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Abstract  
In this paper we study a mathematical model of an immune response system consisting of a number of 

immune cells that work together to protect the human body from invading tumor cells. The delay 

differential equation is used to model the immune system caused by a natural delay in the activation 

process of immune cells. Analytical studies are focused on finding conditions in which the system 

undergoes changes in stability near a tumor-free steady-state solution. We found that the existence of a 

tumor-free steady-state solution was warranted when the number of activated effector cells was 

sufficiently high. By considering the lag of stimulation of helper cell production as the bifurcation 

parameter, a critical lag is obtained that determines the threshold of the stability change of the tumor-

free steady state. It is also leading the system undergoes a Hopf bifurcation to periodic solutions at the 

tumor-free steady-state solution. 

Keywords: tumor–immune system; delay differential equation; transcendental function; Hopf 
bifurcation. 
 

Abstrak 
Dalam makalah ini, dikaji model matematika dari sistem respon imun yang terdiri dari sejumlah sel imun yang bekerja 

sama untuk melindungi tubuh manusia dari invasi sel tumor. Persamaan diferensial tunda digunakan untuk 

memodelkan sistem kekebalan yang disebabkan oleh keterlambatan alami dalam proses aktivasi sel-sel imun. Studi 

analitik difokuskan untuk menemukan kondisi di mana sistem mengalami perubahan stabilitas di sekitar solusi 

kesetimbangan bebas tumor. Diperoleh bahwa solusi kesetimbangan bebas tumor dijamin ada ketika jumlah sel efektor 

yang diaktifkan cukup tinggi. Dengan mempertimbangkan tundaan stimulasi produksi sel helper sebagai parameter 

bifurkasi, didapatkan lag kritis yang menentukan ambang batas perubahan stabilitas dari solusi kesetimbangan bebas 

tumor. Parameter tersebut juga mengakibatkan sistem mengalami percabangan Hopf untuk solusi periodik pada solusi 

kesetimbangan bebas tumor. 

Kata kunci: sistem tumor–imun; persamaan differensial tundaan; fungsi transedental; bifurkasi Hopf. 

 

 

1. INTRODUCTION 

Tumor or cancer is a kind of neoplasm that is formed due to an abnormal growth or excessive 

growth of tissue caused by the rapid division of body cells that have undergone some form of mutation 

[1] [2]. Tumors are divided into two major groups, namely benign and malignant or cancerous tumors 

[1]. Benign tumors do not invade surrounding systems and do not spread to other parts of the body 

but can grow locally to become large. Meanwhile, malignant or cancerous tumors damage other 

normal cell systems and spread to other organs through connective system, blood, nerves, and system 

supporting organs [1][2]. Naturally in the human body, tumor cells can be controlled by the immune 

system as antigens because of the expression of viral proteins that these cells have not previously 
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produced. However, a person's immune system is not always adequate to destroy tumor cells. So that 

the failure of the immune system to destroy these tumor cells causes the tumor to become metastatic 

to a wider tissue [3].  

Immune system consists of a number of immune cells that work together to protect the human 

body. The part of the immune system that attacks antigens is effector cells which require the activation 

of helper T cells (CD4+) [4][5]. To stimulate effector cell proliferation, helper T cells must secrete 

cytokines (signaling molecules) to activate proliferation. On the other hand, activation of helper T 

cells requires stimulation via antigen presentation by macrophages or dendritic cells. Both activation 

processes arise delays in the immune system. It plays important roles in the adaptive immune 

responses against tumors since the time delay describes the time lag needed in the tumor stimulated 

proliferation of effector cells or time lag for the antigen to stimulate helper T cell production [6]. The 

time delay in mathematical modeling represents the delay in the growth of the logistic equation so that 

it does not grow monotone (up or down). It is important to incorporate the delays in the mathematical 

model since it can exhibit much richer dynamics where the delay can cause the loss the steady-state 

stability or the opposite effect. Several previous studies have discussed the dynamics between the 

immune system and tumor diseases [7][8][9][10][11].  For instance, a study on the growth dynamics of 

effector cells and tumor cells to predict the optimal combination of approaches leads to tumor 

clearance [12]. Other study carried out the development of [12] which discussed the delay differential 

model to describe the interaction between effector cells and tumor cells [11]. The model [11] also 

predicted dormancy as a period of temporary growth that will result in tumor elimination or tumor 

shedding. The other researcher developed a mathematical model of the dynamic behavior of tumor-

immune system interactions with two separate delays, namely delayed immune activation for effector 

cells (ECs) and delayed activation for helper T cells (HTCs) [13]. The obtained results suggested that 

the immune activation delay for HTCs can induce heteroclinic cycles to connect the tumor-free 

equilibrium and immune-control equilibrium. In this paper, we also study a mathematical model of 

tumor-immune system interaction by developing the mathematical model of [13]. To further study the 

dynamics of tumor immune system interaction, several new assumptions were applied to the model. 

Our new model assumes that there is maximum stimulation of effector cell production due to tumor 

cell invasion. This is based on the fact that in the activated phase, the effector cells have relatively 

short-lived [14]. We also assume that the number of effector cells decreases caused by its interaction 

with the tumor cells whose have the capability to evolve in different mechanisms [3] [15][16]. We 

believe that the development of the model closer to the real mechanism will present different 

theoretical results especially for the stability conditions of the system.  

  

2. MATHEMATICAL MODEL OF TUMOR CELL GROWTH 

The model is formulated following the main assumptions of [13]. We consider three 

compartments i.e. T represents the number of tumor cells in the body, E represents the number of 

effector cells in the immune system, and H represents the number of T helper cells (see Figure 1). 

Due to the long process for tumor cells to induce the recruitment of immune cells, two time-lags are 

considered in this model. The first delay affects the interaction of tumor cells and effector cells and 

the other delay affects the interaction of helper cell and tumor cells which influence the dynamic of 

the both immune cells system.  



Andi Yusnaeni, Kasbawati and Syamsuddin Toaha  

22 | InPrime: Indonesian Journal of Pure and Applied Mathematics 
 

 

 
Figure 1. Schematic representation of tumor-immune system interaction model. 

 

The dynamic of the interaction of tumor-immune system in each compartment is given as delay 

differential equation as follows: 

𝑑𝑇(𝑡)

𝑑𝑡
= 𝑎𝑇(𝑡)[1 − 𝑏𝑇(𝑡)] − 𝑛𝐸(𝑡)𝑇(𝑡), (1) 

𝑑𝐸(𝑡)

𝑑𝑡
= 𝑠1 + 𝑘1

𝐸(𝑡−𝜏1)𝑇(𝑡−𝜏1)

𝛼+𝑇(𝑡−𝜏1)
− 𝑘2𝐸(𝑡 − 𝜏1)𝑇(𝑡 − 𝜏1) − 𝑑1𝐸(𝑡) + 𝜌𝐸(𝑡)𝐻(𝑡), (2) 

𝑑𝐻(𝑡)

𝑑𝑡
= 𝑠2 + 𝑘3𝐻(𝑡 − 𝜏2)𝑇(𝑡 − 𝜏2) − 𝑑2𝐻(𝑡). (3) 

Equation (1) shows the dynamic of the tumor cells which is influenced by its logistic growth with 

natural growth rate 𝑎 per day and carrying capacity 𝑏−1 cells. Reduction of the number of tumor cells 

is affected by the activated immune system where the effector cells travel via the blood vessels to reach 

the tumor, infiltrate it, recognize the tumor cells and kill them.  

Equation (2) presents the dynamic of effector cells which increase due to the response immune 

activation by the helper cells. The helper cells trigger the body’s response to infection such that the 

effector cells are activated with activation rate 𝜌 per cells per day. As we have mentioned before that 

the effector cells are relatively short-lived activated cells with natural lifespan of an average 1/𝑑1 days. 

The stimulation of the production of effector cells due to the invasion of tumor cells is modeled as a 

nonlinear function 𝑘1
𝐸(𝑡−𝜏1)𝑇(𝑡−𝜏1)

𝛼+𝑇(𝑡−𝜏1)
 with the maximum rate 𝑘1. Here, there exists a time delay 𝜏1 which 

influences the dynamic of effector cells due to the lag in the tumor stimulated proliferation of the 

effector cells. So, does for the decreasing rate of the effector cells due to its interaction with the tumor 

cells which also experiences a delay. We assume that there is a treatment such as gene therapy where 

activated effector cells are injected into the body with injection rate 𝑠1 cells per day. Such gene therapy 

includes transferring genetic material into a host cell (the region of tumor localization) to increase 

tumor antigenicity for better recognition by the host immune system [17]. 
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In the helper cells compartment, the dynamic is influenced by the constant production of helper 

cells in the bone marrow with rate production 𝑠2 cells per day. Hence, the helper T cells also play a 

role in helping the formation of effector cells to fight the tumor cells. However, the helper T cells 

need a certain time to mature in order to function more effectively against tumor cells. Therefore, 

there exists the second time lag 𝜏2 which represents the lag time for helper T cells to be mature. The 

helper T cells also have an average natural lifespan 1/𝑑1 days. Table 1 summarizes the definition of 

the parameters of model (1)-(3). The initial conditions applied to models (1) - (3) are 𝑇(0) =  𝑇0 > 0, 

𝐸(0) =  𝐸0 > 0, 𝐻(0) =  𝐻0 > 0. In the next section, variables 𝐸(𝑡 − 𝜏1), 𝑇(𝑡 − 𝜏1), 𝑇(𝑡 − 𝜏2), 

𝐻(𝑡 − 𝜏2) will be written as 𝐸𝜏1
, 𝑇𝜏1

, 𝑇𝜏2
and 𝐻𝜏2

, respectively. 

 
Table 1. Definition of the parameters. 

Par. Definition Unit Par. Definition Unit 

𝒂
 

Natural growth rate of tumor cells day-1 𝑘1 The activation rate of effector 

cell by tumor cells 

day-1 

𝒃−𝟏

 
Carrying capacity of the biological 

environment for tumor cells 

cell 𝑘2 Effector cell extinction rate due 

to interaction with tumor cells 

day-1 cell-1 

𝜶
 

The half of maximum immune 

reaction against tumor cells 

cell 𝑘3 The helper cells stimulation rate  day-1 cell-1 

𝝆 Activation rate of effector cells by 
helper cells 

day-1 cell-1 1/𝑑1 The natural lifespan of ECs day 

𝒏
 

The loss rate of tumor cell by 

effector cells interaction 

day-1 cell-1 1/𝑑2 The natural lifespan of HTCs day 

𝒔𝟏 
Injection rate of the effector cells 

into the region of tumor 

localization 

cell /day 𝜏1 The time lags between helper T 

cells injection and the 

maturation of effector cells. 

(1.5) days 

𝒔𝟐 The birth rate of cells produced in 

the bone marrow 

cell /day 𝜏2 The time lags of HTCs. (4) days 

 

3. ANALYTICAL RESULTS 

In this section we present analytical results of the model (1)-(3) including the study of the stability 
and the appearance of bifurcation phenomena for the model. First of all, we determine the steady state 
solutions of the model. Note that the appearance of delays in the system does not affect the steady-
state solution since it is unchanging in time. By taking the equations (1)-(3) equal to zero we obtain 

the steady-state solutions 𝑁0 = (𝑇0 , 𝐸0, 𝐻0) = (0,
𝑠1𝑑2

𝑑1𝑑2−𝜌𝑠2
,

𝑠2

𝑑2
) and 𝑁1 = (𝑇1 , 𝐸1, 𝐻1), where 𝑇1 =

𝑎−𝑛𝐸1

𝑎𝑏
, 𝐻1 =

𝑎𝑏𝑠2

𝑑2−𝑘3(𝑎−𝑛𝐸1)
, and 𝐸1 is the positive roots of a fourth order polynomial equation. The first 

solution refers to the tumor-free solution, while the second one shows the appearance of tumor cells 
in the future called immune-control solution. The tumor-free solution is positive if it fulfils the 
condition, 

C1:   𝑠2 <
𝑑1𝑑2

𝜌
, 
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which indicates that tumor-free solution can be achieved when the number of activated effector cells 
is high enough. In order to investigate the local stability of the system, we then linearize (1)-(3) around 
a steady-state solution, says 𝑁 = (𝑇, 𝐸, 𝐻), and we get the linearized system, 

�̇� = 𝐽0𝒙 + 𝐽1𝒙𝜏1 + 𝐽2𝒙𝜏2,             (4) 

with Jacobian matrices 

𝐽0 = [
𝑎(1 − 𝑏𝑇) − 𝑛𝐸 −𝑛𝑇 0

0 𝜌𝐻 − 𝑑1 𝜌𝐸
0 0 −𝑑2

], 𝐽1 = [
0 0 0

(𝑘1 − 𝑘2)𝐸 (𝑘1 − 𝑘2)𝑇 0
0 0 0

],  

𝐽2 = [
0 0 0
0 0 0

𝑘3𝐻 0 𝑘3𝑇
], and �̇� = [

�̇�
�̇�
�̇�

] ; 𝒙 = [
𝑇
𝐸
𝐻

] ; 𝒙𝜏1 = [
𝑇𝜏1

𝐸𝜏1

𝐻𝜏1

] ; 𝒙𝜏2 = [
𝑇𝜏2

𝐸𝜏2

𝐻𝜏2

]. 

The characteristic equation of (4) is 

𝑑𝑒𝑡(𝐽0 + 𝐽1𝑒−𝜆𝜏1 + 𝐽2𝑒−𝜆𝜏2 − 𝜆𝐼) = 0, 

or  

𝑑𝑒𝑡 [

𝑎(1 − 𝑏𝑇) − 𝑛𝐸 − 𝜆 −𝑛𝑇 0

(𝑘1 − 𝑘2)𝐸𝑒−𝜆𝜏1 𝜌𝐻 − 𝑑1 + (𝑘1 − 𝑘2)𝑇𝑒−𝜆𝜏1 − 𝜆 𝜌𝐸

𝑘3𝐻𝑒−𝜆𝜏2 0 𝑘3𝑇𝑒−𝜆𝜏2 − 𝑑2 − 𝜆

] = 0. 

Solving the determinant, it gives a cubic polynomial, 

𝑓(𝜆) = 𝜆3 + 𝛥1𝜆2 + 𝛥2𝜆 + (𝛥4𝜆 + 𝛥5)𝑒−𝜆(𝜏1+𝜏2) + (𝛥3𝜆2 − 𝛥6𝜆 + 𝛥7)𝑒−𝜆𝜏2 

+(𝛥8𝜆2 + 𝛥9𝜆 − 𝛥10)𝑒−𝜆𝜏1 + 𝛥11 = 0, (5) 

with  

Δ1 = 𝑢 + 𝑣 + 𝑑2, Δ2 = (𝑢 + 𝑣)𝑑2 − 𝑢𝑣, Δ3 = 𝑘3𝑇, Δ4 = −𝑛Δ3, Δ5 = 𝑛Δ3(𝑢 + 𝑚𝑇),  

Δ6 = (𝑢 + 𝑣)Δ3, Δ7 = 𝑢𝑣 − 𝑛𝜌𝐸𝐻Δ3, Δ8 = (𝑘1 − 𝑘2)𝑇, Δ9 = Δ8(𝑑2 − 𝑢) − 𝑛𝑚𝑇,  

Δ10 = (𝑢 + 𝑚𝑇)Δ8𝑑2, Δ11 = −𝑢𝑣𝑑2, 𝑢 = 𝑎(1 − 𝑏𝑇) − 𝑛𝐸, 𝑣 = 𝜌𝐻 − 𝑑1, 𝑚 = (𝑘1 − 𝑘2)𝐸 ,    

For 𝑁 = 𝑁0, we have 𝑇 = 0 such that 𝛥𝑖 = 0, 𝑖 = 3, … 6, 8, … 10. So, equation (5) becomes 

𝑓(𝜆) = 𝜆3 + 𝛥1𝜆2 + 𝛥2𝜆 + 𝛥11 + 𝛥7𝑒−𝜆𝜏2 = 0.       (6) 

We can observe that the stability of 𝑁0 is influenced by 𝜏2 only. It is not influenced by 𝜏1. If 𝜏2 = 0, 
the stability of 𝑁0 is determined by the roots of the third polynomial degree, 

𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 + 𝑎3 = 0. (7) 

where 𝑎1 = Δ1, 𝑎2 = Δ2, 𝑎3 = Δ7 + Δ11 . Following the Routh-Hurtwitz criteria, polynomial (7) has the 
roots with negative real parts if it fulfills the conditions: 

C2:   𝐻1 = 𝑎1 > 0, 𝐻2 = 𝑎1𝑎2 − 𝑎3 > 0, 𝐻3 = 𝑎1𝑎2𝑎3 − (𝑎3)2 > 0. 

Therefore, the steady-state 𝑁0 is locally asymptotically stable if it fulfils the conditions C1 and C2 
when 𝜏1 > 0 and 𝜏2 = 0.  
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For 𝑁 = 𝑁1, 𝑇 ≠ 0 such that there is no change in equation (5). The stability of 𝑁1 is determined 

by the both time delays, 𝜏1 and 𝜏2. However, we expect the stability of 𝑁0 rather than 𝑁1 since we 
expect the extinction of the tumor cells in the future. From the practical point of view, it is interesting 
to know the conditions that guarantee the stability of 𝑁0 such that we can control the system to achieve 
a tumor-free condition. Therefore, in the next analysis, we will investigate the stability of 𝑁0 whether 

it changes as 𝜏2 increases from the zero. We also interested to study the possibility of the appearance 

a Hopf bifurcation by considering 𝜏2 as the bifurcation parameter. 

Now consider equation (6). When the roots of (6) cross the imaginary axis to the right as 𝜏2 

increases then 𝜏2 is able to destabilize 𝑁0 and produces oscillations. To answer this hypothesis, let 

𝜔 > 0 and 𝜆 = 𝑖𝜔 is a pure imaginary root of (6). By substituting 𝜆 into (6), we get 

(𝑖𝜔)3 + 𝛥1(𝑖𝜔)2 + 𝛥2(𝑖𝜔) + 𝛥11 + 𝛥7𝑒−𝑖𝜔𝜏2 = 0,        (8) 

with 𝑒−𝑖𝜔𝜏2 = 𝑐𝑜𝑠(𝜔𝜏2) − 𝑖 𝑠𝑖𝑛(𝜔𝜏2). By separating the real and imaginary part of (8), we have 

𝛥7𝑠𝑖𝑛(𝜔𝜏2) = −𝜔3 + 𝛥2𝜔   and   𝛥7 𝑐𝑜𝑠(𝜔𝜏2) = 𝛥1𝜔2 − 𝛥11.  (9) 

By squaring and adding the both equations, we get the following equation 

𝜔6 + 𝑐1𝜔4 + 𝑐2𝜔2 + 𝑐3 = 0, (10) 

with 𝑐1 = 𝛥1
2 − 2𝛥2, 𝑐2 = 𝛥2

2 − 2𝛥1𝛥11 , 𝑐3 = 𝛥11
2 − 𝛥7

2.  Let 𝑧 = 𝜔2, then we have 

𝐺(𝑧) = 𝑧3 + 𝑐1𝑧2 + 𝑐2z + 𝑐3 = 0.          (11) 

Next, we need to find the conditions for which 𝐺(𝑧) has at least one positive root. We can observe 
that as 𝑧 → ∞, 𝐺(𝑧) → ∞ such that 𝐺(𝑧) has at least one positive root if 𝑐3 < 0. When 𝑐3 ≥ 0, 𝐺(𝑧) 
probably has or has no positive real roots. Using Lemma 2.2 in [18], we have the conditions for which 
𝐺(𝑧) has at least one positive root, i.e. 

a. If 𝑐3 < 0 then 𝐺(𝑧) has at least one positive root 

b. If 𝑐3 ≥ 0 and 𝑐1
2 − 3𝑐2 ≤ 0 then 𝐺(𝑧) has no positive roots 

c. If 𝑐3 ≥ 0 and 𝑐1
2 − 3𝑐2 > 0 then 𝐺(𝑧) has positive roots if and only if 𝑧1

∗ = 1

3
(−𝑐1 + √𝑐1

2 − 3𝑐2) >

0 and 𝐺(𝑧1
∗) ≤ 0 where 𝑧1

∗ is the local minimum of 𝐺(𝑧). 
Now, without loss of generality, suppose that 𝐺(𝑧) has three positive roots namely 𝑧1, 𝑧2, and 𝑧3. 

Therefore equation (10) has three positive roots, 𝜔𝑘 = √𝑧𝑘 , 𝑘 = 1,2,3. Solving equation (9) for 𝜏2 

yields, 

𝜔𝑘𝜏2 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝛥1𝜔2−𝛥11

𝛥7
) if 𝑠𝑖𝑛(𝜔𝑘𝜏2) > 0, that is if 

−𝜔3+𝛥2𝜔

𝛥7
> 0, and 

𝜔𝑘𝜏2 = 2π − 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝛥1𝜔2−𝛥11

𝛥7
) if 

−𝜔3+𝛥2𝜔

𝛥7
≤ 0,   𝑘 = 1,2,3. 

If we define  

𝜏2,𝑘
1,𝑗 = 1

𝜔𝑘
[𝑎𝑟𝑐𝑐𝑜𝑠 (

𝛥1𝜔2−𝛥11

𝛥7
) + 2𝑗π], 

𝜏2,𝑘
2,𝑗

= 1

𝜔𝑘
[2π − 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝛥1𝜔2−𝛥11

𝛥7
) + 2𝑗π], 
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for 𝑘 = 1,2,3, 𝑗 = 0,1,2, ⋯ then ±𝜔𝑘  is a pair of pure imaginary roots of (10) with 𝜏2,𝑘
1,𝑗

 and 𝜏2,𝑘
2,𝑗

. Let 

𝜏2
∗ = min

𝑘=1,2,3
{𝜏2,𝑘

1,0; 𝜏2,𝑘
2,0}. We then derive the transversality condition for the Hopf bifurcation at 𝜏2 = 𝜏2

∗. 

Differentiating equation (6) with respect to 𝜏2, we get 

𝑑𝑓(𝜆)

𝑑𝜆

𝑑𝜆

𝑑𝜏2
+

𝑑𝑓(𝜆)

𝑑𝜏2

𝑑𝜏2

𝑑𝜏2
= [3𝜆2 + 2𝛥1𝜆 + 𝛥2 − 𝜏2𝛥7𝑒−𝜆𝜏2]

𝑑𝜆

𝑑𝜏2
− 𝜆𝛥7𝑒−𝜆𝜏2 = 0.  

From equation (6), we have 

𝛥7𝑒−𝜆𝜏2 = −(𝜆3 + 𝛥1𝜆2 + 𝛥2𝜆 + 𝛥11), 

such that we have 

𝑑𝜆

𝑑𝜏2
=

−𝜆(𝜆3+𝛥1𝜆2+𝛥2𝜆+𝛥11)

[3𝜆2+2𝛥1𝜆+𝛥2]+𝜏2[𝜆3+𝛥1𝜆2+𝛥2𝜆+𝛥11]
, 

or 

(
𝑑𝜆

𝑑𝜏2
)

−1

= −
[3𝜆2+2𝛥1𝜆+𝛥2]

𝜆(𝜆3+𝛥1𝜆2+𝛥2𝜆+𝛥11)
−

𝜏2

𝜆
. (12) 

Evaluating (12) at 𝜏2 = 𝜏2
∗ (corresponding to 𝜆 = 𝑖𝜔∗) and taking its real part, we get  

𝑅𝑒 [(
𝑑𝜆

𝑑𝜏2
)

−1
|

𝜏2=𝜏2
∗
] = 𝑅𝑒 [−

[3(𝑖𝜔∗)2+2𝛥1(𝑖𝜔∗)+𝛥2]

[(𝑖𝜔∗)4+𝛥1(𝑖𝜔∗)3+𝛥2(𝑖𝜔∗)2+𝛥11(𝑖𝜔∗)]
−

𝜏2

(𝑖𝜔∗)
], 

                  = 𝑅𝑒 [
[3𝜔∗2

−𝛥2]−𝑖2𝛥1𝜔∗

[𝜔∗4−𝛥2𝜔∗2]+𝑖[𝛥11𝜔∗−𝛥1𝜔∗3]
+

𝑖𝜔∗𝜏2

3𝜔∗2 ], 

                   = [
3𝜔∗4

+(2𝛥1
2−4𝛥2)𝜔∗2

+(𝛥2
2−2𝛥1𝛥11)

[𝜔∗3−𝛥2𝜔∗]
2

+[𝛥11−𝛥1𝜔∗2]
2 ]. 

From (11) we have 𝐺′(𝑧) = 3𝑧2 + (2𝛥1
2 − 4𝛥2)z + (𝛥2

2 − 2𝛥1𝛥11). Thus 

𝑅𝑒 [(
𝑑𝜆

𝑑𝜏2
)

−1
|

𝜏2=𝜏2
∗
] = [

𝐺′(𝜔∗2)

[𝜔∗3−𝛥2𝜔∗]
2

+[𝛥11−𝛥1𝜔∗2]
2]. 

Therefore, we get  

𝑠𝑖𝑔𝑛 {
𝑑𝑅𝑒(𝜆)

𝑑𝜏2
|

𝜏2=𝜏2
∗
} = 𝑠𝑖𝑔𝑛 {𝑅𝑒 [(

𝑑𝜆

𝑑𝜏2
)

−1
|

𝜏2=𝜏2
∗
]} = 𝑠𝑖𝑔𝑛{𝐺′(𝜔∗2)}. 

It implies that the transversality condition for the Hopf bifurcation at 𝜏2 = 𝜏2
∗ holds if 𝐺′(𝜔∗2) ≠ 0. 

Summarizing our analytical results and using the Hopf bifurcation theorem in [19], we have the 

following theorem. 

Theorem 1. For 𝜏1, 𝜏2 > 0, suppose conditions C1 and C2 are fulfilled. If either 𝑐3 < 0 or 𝑐3 ≥ 0, 

𝑐1
2 − 3𝑐2 > 0, 𝑧1

∗ > 0 and 𝐺(𝑧1
∗) ≤ 0 then the tumor-free steady state 𝑁0 = (0,

𝑠1𝑑2

𝑑1𝑑2−𝜌𝑠2
,

𝑠2

𝑑2
) is locally 

asymptotically stable for 0 < 𝜏2 < 𝜏2
∗ where 𝜏2

∗ = 𝑚𝑖𝑛
𝑘=1,2,3

{𝜏2,𝑘
1,0; 𝜏2,𝑘

2,0}, with 

𝜏2,𝑘
1,0 = 1

𝜔𝑘
[𝑎𝑟𝑐𝑐𝑜𝑠 (

𝛥1𝜔2−𝛥11

𝛥7
)] and 𝜏2,𝑘

2,𝑗
= 1

𝜔𝑘
[2𝜋 − 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝛥1𝜔2−𝛥11

𝛥7
)]. 
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Furthermore, if 𝐺′(𝜔∗2) ≠ 0 then the system (1) − (3) undergoes a Hopf bifurcation to periodic 

solutions at 𝑁0 when 𝜏2 = 𝜏2
∗. 

4. RESULT AND CONCLUSION 

In the previous section, we have analytically investigated the possibilities of the existence of Hopf 
bifurcation in the tumor-immune system model. We focus to study the stability of the tumor-free 
steady state due to its important role in the study of the extinction of tumor cells. We found that the 
time delays play an important role in bringing up stability changes near the tumor-free equilibrium 
point. Among the two-time delays, delay in the stimulation of the production of helper cell take an 
important part in affecting the stability of the tumor-free steady state. There exists a critical lag for 
stimulation of the helper cells that can destabilize the tumor-free steady state. When the stimulation 
delay is lower than the critical delay, the stability of the tumor-free steady state can be preserved. It 
means that the helper cells will activate effector cells more quickly such that the tumor cells can be 
destroyed faster. However, when the delay in the stimulation of the helper cells production is high 
enough, even higher than the critical one, then it will worsen the body condition where the number 
of tumor cells will growth rapidly and probably converge to the immune-control solution. Indeed, 
when this condition occurs, some prevention strategies should be applied to control the growth of 
these tumor cells. For the gene therapy effect, we can observe from the analytical results that the 
constant injection of the effector cells affects the increasing of activated effector cells itself. But it is 
not directly affecting the stability of the system as a bifurcation parameter. That is, the stability of the 
tumor immune system is mainly influenced by the internal system which naturally occurs. This result 
can be a guidance to study the system further regarding rapidly freeing the system from tumor cell 
invasion. Control variable can be involved in the model to find an optimal stimulation function of 
proliferation of immune cells.   
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