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Abstract  
In this paper, we defined and studied a new distribution called the odd exponentiated half-logistic Burr 

III distribution. Properties such as the linear representation of the probability density function (PDF) 

of the distribution, quantile function, ordinary and incomplete moments, moment generating function 

and distribution of the order statistic were derived. The PDF and hazard rate function were found to 

be capable of having various shapes, making the new distribution highly flexible. In particular, the 

hazard rate function can be nonincreasing, unimodal and nondecreasing. It can also have the bathtub 

shape among other non- monotone shapes. The maximum likelihood procedure was used to estimate 

the parameters of the new model. We gave two numerical examples to illustrate the usefulness and the 

ability of the distribution to provide better fits to a number of data sets than several distributions in 

existence. 

Keywords: Burr III distribution; maximum likelihood procedure; moments; odd exponentiated half-
logistic-G family; order statistics. 
 

Abstrak 
Pada artikel ini akan didefinisikan dan dipelajari mengenai distribusi baru yang disebut distribusi Burr III setengah 

logistik tereksponen ganjil. Kami menurunkan beberapa sifat dari distribusi tersebut yaitu representasi linier dari fungsi 

kepadatan peluang (FKP), fungsi kuantil, momen biasa dan momen tidak lengkap, fungsi pembangkit momen dan 

distribusi statistik terurut. Fungsi FKP dan fungsi tingkat hazard diperoleh memiliki bermacam-macam bentuk, 

membuat distribusi baru ini sangat fleksibel. Secara khusus, fungsi tingkat hazard dapat berupa fungsi taknaik, 

bermodus tunggal, bisa juga tidak turun. Selain itu, fungsi ini juga dapat berbentuk seperti bak mandi di antara bentuk-

bentuk tak monoton lainnya. Prosedur kemungkinan maksimum digunakan untuk mengestimasi parameter model yang 

baru. Kami memberikan dua contoh numerik untuk mengilustrasikan kegunaan dan kemampuan distribusi untuk 

menghasilkan kesesuaian yang lebih baik pada sejumlah kumpulan data dibandingkan beberapa distribusi yang ada. 

Kata kunci: distribusi Burr III; prosedur kemungkinan maksimum; momen; keluarga setengah logistik-G teresponen 

ganjil; statistic terurut. 

 

 

1. INTRODUCTION 

The Burr III (BIII) distribution, which is basically the distribution of the inverse transformation 
of the Burr XII random variable has found applications in actuarial science, environmental science, 
meteorology, reliability theory and survival analysis. The BIII distribution that depends on two 

parameters (𝑎 and 𝑏), where 𝑎 and 𝑏 are shape parameters, has the cumulative distribution function 
(CDF) and probability density function (PDF) defined by  

𝐺(𝑥, 𝑎, 𝑏) = (1 + 𝑥−𝑎)−𝑏 , 𝑥 > 0,  𝑎, 𝑏 > 0,               (1) 
and 
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𝑔(𝑥, 𝑎, 𝑏) = 𝑎𝑏𝑥−(𝑎+1)(1 + 𝑥−𝑎)−(𝑏+1),𝑥 > 0,  𝑎, 𝑏 > 0,           (2) 

respectively.  

Being one of the baseline distributions, there are situations the BIII distribution does not 

reasonably fit the data under consideration. In such situations, a generalization of the distribution can 

be considered. Several generalizations of the BIII distribution abound in the statistical science 

literature. [1] introduced the beta BIII distribution as well as the log-beta BIII regression model for 

analyzing censored data. The McDonald BIII distribution has been studied by [2], with emphasis on 

its mathematical properties and applications. A generalization of the BIII distribution called the 

modified BIII distribution has been introduced by [3]. In their paper, they showed categorically the 

relationships between the modified BIII distribution and each of the generalized inverse Weibull and 

loglogistic distributions. The transmuted and generalized BIII distributions were developed by [4] and 

[5], respectively. In another generalization of the BIII distribution, [6] introduced the odd BIII 

distributions. A special case of the gamma-generated family of distributions called the gamma BIII 

distribution was defined by [7]. Following the findings made by the authors, the hazard rate function 

of the distribution can be a decreasing, unimodal or decreasing-increasing –decreasing function.  The 

log-gamma regression was also proposed by [7]. 

In this paper, we introduce and study a new extension of the BIII distribution called the odd 

exponentiated half logistic BIII (OEHLBIII) distribution, which can be sufficiently flexible to provide 

good fits to data from various fields. The new distribution is defined based on the odd exponentiated 

half logistic-G (OEHL-G) family of distributions introduced by [8].  

Consider a parameter vector 𝝃 and the corresponding baseline CDF 𝐺(𝑥, 𝝃). Let 𝑔(𝑥, 𝝃) be the 

baseline PDF.  For 𝑥𝜖ℝ and two positive shape parameters 𝛼 and 𝜆, the CDF of the OEHL-G family 

has the form 

𝐹(𝑥, 𝛼, 𝜆, 𝝃) = (
1−exp[

−𝜆𝐺(𝑥,𝝃)

1−𝐺(𝑥,𝝃)
]

1+exp[
−𝜆𝐺(𝑥,𝝃)

1−𝐺(𝑥,𝝃)
]
)

𝛼

.          (3) 

Associated with the CDF in (3) is the PDF 

𝑓(𝑥, 𝛼, 𝜆, 𝝃) = 2𝛼𝜆𝑔(𝑥, 𝝃)
𝑒𝑥𝑝[

−𝜆𝐺(𝑥,𝝃)

1−𝐺(𝑥,𝝃)
][1−𝑒𝑥𝑝[

−𝜆𝐺(𝑥,𝝃)

1−𝐺(𝑥,𝝃)
]]

[1−𝐺(𝑥,𝝃)]2[1+𝑒𝑥𝑝[
−𝜆𝐺(𝑥,𝝃)

1−𝐺(𝑥,𝝃)
]]
𝛼+1

𝛼−1

.        (4) 

Now, we proceed to determine the CDF and PDF of the OEHLBIII distribution. Substituting the 

CDF (1) into (3), the CDF of the OEHLBIII distribution is found to be 

         𝐹(𝑥, 𝛼, 𝜆, 𝑎, 𝑏) = (
1−𝑒𝑥𝑝(

𝜆

1−(1+𝑥−𝑎)𝑏
)

1+𝑒𝑥𝑝(
𝜆

1−(1+𝑥−𝑎)𝑏
)
)

𝛼

, 𝛼, 𝜆, 𝑎, 𝑏 > 0, 𝑥 > 0.         (5) 

 By differentiating (5) with respect to 𝑥, we find that the OEHLBIII distribution has the PDF 

𝑓(𝑥, 𝛼, 𝜆, 𝑎, 𝑏) =
2𝛼𝜆𝑎𝑏𝑥−(𝑎+1)(1+𝑥−𝑎)−(𝑏+1) 𝑒𝑥𝑝(

𝜆

1−(1+𝑥−𝑎)𝑏
)(1−𝑒𝑥𝑝(

𝜆

1−(1+𝑥−𝑎)𝑏
))

(1−(1+𝑥−𝑎)−𝑏)
2
(1+𝑒𝑥𝑝(

𝜆

1−(1+𝑥−𝑎)𝑏
))
𝛼+1

𝛼−1

.             (6) 
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In (5) and (6), the parameters 𝛼, 𝜆, 𝑎 and 𝑏 are positive and shape parameters, making the OEHLBIII 

distribution highly flexible.  

Next, we examine plots of the PDF and hazard rate function (HRF) of the distribution. The 

OEHLBIII PDF plots for some selected values of its parameters are presented in Figure 1. 

  

  

The plots reveal that the PDF of the distribution can be left-skewed, right-skewed, nondecreasing, 
nonincreasing or unimodal. Given the OEHLBIII distribution, the hazard rate function (HRF) is 

defined to be 

ℎ(𝑥) =
𝑓(𝑥,𝛼,𝜆,𝑎,𝑏)

1−𝐹(𝑥,𝛼,𝜆,𝑎,𝑏)
=

𝑓(𝑥)

1−𝐹(𝑥)
. 

For the various shapes of the HRF, we consider Figure 2. In Figure 2, it is obvious that the HRF is 

capable of having any bathtub, upside down bathtub and L shapes. Additionally, the HRF can also be 

an increasing function or unimodal. 

Figure 1. PDF of the OEHLBIII distribution for some selected parameter values. 
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Figure 2. HRF of the OEHLBIII distribution for some selected parameter values. 

2. PROPERTIES OF THE NEW DISTRIBUTION 

In this section, we provide some mathematical properties of the new distribution. 

2.1. Linear Representation of the OEHLBIII Distribution 

The PDF (6) can be written as 

𝑓(𝑥) = ∑ 𝑎𝑘,𝑙
∞
𝑘,𝑙=0 ℎ𝑘+𝑙+1(𝑥),                 (7) 

such that 𝑎𝑘,1 = 2𝛼𝜆∑
(−1)𝑗+𝑘+𝑙(𝜆(𝑖+𝑗+𝑘))

𝑘

𝑘!(𝑘+𝑙+1)
∞
𝑖,𝑗=0 (

−𝛼 − 1
𝑖

) (
𝛼 − 1
𝑗

)(
−𝑘 − 2
𝑙

) and ℎ𝑘+𝑙+1(𝑥) = (𝑘 + 𝑙 +

1)𝑎𝑏𝑥−(𝑎+1)(1 + 𝑥−𝑎)−𝑏(𝑘+𝑙+1)−1 is the Burr III (BIII) density with power parameters a and b(k+l+1). 

With (7), it is possible to derive mathematical properties of the OEHLBIII distribution using those of 

the BIII distribution. Let 𝑍 be a BIII random variable. If ra  , the r-th raw moment and incomplete 

moment of 𝑍 are  

𝜇𝑟
′ = 𝑏𝛣2 (1 −

𝑟

𝑎
, 𝑏 +

𝑟

𝑎
),             (8) 

and  
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𝜑(𝑡) = ∫ 𝑥𝑟
𝑡

0
𝑔(𝑥, 𝑎, 𝑏)𝑑𝑥 = 𝑏𝐵2 (𝑡

−
1

𝑎 , 1 −
𝑟

𝑎
, 𝑏 +

𝑟

𝑎
),                                    (9) 

respectively, where 

𝐵2(𝑎, 𝑏) = ∫ 𝑧𝑎−1(𝑧 + 1)−(𝑎+𝑏)
∞

0
𝑑𝑧, and 𝐵2(𝑡, 𝑎, 𝑏) = ∫ 𝑧𝑎−1(𝑧 + 1)−(𝑎+𝑏)

∞

𝑡
𝑑𝑧, 

are the beta and incomplete beta functions of the second kind. 

2.2. Quantile Function and Random Number Generation 

Suppose F(Q(w)) is the CDF of the OEHLBIII distribution evaluated at 𝑥 = 𝑄(𝑤). 𝑄(𝑤) is 

called the quantile function for the distribution if 𝐹(𝑄(𝑤)) = 𝑤, 0 < 𝑤 < 1. Therefore 

𝑄(𝑤) =

(

 
 
(
𝑙𝑜𝑔𝑒(1−𝑤

1
𝛼)−𝑙𝑜𝑔𝑒(1+𝑤

1
𝛼)−𝜆

𝑙𝑜𝑔𝑒(1−𝑤
1
𝛼)−𝑙𝑜𝑔𝑒(1+𝑤

1
𝛼)

)

1

𝑏

− 1

)

 
 

−
1

𝑎

.         (10) 

Let 𝑈 denote a standard uniformly distributed variable. That is 𝑈~𝑈(0,1). By applying the inverse 

CDF technique, it can be shown that the variable 

𝑋 =

(

 
 
(
log𝑒(1−𝑈

1
𝛼)−log𝑒(1+𝑈

1
𝛼)−𝜆

log𝑒(1−𝑈
1
𝛼)−log𝑒(1+𝑈

1
𝛼)

)

1

𝑏

− 1

)

 
 

−
1

𝑎

.                          (11) 

has the OEHLBIII distribution with parameters 𝛼, 𝜆 , 𝑎 and 𝑏. In this regard, we write 

𝑋~𝑂𝐸𝐻𝐿𝐵𝐼𝐼𝐼(𝛼, 𝜆 , 𝑎, 𝑏).  Hence, for fixed values of  𝛼, 𝜆 , 𝑎 and 𝑏, the OEHLBIII distributed data 

can be simulated using the formula 

𝑥 =

(

 
 
(
𝑙𝑜𝑔𝑒(1−𝑢

1
𝛼)−𝑙𝑜𝑔𝑒(1+𝑢

1
𝛼)−𝜆

𝑙𝑜𝑔𝑒(1−𝑢
1
𝛼)−𝑙𝑜𝑔𝑒(1+𝑢

1
𝛼)

)

1

𝑏

− 1

)

 
 

−
1

𝑎

,           (12) 

where 0 < 𝑢 < 1 and 𝑢 is a random observation on 𝑈.  

2.3. Raw and Incomplete Moments 

       For 𝑎 > 𝑟  and with (8), the 𝑟-th raw moment of the OEHLBIII variable 𝑋 is  

 𝜇𝑟
′ = 𝑏∑ 𝑎𝑘,𝑙(𝑘 + 𝑙 + 1)𝛽2 (1 −

𝑟

𝑎
, 𝑏(𝑘 + 𝑙 + 1) +

𝑟

𝑎
)∞

𝑘,𝑙=0 .   (13) 

The mean of 𝑋 corresponds to 𝑟 = 1. The mean, variance, skewness and kurtosis of the distribution 

for various values of the parameters are shown in Table 1. Table 1 indicates that if 𝛼, 𝑎 and 𝑏 are 

fixed, the mean and variance of the OEHLBIII distribution decrease as 𝜆  increases. Additionally, the 

kurtosis is an increasing function of 𝜆.  

 



Emmanuel W. Okereke1* and Johnson Ohakwe  

12 | InPrime: Indonesian Journal of Pure and Applied Mathematics 
 

Table 1. Mean, Variance, Skewness and Kurtosis for Some Parameter Values of OEHLBIII Distribution 

𝜶 𝝀 𝒂 𝒃   Mean Variance   Skewness   Kurtosis 

0.5 0.5 0.5 0.5 1.4952 16.3649 7.3560 106.3337 

0.5 1.5 0.5 0.5 0.1213 0.1407 8.5831 144.7057 

0.5 2.5 0.5 0.5 0.0339 0.0133 9.7117 186.2283 

0.5 3.5 0.5 0.5 0.0140 0.0026 10.4446 224.0405 

0.5 5.0 0.5 0.5 0.0052 0.0005 12.1493 297.4591 

0.5 0.5 1.5 2.0 2.1803 2.7013 1.0580 4.1035 

0.5 1.5 1.5 2.0 1.1628 0.6470 0.9569 3.8894 

0.5 2.5 1.5 2.0 0.8879 0.3432 0.8784 3.7117 

0.5 3.5 1.5 2.0 0.7496 0.2296 0.8187 3.5722 

0.5 5.0 1.5 2.0 0.6309 0.1524 0.7499 3.4090 

0.5 0.5 1.5 0.5 0.6699 0.4270 1.2053 2.7289 

1.5 0.5 1.5 0.5 1.2416 0.4471 0.6626 3.5325 

2.5 0.5 1.5 0.5 1.5187 0.4067 0.6161 3.6295 

3.5 0.5 1.5 0.5 1.6947 0.3776 0.6253 3.7253 

5.0 0.5 1.5 0.5 1.8704 0.3625 0.4615 4.2683 

1.5 2.0 0.5 2.5 10.1153 161.8494 3.8169 31.5417 

1.5 2.0 1.5 2.5 1.8939 0.5400 0.6395 3.6150 

1.5 2.0 2.5 2.5 1.4401 0.1164 0.1752 2.9700 

1.5 2.0 3.5 2.5 1.2900 0.0487 -0.0054 2.6650 

1.5 2.0 5.0 2.5 1.1913 0.0209 -0.2309 3.4431 

1.5 2.5 2.0 0.5 0.4167 0.0444 0.4697 3.0577 

1.5 2.5 2.0 1.5 1.0504 0.1138 0.3016 3.1239 

1.5 2.5 2.0 2.5 1.4570 0.1732 0.3340 3.1591 

1.5 2.5 2.0 3.5 1.7769 0.2313 0.3598 3.1762 

1.5 2.5 2.0 5.0 2.1719 0.3185 0.3800 3.1950 

 

If  𝜆, 𝑎 and 𝑏 are kept constant, the mean increases as 𝛼 increases. Holding 𝛼, 𝜆 and 𝑏 constant 

results in the decreasing values of the mean, variance, skewness and kurtosis as 𝑎 increases. Mean, 

variance and kurtosis increase as 𝑏 increases provided the other parameters are constant. Using (7) 

and (9), the 𝑟-th incomplete moment of the distribution is found to be  

𝜙𝑟(𝑡) = 𝑏∑ 𝑎𝑘,𝑙(𝑘 + 𝑙 + 1)𝛽2 (𝑡
−
1

𝑎, 1 −
𝑟

𝑎
, 𝑏(𝑘 + 𝑙 + 1) +

𝑟

𝑎
)∞

𝑘,𝑙=0 .                  (14) 

2.4. Moment Generating Function 

We can express the MGF of the OEHLBIII distribution as  

𝑀𝑋(𝑡) = ∑ 𝑎𝑘,𝑙
∞
𝑘,𝑙=0 𝑀𝑏(𝑘+𝑙+1)(𝑡),             (15) 

where 𝑀𝑏(𝑘+𝑙+1)(𝑡) is the MGF of the BIII distribution with parameters 𝑎 and 𝑏(𝑘 + 𝑙 + 1). [1] have 

derived the MGF of a three-parameter BIII distribution with two shape parameters 𝛼 and 𝛽 and a 

scale parameter 𝑠, leading to the formula 

  𝑀𝐵𝐼𝐼𝐼(𝑡) =
𝛽𝑠𝑚

𝑝
𝐼′ (−𝑠𝑡,

𝛽𝑚

𝑝
− 1,

𝑚

𝑝
, −𝛽 − 1) , 𝑡 < 0,                               (16) 
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where 𝛼 =
𝑚

𝑝
, such that both m and p are positive integers. Next, we consider a special case of (16) in 

which 𝛼 = 𝑎, 𝛽 = 𝑏 and 𝑠 = 1to obtain 

 𝑀𝑏(𝑘+𝑙+1)(𝑡) = 𝑎𝑏𝐼
′(−𝑡, 𝑎𝑏 − 1, 𝑎, −𝑏 − 1).                                      (17) 

Therefore 𝑀𝑋(𝑡) = 𝑎𝑏∑ 𝑎𝑘,𝑙
∞
𝑘,𝑙=0 𝐼′(−𝑡, 𝑎𝑏 − 1, 𝑎, −𝑏 − 1), where 

𝐼′(−𝑡, 𝑎𝑏 − 1, 𝑎, −𝑏 − 1) = ∫ 𝑥𝑎𝑏−1(1 + 𝑥𝑎)−𝑏−1 𝑒𝑥𝑝(𝑡𝑥) 𝑑𝑥
∞

0

. 

2.5. Order Statistics 

Suppose we have a random sample  𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑛 of size n from the OEHLBIII distribution 

and the corresponding order statistics 𝑋(1), 𝑋(2), 𝑋(3), . . . , 𝑋(𝑛). The pdf of the 𝑖-th order statistic can 

be written as [9] 

 𝑓𝑖:𝑛(𝑥) =
𝑛!

(𝑖−1)!(𝑛−1)!
𝑓(𝑥)∑ (−1)𝑛−𝑖

𝑗=0

𝑗
(
𝑛 − 𝑖
𝑗

)𝐹𝑖+𝑗−1(𝑥).        (18) 

By applying Equation (20) in [8], we have 

𝑓(𝑥)𝐹𝑖+𝑗−1(𝑥) = ∑
2𝛼𝜆𝑘+1𝑎𝑏(−1)𝑠+𝑘+𝑙𝑥−(𝑎+1)(1+𝑥−𝑎)−𝑏(𝑘+2)−1

𝑘!(𝑠+𝑤+1)−𝑘
∞
𝑠,𝑤,𝑘,𝑙=0 (

𝛼(𝑖 + 𝑗) − 1
        𝑠

) 

× (
−𝛼(𝑖 + 𝑗) − 1
          𝑤

) (−𝑘 − 2
   𝑙

)   .                       (19) 

Substituting (19) into (18) leads to  

𝑓𝑖:𝑛(𝑥) = ∑ 𝑏𝑘,𝑙
∞
𝑘,𝑙=0 ℎ𝑏(𝑘+𝑙+1),                                          (20)  

where ℎ𝑏(𝑘+𝑙+1)  refers to the BIII density with parameters 𝑎 and 𝑏(𝑘 + 𝑙 + 1) and  

𝑏𝑘,𝑙 =∑ ∑
2𝛼𝜆𝑘+1𝑎𝑏(−1)𝑗+𝑘+𝑙+𝑠

𝑘! (𝑘 + 𝑙 + 1)(𝑠 + 𝑤 + 1)−𝑘
(
𝛼(𝑖 + 𝑗) − 1
⥂⥂ 𝑠

) (
−𝛼(𝑖 + 𝑗) − 1
⥂⥂ 𝑤

)(
−𝑘 − 2
𝑙

) .

∞

𝑠,𝑤=0

𝑛−𝑖

𝑗=0

 

Furthermore, the 𝑟-th moment of the 𝑖-th order statistic is 

 𝐸(𝑋𝑖:𝑛
𝑟) = 𝑏∑ 𝑏𝑘,𝑙

∞
𝑘,𝑙=0 (𝑘 + 𝑙 + 1)𝛽2 (1 −

𝑟

𝑎
, 𝑏(𝑘 + 𝑙 + 1) +

𝑟

𝑎
).             (21) 

3. ESTIMATION 

The maximum likelihood estimation of the parameters of the OEHLBIII distribution is 

implemented by maximizing the associated likelihood function.  For a random sample of size n from 

the OEHLBIII distribution, the log-likelihood function is  

𝑙𝑜𝑔𝐿 = 𝑛 𝑙𝑜𝑔(2𝛼𝜆𝑎𝑏) − (𝑎 + 1)∑𝑙𝑜𝑔𝑥𝑖

𝑛

𝑖=1

− (𝑏 + 1)∑𝑙𝑜𝑔(1 + 𝑥𝑖
−𝑎)

𝑛

𝑖=1

+ 𝜆∑𝑡𝑖

𝑛

𝑖=1

 

+(𝛼 − 1)∑ 𝑙𝑜𝑔(1 − 𝑒𝑥𝑝( 𝜆𝑡𝑖)) − 2∑ 𝑙𝑜𝑔(1 − (1 + 𝑥𝑖
−𝑎)−𝑏) − (𝛼 + 1) ×𝑛

𝑖=1
𝑛
𝑖=1

∑ 𝑙𝑜𝑔(1 + 𝑒𝑥𝑝(𝜆𝑡𝑖))
𝑛
𝑖=1 ,  
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where 𝑡𝑖 = (1 − (1 + 𝑥𝑖
−𝑎)𝑏)

−1
. 

The partial derivatives associated with 𝑙𝑜𝑔 𝐿 are 

𝜕 𝑙𝑜𝑔 𝐿

𝜕𝛼
=
𝑛

𝛼
+∑ 𝑙𝑜𝑔(1 − 𝑒𝑥𝑝(𝜆𝑡𝑖))

𝑛
𝑖=1 −∑ 𝑙𝑜𝑔(1 + 𝑒𝑥𝑝(𝜆𝑡𝑖)) ,

𝑛
𝑖=1                                                        

𝜕 𝑙𝑜𝑔 𝐿

𝜕𝜆
=
𝑛

𝜆
+∑ 𝑡𝑖

𝑛
𝑖=1 − (𝛼 − 1)∑

𝑡𝑖 𝑒𝑥𝑝(𝜆𝑡𝑖)

1−𝑒𝑥𝑝(𝜆𝑡𝑖)
𝑛
𝑖=1 − (𝛼 + 1)∑

𝑡𝑖 𝑒𝑥𝑝(𝜆𝑡𝑖)

1+𝑒𝑥𝑝(𝜆𝑡𝑖)
,𝑛

𝑖=1       

𝜕 𝑙𝑜𝑔 𝐿

𝜕𝑎
=
𝑛

𝑎
−∑𝑙𝑜𝑔 𝑥𝑖

𝑛

𝑖=1

+ (𝑏 + 1)∑
𝑥𝑖
−𝑎 𝑙𝑜𝑔 𝑥𝑖
1 + 𝑥𝑖

−𝑎

𝑛

𝑖=1

− 𝜆𝑏∑𝑥𝑖
−𝑎(1 + 𝑥𝑖

−𝑎)𝑏−1𝑡𝑖
2 𝑙𝑜𝑔 𝑥𝑖

𝑛

𝑖=1

 

+𝜆𝑏(𝛼 − 1)∑
𝑥𝑖
−𝑎(1 + 𝑥𝑖

−𝑎)𝑏−1𝑡𝑖
2 𝑒𝑥𝑝(𝜆𝑡𝑖) 𝑙𝑜𝑔𝑥𝑖

1 − 𝑒𝑥𝑝(𝜆𝑡𝑖)

𝑛

𝑖=1

 

+2𝑏∑
𝑥𝑖
−𝑎 𝑙𝑜𝑔𝑥𝑖

(1 − (1 + 𝑥𝑖
−𝑎)−𝑏)(1 + 𝑥𝑖

−𝑎)𝑏+1

𝑛

𝑖=1

 

+𝜆𝑏(𝛼 + 1)∑
𝑥𝑖
−𝑎(1+𝑥𝑖

−𝑎)𝑏−1𝑡𝑖
2 𝑒𝑥𝑝(𝜆𝑡𝑖) 𝑙𝑜𝑔 𝑥𝑖

1+𝑒𝑥𝑝(𝜆𝑡𝑖)
𝑛
𝑖=1                                          

and  

𝜕 𝑙𝑜𝑔𝐿

𝜕𝑏
=
𝑛

𝑏
−∑𝑙𝑜𝑔(1 + 𝑥𝑖

−𝑎) + 𝜆

𝑛

𝑖=1

∑(1 + 𝑥𝑖
−𝑎)𝑏𝑡𝑖

2 𝑙𝑜𝑔(1 + 𝑥𝑖
−𝑎)

𝑛

𝑖=1

 

−𝜆(𝛼 − 1)∑
(1 + 𝑥𝑖

−𝑎)𝑏𝑡𝑖
2 𝑒𝑥𝑝(𝜆𝑡𝑖) 𝑙𝑜𝑔(1 + 𝑥𝑖

−𝑎)

1 − 𝑒𝑥𝑝(𝜆𝑡𝑖)

𝑛

𝑖=1

 

−2∑
(1 + 𝑥𝑖

−𝑎)−𝑏 𝑙𝑜𝑔(1 + 𝑥𝑖
−𝑎)

1 − (1 + 𝑥𝑖
−𝑎)−𝑏

𝑛

𝑖=1

− 𝜆(𝛼 + 1)∑
(1 + 𝑥𝑖

−𝑎)𝑏𝑡𝑖
2 𝑒𝑥𝑝(𝜆𝑡𝑖) 𝑙𝑜𝑔(1 + 𝑥𝑖

−𝑎)

1 + 𝑒𝑥𝑝(𝜆𝑡𝑖)
.

𝑛

𝑖=1

 

Finding the maximum likelihood estimates of the respective parameters amounts to solving the 

equations 
𝜕 𝑙𝑜𝑔 𝐿

𝜕𝛼
= 0, 

𝜕 𝑙𝑜𝑔 𝐿

𝜕𝜆
= 0, 

𝜕 𝑙𝑜𝑔 𝐿

𝜕𝑎
= 0 and 

𝜕 𝑙𝑜𝑔 𝐿

𝜕𝑏
= 0 simultaneously. Since the analytical 

solution of the equations cannot be found, a numerical approach to solving the equations may be 

considered.  

4. APPLICATIONS 

In this section, we illustrate the flexibility and applicability of OEHLBIII distribution 

(OEHLBIIID) using two real data sets. The first data (Data 1) comprising the annual maximum daily 

precipitation data (in millimeters) which was reported in Busan, Korea, from 1904 to 2011 are 

recorded in Table 2. Data 1 have been modelled by authors such as [10] [11] [12] [13]. The second 

data set (Data 2) was reported by [14] and subsequently modelled by [3].  The data (fracture toughness 

MPa m1/2 data from the material Alumina) are presented in Table 3. 
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Table 2. Annual maximum daily precipitation data 

24.8,140.9,54.1,153.5,47.9,165.5,68.5,153.1,254.7,175.3,87.6,150.6,147.9,354.7,128.5,150.4, 
119.2,69.7,185.1,153.4,121.7,99.3,126.9,150.1,149.1,143,125.2,97.2,179.3,125.8,101,89.8, 
54.6,283.9,94.3,165.4,48.3,69.2,147.1,114.2,159.4,114.9,58.5,76.6,20.7,107.1,244.5,126,122.2,219.9,153.2,145.3,101.9,13
5.3,103.1,74.7,174,126,144.9,226.3,96.2,149.3,122.3,164.8,188.6,273.2,61.2,84.3,130.5,96.2,155.8,194.6,92,131,137,106.
8,131.6,268.2,124.5,147.8,294.6, 
101.6,103.1,247.5,140.2,153.3,91.8,79.4,149.2,168.6,127.7,332.8,261.6,122.9,273.4,178,177, 
108.5,115,241,76,127.5,190,259.5,301.5. 
 

Table 3. Fracture toughness data 

5.5, 5, 4.9, 6.4, 5.1, 5.2, 5.2, 5, 4.7, 4, 4.5, 4.2, 4.1, 4.56, 5.01, 4.7, 3.13, 3.12, 2.68, 2.77, 2.7, 2.36, 4.38, 5.73, 4.35, 6.81, 
1.91,  
2.66, 2.61, 1.68, 2.04, 2.08, 2.13, 3.8, 3.73, 3.71, 3.28, 3.9, 4, 3.8, 4.1, 3.9, 4.05, 4, 3.95, 4, 4.5, 4.5, 4.2,  4.55, 4.65, 4.1, 
4.25,  
4.3, 4.5, 4.7, 5.15, 4.3, 4.5, 4.9, 5, 5.35, 5.15, 5.25, 5.8, 5.85, 5.9, 5.75, 6.25, 6.05, 5.9, 3.6, 4.1, 4.5, 5.3, 4.85, 5.3 , 5.45, 5.1, 
5.3, 5.2, 5.3, 5.25, 4.75, 4.5, 4.2, 4, 4.15, 4.25, 4.3, 3.75, 3.95, 3.51, 4.13, 5.4, 5, 2.1, 4.6, 3.2, 2.5, 4.1, 3.5, 3.2, 3.3, 4.6, 4.3, 
4.3, 4.5, 5.5, 4.6, 4.9, 4.3, 3, 3.4, 3.7, 4.4, 4.9, 4.9, 5 
 

 

For the two data, we compare the fits of OEHLBIID with those of beta Burr III distribution (BBIID) 

[1], Burr III distribution (BIIID), gamma Burr III distribution (GBIIID) [7], Kumaraswamy Burr III 

distribution (KBIIID) [15] and modified Burr III distribution (MBIIID) [3]. Notably, the PDFs 

associated with BBIID, GBIIID, KBIIID and MBIIID are respectively given by 

𝑓(𝛼, 𝜆, 𝑎, 𝑏, 𝑠) =
𝑎𝑏

𝑠 (
𝑥
𝑠
)
𝑎+1

𝐵(𝛼, 𝜆)
[
(
𝑥
𝑠
)
𝑎

1 + (
𝑥
𝑠
)
𝑎]

𝛼𝑏+1

[1 − (
(
𝑥
𝑠
)
𝑎

1 + (
𝑥
𝑠
)
𝑎)

𝑏

]

𝜆−1

, 𝛼, 𝜆, 𝑎, 𝑏, 𝑠 > 0, 𝑥 > 0; 

𝑓(𝛼, 𝑎, 𝑏, 𝑠) =
𝑎𝑏

𝑠 (
𝑥
𝑠
)
𝑎+1

Γ(𝛼)
[
(
𝑥
𝑠
)
𝑎

1 + (
𝑥
𝑠
)
𝑎]

𝑏+1

[−𝑙𝑜𝑔(1 − (
(
𝑥
𝑠
)
𝑎

1 + (
𝑥
𝑠
)
𝑎)

𝑏

)]

𝛼−1

, 𝛼, 𝑎, 𝑏, 𝑠 > 0, 𝑥 > 0; 

𝑓(𝛼, 𝜆, 𝑎, 𝑏) = 𝛼𝜆𝑎𝑏𝑥−(𝑎+1)(1 + 𝑥−𝑎)−(𝛼𝑏+1)(1 − (1 + 𝑥−𝑎)−𝛼𝑏)
𝜆−1
, 𝛼, 𝜆, 𝑎, 𝑏 > 0, 𝑥 > 0; 

𝑓(𝛼, 𝑎, 𝑏) = 𝑎𝑏𝑥−(𝑎+1)(1 + 𝛼𝑥−𝑎)−(
𝑏
𝛼
+1) , 𝛼, 𝑎, 𝑏 > 0, 𝑥 > 0. 

Notably, all the numerical results in this section are obtained using the fitdistrplus package in R. 

The optimization of the log-likelihood function associated with each of the six multi-parameter 

distributions is carried out using the default method for distributions with more than one parameter 

(Nelder-Mead method).  

To compare the goodness of fits of the six models, we use the Akaike Information Criteria (AIC), 

Bayesian Information Criteria (BIC), Kolmogorov-Smirnov Statistic (KS), Cramer-von Mises (W*) 

and Anderson-Darling Statistic (A*). The distribution with the best fit to each data is the distribution 

corresponding to minimum values of AIC, BIC, KS, W* and A*. 
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Table 4 contains maximum likelihood estimates (MLEs) of the parameters of the distributions 

fitted to Data 1 and the corresponding values of AIC, BIC, KS, W* and A*. The results presented in 

Table 4 show that the OEHLBIIID has the lowest value of AIC, BIC, KS, W* and A*. Thus, the 

OEHLBIIID is the best among the six models fitted to Data 1. 

Table 4. MLEs of the models for Data 1, the associated standard error estimates and the values of AIC, BIC, 

KS, W* and A*. 

Models Estimates 

Standard 

Error 

Estimates 

-log L AIC BIC KS W* A* 

BBIII �̂�=9.6204 0.0034 723.5806 1457.161 1470.431 0.9590 30.8685 234.7095 

�̂�=0.8590 0.0092       

�̂�=1.2557 0.4417       

�̂�=0.0405 0.0040       

�̂�=7.8582 0.0046       

BIII �̂�=1.6501 0.1028 608.5529 1221.106 1226.414 0.1453 0.8947 5.3741 

�̂�=1992.9226 893.2800       

GBIII �̂�=21.1858 0.4501 594.8563 1197.713 1208.328 0.1300 0.5158 2.9587 

�̂�=7.8053 0.0230       

�̂�=18.6784 0.1153       

�̂�=5.9333 0.0175       

KBIII �̂�=0.8890 0.0103 783.1645 1574.329 1584.945 .5359 8.7151 40.2025 

�̂�=0.0332 0.0032       

�̂�=6.1611 0.0034       

�̂�=0.6665 0.0110       

MBIII �̂�=48.0216 74.6224 607.2952 1220.59 1228.552 0.1388 0.7964 4.8213 

�̂�=1.7387 0.1329       

�̂�=3062.9954 1766.040

2 

      

OEHL

BIII 
�̂�=2.9189 1.3915 580.8811 1169.762 1180.378 0.0905 0.1253 0.7427 

�̂�=0.0041 0.0006       

�̂�=1.1794 0.2566       

�̂�=0.6322 0.9002       

 

Figure 3 shows the histogram, estimated densities and estimated CDFs for Data 1. Based on this 
figure, we infer that the OEHLBIIID is suitable for Data 1. 

In Table 5, we have the MLEs of the parameters of the models fitted to Data 2, the 

corresponding standard errors and AIC, BIC, KS, W* and A* values. On the basis of lowest AIC, 

BIC, KS, W* and A* values, the OEHLBIID is the most suitable model among all the models fitted 

to the data. 
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Figure 3: Estimated PDFs (left panel) and CDFs (right panel) for Data 1 

Table 5. MLEs of the parameters of the models for Data 2, the associated standard error estimates and the 

values of AIC, BIC, KS, W* and A* 

Models Estimates 

Standard 

Error 

Estimate 

-log L AIC BIC KS W* A* 

BBIII �̂�=0.0561 0.1786 167.8023 345.6047 359.5003 0.9426 33.2240 228.0259 

�̂�=1.3122 1.2550       

�̂�=12.8125 5.6904       

�̂�=5.7520 18.2532       

�̂�=5.2035 0.2050       

BIII �̂�=3.0607 0.1802 209.7675 423.5350 429.0932 0.1964 1.4297 8.1098 

�̂�=52.0622 11.2352       

GBIII �̂�=0.2000 0.0182 198.2675 404.5350 415.6515 0.7898 23.1824 120.2560 

�̂�=5.1503 0.0027       

�̂�=9.3326 0.0070       

�̂�=3.5632 0.0027       

KBIII �̂�=1191.205 259.9667 173.9927 355.9854 367.1019 0.1114 0.2716 1.6938 

�̂�=120.4422 80.3170       

�̂�=1.0101 0.1176       

�̂�=0.0209 0.0042       

MBIII �̂�=1201.309

4 

760.4504 185.5963 377.1927 385.5301 0.1438 0.6534 3.8825 

�̂�=5.0924 0.3081       

�̂�=1433.124

2 

673.0790       

OEHL

BIII 
�̂�=0.9422 0.2967 167.6595 343.3191 354.4356 0.0674 0.0731 0.4411 

�̂�=0.0220 0.0220       

�̂�=4.3389 0.8168       

�̂�=12.9473 20.9565       

 

Also, Figure 4 reveals that the OEHLBIID is a good model for the data. 
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Figure 4. Estimated PDFs (left panel) and CDFs (right panel) for Data 2 

5. CONCLUSIONS 

We have extended the two-parameter Burr III distribution to obtain a new distribution called the 

odd exponentiated half-logistic Burr III distribution. The new distribution can be applied in reliability 

analysis, survival analysis, time series analysis among other fields. Properties of the distribution, 

namely, the linear representation of its density function, quantile function, raw and incomplete 

moments, moment generating function and distribution of the order statistic have been determined. 

The maximum likelihood method of estimating the parameters of the distribution was discussed. 

Comparatively speaking, the PDF and hazard rate function of the distribution introduced in this article 

are capable of having shapes that the PDF and hazard rate function of the baseline distribution do 

not have. Hence, the new model is more flexible than its corresponding baseline distribution. The 

numerical results obtained in this study indicate that the new distribution can be a better distribution 

for several data sets than many well-known continuous distributions, especially its sub model the two-

parameter Burr III distribution.   
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