the concentration of the pollutant 
for various rate of pollutant flow and fixed dispersion of pollutant from the initial time to final time. 

It can be concluded that the higher the rate of pollutant flow is, the higher the value of 𝜌(𝑥, 𝑡) at the 
top is. Moreover, Figure 3 and Figure 4 show the changes of the concentration of the pollutant for 
various dispersion of pollutant and fixed rate of pollutant flow from the initial time to final time. These 
results are inversely proportional to Figure 1 and Figure 2 that the higher the dispersion of pollutant 

is, the lower the value of 𝜌(𝑥, 𝑡) at the top is. All the numerical results for various the rate of pollutant 
flow and dispersion of pollutant are presented in Table 1. 

 

Figure 1. Rate of pollutant flow (𝑢 = 0.5) 
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Figure 2. Rate of pollutant flow (𝑢 = 8.5) 

 

 

Figure 3. Dispersion of pollutant (𝜈 = 0.5) 
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Figure 4. Dispersion of pollutant (𝜈 = 8.5) 

In the real life, the first condition, the increasing pollutant flow rate for all the time does not give 
the significant effect for reduction in pollutant. This is due to the constant dispersion of pollutant 
when the pollutant moves along the river. There is the possibility of other pollutants addition along 
the river, causing more pollutants. The second condition give the significant effect for reduction in 
pollutant though the pollutant move along the river with the constant flow rate. This can happen 
because the higher dispersion of pollutant for all the time along the river. The other example of 
advection is for case of pollutant and dissolved oxygen in upstream and downstream of the river as 
shown the following steady state equation with zero dispersion 

0 = −
𝜕(𝜈𝐴𝑃𝑠(𝑥,𝑡))

𝜕𝑥
+ 𝑍𝑃𝑠(𝑥, 𝑡),        (19) 

0 = −
𝜕(𝜈𝐴𝑋𝑠(𝑥, 𝑡))

𝜕𝑥
+ 𝛼𝑆 − 𝑋𝑠(𝑥, 𝑡), 

where 𝑃𝑠 is concentration of pollutant, 𝑋𝑠 is concentration of dissolved oxygen, 𝐴 = 2 is the cross-
section area of the river, 𝜈 = 0.7 is the water velocity in the 𝑥-direction, 𝑍 = 1 is the mass transfer of 
solid to the water of river, 𝛼 = 0.5 is the mass transfer of oxygen from air to water, and 𝑆 = 0.2 is the 
saturated oxygen concentration. The boundary conditions of (19) are given as follows 

(𝑃𝑠 , 𝑋𝑠)(0) = (
𝑞

𝑘𝐴
, 𝑆 +

𝑞

𝑘𝐴
)          (20) 

 
where 𝑘 = 2 is the degradation rate and 𝑞 = 0.098 is the rate of pollutant addition along the river. 
Then, we use the upwind method to solve (19) numerically 
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Figure 5. Concentration of pollutant and dissolved oxygen. 

 

Figure 5 represents concentration pollutant and dissolved oxygen which is moving from the point 
𝑥 = 0 meter to 𝑥 = 5 meter. It appears that at the initial distance (𝑥 =  0), the level of pollution (solid 
line) in the upstream is small enough. However, in downstream, the pollutant appears that the level 
of pollution concentration (solid line) is increasing. However, the rate of pollution concentration (solid 
line) is inversely proportional to the rate of dissolved oxygen concentration (dashed line). This is 
because in the upstream area the level of concentration of pollutant is small, so the dissolved oxygen 
concentration is still high. The concentration of pollutant is higher when the concentration of 
dissolved oxygen is lower, so that the dissolved oxygen concentration decreases, this is due to the 

greater use of dissolved oxygen for the pollution oxidation process.  

4. CONCLUSIONS 

Based on the numerical results and two examples of case for advection-diffusion equation, we 
conclude that it is possible to study this space-time and motion problem from the simple real life 
through the problem of pollutant in the river, and dissolved oxygen in the river. We further can make 
a simulation by using explicit, and upwind method, and then interpret the simulation results into the 
real life whether it makes sense or not.  

The first problem states the correlation between the rate of pollutant flow and dispersion of 
pollutant where the higher rate of pollutant flow cause the higher concentration of pollutant, and the 
higher dispersion of pollutant cause the lower concentration of pollutant. The second problem studies 
the correlation between concentration of pollutant and concentration of dissolved oxygen, where the 
concentration of dissolved oxygen is inversely proportional to the concentration of pollutant. The 
concentration of dissolved oxygen is higher than the concentration of pollutant in the upstream, and 
the concentration of dissolved oxygen is lower than the concentration of pollutant in the upstream. 
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