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Abstract 
In this paper, we develop a mathematical model to analyze interactions between planthopper pests as 
prey and menochilus sexmaculatus and mirid ladybug as two predators where prey is controlled by pesticides. 
The interaction between predator and prey is modeled using the Holling type II response function. The 
predator and prey growth are modeled using a logistic function. From this model, we obtain eight 
equilibrium points. The three of these equilibrium points are analyzed using linearization and locally 
asymptotically stable. We simulate this model using data to predict the dynamics of planthopper 
population and its predators. Simulation result shows that all of these populations will survive because 
they are influenced by pesticide control and predation rates. 
Keywords: control of pest; predator-prey model; the Holling type II; the logistic function.  

Abstrak 

Pada penelitian ini, kami membangun model matematika untuk menganalisis interaksi antara hama 
wereng sebagai mangsa (prey) dan menochilus sexmaculatus dan mirid ladybug sebagai dua pemangsa 
(predator) dimana mangsa dikontrol oleh pestisida. Interaksi antara predator dan prey dimodelkan 
menggunakan fungsi respon Holling tipe II sedangkan pertumbuhan predator dan prey dimodelkan 
menggunakan fungsi logistik. Dari model tersebut diperoleh delapan titik ekuilibrium. Tiga titik 
ekuilibrium dari titik-titik equilibrium tersebut dianalisis menggunakan metode linierisasi dan bersifat 
stabil asimtotik lokal. Kemudian model ini diaplikasikan pada data.  Untuk memudahkan interpretasi 
antara mangsa dan dua pemangsa dilakukan simulasi numerik untuk memprediksikan dinamika populasi 
wereng dan predatornya. Hasil simulasi menunjukkan bahwa semua populasi tersebut akan bertahan hidup 
karena dipengaruhi oleh kontrol pestisida dan tingkat pemangsaan. 
Kata Kunci: kontrol pestisida; model predator-prey; Holling tipe II; fungsi logistik. 

1. INTRODUCTION  

In Indonesia, the planthopper is paddy pest that can harm the plants directly by sucking the leaf 
midrib and plant cell liquid, so the plants become dry and the buds are reduced. The planthopper can 
transfer viruses that cause the color of leaves and stems of paddy to become yellow, brown straw, and 
finally, all paddy plants become dry like scalded [1]. There were five hectares of paddy farming in 
Baros, Tirtohargo Village, Bantul Regency, Special Region of Yogyakarta which were exposed to the 
brown planthopper pests in the rainy season in February 2018. This causes crop failure due to the 
planthopper pests and the high humidity factor. Farmers estimated the losses up to hundreds of 
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millions of rupiah due to the average of production costs were Rp. 30 million - Rp. 35 million per 
hectare [2]. Meanwhile, based on the recapitulation of brown planthopper attacks recorded by the 
Bantul Agriculture and Forestry Service in early February, paddy plants that were attacked by plant 
hopper were 280 hectares with a threat of 40 hectares.  

According to [3], one of the efforts to control the planthopper pests is the spraying of pesticides 
with the appropriate dose. The inappropriate dose will cause the various undesirable effects, such as 
environmental pollution, pests become resistant to various types of pesticides, and pests become 
quickly adaptable to environmental changes [4]. This effort is not effective to control the growth of 
pests. Therefore, we need a system to control it using predators/natural enemies [5]. It should be 
supported by the availability of the predator population, for example, is an insect. The predator 
population are maintained when the pest populations are low 

There are several kinds of Interactions between individuals, one of them is predation. Predation 
is the relationship between predators and prey in the interaction of two populations, for example, 
predation brown paddy planthopper (Nilaparvata lugens Stål.) which are preyed by their natural 
predators, such as the Menochilus sexmaculatus beetle and mirid ladybug (Cyrtorhinus lividipennis). 
The predation can be preyed by more than one natural enemy [6]. 

Mathematical models can be an important tool to determine the dynamic process between 
predators and pests and analyze the spread of pests at a certain time. This model was first proposed 
by Lotka Volterra. It consists of the rate of change in predator populations and pest populations as 
prey.  The Lotka-Volterra model can be developed to model the interaction between two predators 
and one prey. Alebraheem and Abu-Hasan [7] developed the model of two predators and one prey 
with assuming that the growth of predators and prey follows logistical growth and competition occurs 
between the two predators. Besides, [8] and [9] have also reduced predatory prey models with prey 
infected with pesticide control. The combination between the model in Alebraheem and Abu-Hasan 
[7] and model in [8] and [6] is interesting research. Therefore, in this paper, we model the interaction 
between two predators and prey-infected with pesticide to control the spread of brown plant hopper 
pest in Bantul district. The mathematical model is formulated in the differential equations by 
considering the transfer diagram which illustrates the dynamics for predators, planthopper pests, and 
the effect of pesticides on the paddy plant ecosystems. The system analysis will be carried out by 
determination of the existence of the equilibrium point, the stability of the equilibrium point stability 
and simulations. We use data on leafhoppers and natural enemies recorded by the Department of 
Agriculture, Food, Maritime Affairs and Fisheries of Bantul Regency. 

2. THE PREDATOR PREY MODEL 

The prey-predator model used to model the interaction between two predators, susceptible prey 
and infected prey assuming that the predator and prey growth follows the logistic function. The model 
is a system of non-linear differential equations that can be solved qualitatively by determining the 
stability of the equilibrium point. Furthermore, the dynamic behavior of the predatory prey model 
with two predators and infected prey can be determined through the analysis of the equilibrium point 
stability [10]. 

Let ( )X t  be the number of individuals in the prey population is vulnerable at time �, ( )I t  be the 

number of individuals in the prey population infected at time �, ( )Y t  be the number of individuals in 

the first predator population at time � and ( )Z t  be the number of individuals in the second predator 

population at time �.  
Assume that the predator population and the prey population are closed, i.e. no predators and 
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prey is migrating. The prey-predator model consists of two predators, susceptible prey and infected 
prey. There is no competition between two predators to get the prey. The growth of predators and 
prey follow the logistic function. Also assume that if there is no interaction between predators and 
prey, then prey growth follows the logistic model that is with a limited carrying capacity of � and the 

intrinsic growth rate �, as a result, the prey will increase at a rate �� �1 −
�

�
�. Then changing the 

population from � to � reduces the growth rate of �. This is influenced by the rate of interaction 
between susceptible and infected pests and the chance of transmitting infected pests to vulnerable 
pests  and the population density of � and infected pests produces an equation XI . Predator 

predation in prey class uses the Holling type II response, namely ( )g x . When there is an interaction 

between the first predator and the prey represented as 1( )g x , the growth of prey will be reduced by 

1( )g x Y , i.e. the multiplication rate between the Holling type II response function and the predator 

population Y, that is 1
1( )

X
g x

a X





, the predation rate by the first predator, thus    

 
1

1( ) .
XY

g x Y
a X






When there is an interaction between the second predator and the prey 2 ( )g x , the growth of the prey 

will decrease by 2 ( )g x Z , i.e. the multiplication rate between the Holling type II response function and 

the predator population �, obtained by 2
2 ( )

X
g x

a X





 . The 2  the predation rate by the second 

predator such that 
 

2
2 ( )

XZ
g x Z

a X





. 

The number of deaths of � is caused by the pesticide �, i.e ��. Thus, the rate of change in the 
number of preys susceptible to time can be expressed by 

1 21 .
XY XZdX X

rX XI uX
dt K a X a X

 


 
      

  
                                (1) 

 The prey class is infected, during the time interval for �, the rate of change is influenced by the 
migration of population � to �, i.e XI . The number of natural deaths � is mI the multiplication of 

the natural rate of death of pests m with the density of infected pests �. Then the number of deaths � 
caused by pesticides �, namely ��. Then the reduced population of pests infected by predator � 
predation in infected pests I class in this predation uses the Holling type 1, 1( )g I Y , predation process 

which is the rate of multiplication between the function of the Holling type 1 response with predator 
Y density while the reduced population of pests infected due to predator � predation in the class of 
infected pests I in predation this predation process uses a Holling type 1 response 2 ( )g I Z   which is 

the rate of multiplication between the Holling type 1 response function with a predator density Z. 
with 1 1( )g I I  and 2 2( )g I I . From this description, obtained the equation of the rate of change 

in the population of infected pests into  

                                            1 2 .
dI

XI IY IZ m u I
dt

                                               (2) 

Then, if there are no pests, there will be a decrease in the population of the first predator with a 
natural mortality rate of p, but if there is a susceptible pest, there will be an interaction between the 
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first predator and the susceptible prey 1 1XY

a X

 


. Whereas if there is a susceptible pest, there will be an 

interaction between the first predator and the infected prey 2 1IY  . A large number of � deaths are 

caused by the pesticide � as ��. Thus, the rate of change in the number of first predators by the time 
can be expressed by 

 1 1
2 1 .

XYdY
IY p u Y

dt a X

 
    


                                         (3) 

Then, if there are no pests, there will be a decrease in the population of the second predator with 
a natural mortality rate of q, but if there is a susceptible pest, there will be an interaction between the 

second predator and the vulnerable prey by 1 2XZ

a X

 


. Whereas if there is an infected pest, an 

interaction occurs between the second predator and the infected prey 2 2IZ  . The number of � 

deaths is caused by the pesticide � as ��. Thus, the rate of change in the number of second predators 
with respect to time can be expressed by 

                                            1 2
2 2 .

XZdZ
IZ q u Z

dt a X

 
    


                                                (4) 

Based on Equations (1), (2), (3), and (4) obtained a mathematical model of two predators and 
prey infected with pesticide control in the form of a non-linear differential equation system as follows: 

                   
 

 

 

1 2

1 2

1 1
2 1

1 2
2 2

1
XY XZdX X

rX XI uX
dt K a X a X

dI
XI IY IZ m u I

dt

XYdY
IY p u Y

dt a X

XZdZ
IZ q u Z

dt a X

 


  

 
 

 
 

 
         

    

   


   


                                   (5) 

with the initial value: 0 0 0(0) ,  (0) , Y(0) ,X X I I Y   and 0Z(0) .Z  

The mathematical models of two predators and prey were infected with pesticide control in the 
form of a nonlinear differential equation system. Qualitative Completion of the system (5) by looking 
at the behavior of the system around the equilibrium point. The equilibrium point for the two 
predators and prey mathematical models infected with pesticide control in the system (5) is obtained 

if  0,  0,  0
dX dI dY

dt dt dt
    and  0.

dZ

dt
  If 0

dX

dt
 , then 

1 21 0
XY XZX

rX XI uX
K a X a X

 


 
      

  

1 21 0
Y ZX

X r I u
K a X a X

 


  
        

   
. 

So, we obtain 

    0X                   (6) 
or 
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      � �1 −
�

�
� − �� −

���

���
−

���

���
− � = 0.      (7) 

Furthermore, if 0
dI

dt
 , then 

 1 2 0XI IY IZ m u I         1 2 0I X Y Z m u          . 

We obtain 
    0I  ,       (8) 

or   

 1 2 0.X Y Z m u                  (9) 

Furthermore, if  0
dY

dt
 , then  

 1 1
2 1 0

XY
IY p u Y

a X

 
    


 1 1

2 1 0.
X

Y I p u
a X

 
 

 
      

 

We obtain 

     0Y                   (10) 
or  

 1 1
2 1 0

X
I p u

a X

 
    


                (11) 

Furthermore, if  0
dZ

dt
 , then 

   1 2 1 2
2 2 2 20 0.

XZ X
IZ q u Z Z I q u

a X a X

   
   

 
           

 

We obtain    

      0Z             (12) 
or  

 1 2
2 2 0

X
I q u

a X

 
    


                                    (13) 

Based on the description, from Equations (6), (8), (10), and (12) the equilibrium point is 

 1 0, 00,0,TE  . Then from Equations (7), (8), (10), and (12) the equilibrium point is 

 2
*,0,0,0 .TE X  Then Equation (8), (10), and (12) are substituted into Equation (7), 

 
   1 20 0

1 0 0 1 0 .
X X Kr Ku

r u r u X
K a X a X K r

 


   
                  

 

So, we obtain 
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2 ,0,0,0
Kr Ku

TE
r



 
 
 

. 

Next, from Equations (7), (8), (10), and (12) the equilibrium point is  * *
3 , ,0,0TE X I . Substitute 

equations (10) and (12) into equations (7) and (8):  

1 2(0) (0)
1 0 1 0 ,
X X

r I u r I u
K a X a X K

 
 

   
             

    
                   (13) 

   
 

1 2(0) (0) 0 0 .
m u

X m u X m u X   



                        (14) 

Substitute equation (14) into equation (13), we obtain

 

1 0,

m u

r I u
K




  
  
      
 
 
 

 

 
1

,

m u
r u

K
I





 
  

   and 
 

 

3 , ,0,0

1
m u

K
T

r u
u

E
m 

 

  
   

    
 
 
 

. 

Next, from Equations (7), (8), (11), and (12) an equilibrium point is  * *
4 ,0, ,0TE X Y . Then, from 

Equations (7), (8), (10), and (13) an equilibrium point is  * *
5 ,0,0,TE X Z . Then, from Equations 

(7), (8), (11), and (12) an equilibrium point is  * *
6

*, , ,0TE X I Y . Then, from Equations (7), (8), (10), 

and (13) an equilibrium point is  * *
7

*, ,0,TE X I Z . Then, from Equations (7), (8), (11), and (13) an 

equilibrium point is  * *
8

* *, , ,TE X I Y Z . 

Theorem 1. If r u , then the equilibrium point  1 0,0,0,0TE    

locally asymptotically stable. 

Proof: Stability analysis of 1TE   can be determined by analysis of eigenvalue of the Jacobian matrix of 

linearized system (5) in around of equilibrium points 1TE . Then 1TE  is substituted into equations: 

       

       

       

 

1 1 1 1

2 2 2 2

3

1 1 1 1

1 1 1 1

1 1 1 1

1

3 3 3

4

,   0,             0,         0,          

0,       ,     0,         0,

0,      0,              ,         0,

0,

X I Y Z

X I Y Z

X I Y Z

X

f r u f f f

f f m u f

TE TE TE TE

TE TE f

f f f p u f

f

TE TE

TE TE TE TE

TE

    

     

     

      4 4 41 1 1    0,              0,         ,                  I Y Zf f fT q uTE E TE    

 

Then we obtained 1(f ( ))J TE  i.e: 
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1

0 0 0

0 0 0
(f ( ))

0 0 0

0 0 0

r u

m u
J TE

p u

q u

 
 

  
  
 

  

 

Polynomial characteristics of 1(f ( ))J TE  is 

 4 1P( ) det (f ( ))

1 0 0 0 0 0 0

0 1 0 0 0 0 0
       

0 0 1 0 0 0 0

0 0 0 1 0 0 0

I J TE

r u

m u

p u

q u

 



 

   
   

     
    
   

    

 

 
 

 
 

0 0 0

0 0 0
        =

0 0 0

0 0 0

r u

m u

p u

q u









 

 

 

 

 

                ( )r u m u p u q u               

  where 4I  is an identity 4 4 matrix. Then it is obtained characteristic equation 

 4 1( ) det (f ( )) 0P I J TE     

         ( ) 0r u m u p u q u                  

   1 2 3,  ,  , r u m u p u          and  4 q u    . because , , , 0m p q u  , so 2 3 4, , 0,    .  

1TE  locally asymptotically stable if 1 0,   0r u r u    . 

Theorem 2. If � < � and 22 33 44, , 0f f f   then the equilibrium point 2 ,0,0,0
Kr Ku

TE
r



 
 
 

 locally 

asymptotically stable, where 22

Kr Ku
f m u

r


 
   

 
, 

1 1

33

Kr Ku

r
f p u

Kr Ku
a

r

 
 

 
   

 
  
 

, and  

 
1 2

44 .

Kr Ku

r
f q u

Kr Ku
a

r

 
 

 
   

 
  
 
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Theorem 3. If 44 330,  g 0,  g  

 
11 22 0g g   and 11 22 12 21 0g g g g   then the equilibrium point 

 * *
3 X , I ,0,0TE   locally asymptotically stable, where 

 
 

* *

1

,     

m u
r u

Km u
X I



 
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3. SIMULATION 

In this section, the simulation of an equilibrium point is performed to find out the dynamic 
behavior of the completion of the system (5) over a long period around the equilibrium point. In this 
simulation, the brown planthopper is prey in the model, while menochilus sexmaculatus was the first 
predator and mirid ladybug as the second predator. To simulate the system (5), we use parameter 
values based on data from the agriculture, food, fisheries and marine services in the districts of Bantul, 
[6], [1], and [9], i.e. � = 1, � = 10, � = 0.1, � = 0.3, � = 0.2, � = 0.5, � = 0.7, �� = 0.5, �� =
0.45, �� = 0.15, �� = 0.2, �� = 0.25, �� = 0.1, �� = 0.2, �� = 0.1, �(0) = 3, �(0) = 2, �(0) = 2,  and 
�(0) = 2.  

Based on data and [6], we obtained several parameters as follows: it will meet the conditions in 
the theorem. As a result, predators will become extinct while prey will survive and as shown in        
figure 1. 

 

Figure 1. The behavior of time series in System (5) uses data and � = 0.5. 

From Figure 1, with given initial value, it can be seen that at a certain time �, the solution 
converges to TE3. In a sense when given initial values, at the beginning of the population of vulnerable 
and infected prey down then rose slightly to a certain value and the population of both predators fell 
to near extinction. If we change � = 0.01, we get 

   : susceptible prey  X 

   : infected prey I 

     :The first predator Y 

    : The second predator Z 
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Figure 2. The behavior of time series in System (5) uses data and � = 0.01. 

In Figure 2, given the initial value, it can be seen that at a certain time � the population of susceptible 
prey and infected prey unstable and both of the predators die.  But if we change � = 1, we get 

 

 
Figure 3. The behavior of time series in System (5) uses data and � = 1. 

From Figure 3, given the initial value, it can be seen that at a certain time � that the solution converges 
to TE1. Because all of predator and prey dies. 

 
4. CONCLUSION 

In this study, we derive a mathematical model to describe the interaction for two predators and 
prey was infected with pesticide control. System (5) has eight equilibrium points. The stability of the 
equilibrium point System (5) is analyzed only local stability by the linearization method. If the intrinsic 
growth rate of pests is less than the death rate due to the administration of pesticides then all predators 
and prey will become extinct and be locally asymptotically stable. The intrinsic growth rate of pests is 
more than the death rate due to the administration of pesticides so that only vulnerable pests will 
remain alive while others will become extinct and are asymptotically stable. All of these populations 
will survive because they are influenced by pesticide control and predation rates. 
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