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Abstract 
In actuarial modeling, aggregate risk is known as more attractive rather than individual 
risk. It has, however, usual difficulty in finding (the exact form of) joint probability 
distribution. This paper considers aggregate risk model and employ translated gamma 
approximation to handle such distribution function formulation. In addition, we deal 
with the problem of risk allocation in such model. We compute in particular risk 
allocation based on risk measure forecasts of Value-at-Risk (VaR) and its extensions: 
improved VaR and Tail VaR. Risk allocation shows the contribution of each individual 
risk to the aggregate. It has a constraint that the risk measure of aggregate risk is equal to 
the aggregate of risk measure of individual risk. 
Keywords: allocation methods; tail-value-at-risk; translated gamma approximation. 

 

Abstrak 
Risiko agregat merupakan kajian yang lebih menarik dalam pemodelan aktuaria, dibandingkan dengan 
risiko individu. Namun fungsi distribusi risiko agregat sulit ditentukan bentuk eksaknya. Artikel ini 
membahas mengenai model risiko agregat dan menggunakan metode aproksimasi Translasi Gamma 
untuk menentukan fungsi distribusi risiko agregat. Berdasarkan fungsi distribusi tersebut, dapat 
diprediksi alokasi risiko agregat. Metode alokasi risiko agregat diterapkan pada ukuran risiko Value-at-
Risk (VaR) dan pengembangannya: improved VaR dan Tail-VaR. Alokasi risiko menyatakan nilai 
kontribusi setiap risiko individu terhadap ukuran risiko agregat. Jumlahan atau agregat dari setiap 
alokasi risiko individu sama dengan ukuran risiko agregat. 
Kata kunci: aproksimasi Translasi Gamma, alokasi risiko, Tail-Value-at-Risk. 
 
 

1. INTRODUCTION  

Risk modeling in finance and insurance industries has received much attention 
significantly in recent years from both academia and practitioners. Their interests lie 
from its attractive statistical derivation to the use of forecasting (for reserving, in 
particular) e.g. Syuhada [1]. In this paper, we are interested in modeling of collection of 
individual risk namely aggregate risk. Such aggregate model may be constructed 
through several possible scenarios: the number of random losses is either deterministic 
or stochastic; sequence of random losses may be (in)dependent and (not) identically 
distributed. 

When applying aggregate risk model, we consider two potential problems. The first 
is usual difficulty of finding joint probability distribution in which we apply the method 
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of translated gamma approximation [2]. The second is the problem of risk allocation 
based on risk measure forecast. Specifically, we employ Value-at-Risk (VaR) forecast and 
its extensions: improved VaR and Tail VaR. Risk allocation may be described as the 
contribution of each component for aggregate model with the constraint of: risk 
measure forecast of aggregate risk is equal to the aggregate of risk measure of individual 
risk. 

The choice of risk measure of VaR greatly relies on the common use in practice. It 
reflects the maximum tolerated risk at certain confidence level and time period, e.g. 
Nieto and Ruiz [3], for latest review on VaR and its backtesting, and Chen [4]. VaR 
generally tell us a warning before the worse risk occurs as well as a preparation of 
capital. Although VaR is widely-used, it is not a coherent risk measure. To deal with 
this issue, we use an extension of VaR of what so-called Tail VaR or TVaR. It is the 
expected value of losses beyond VaR.  

The remainder of this paper, after Introduction, is organized as follows. Section 2 
describes aggregate risk model and approximation of translated gamma for joint 
distribution. Our main result is provided in Section 3 which includes methods of risk 
allocation. Concluding remark is in Section 4. 

2. AGGREGATE RISK MODEL AND ITS PROBABILITY DISTRIBUTION 

As stated above, risks may come more attractive and beneficial in the form of 
aggregate model rather than individual. Suppose that XΘ represents aggregate risk of 
collection of non-negative random losses {��: � = 1,2,⋯ , �} given by 

�(Θ) = ���� + ⋯+ � ��� = ∑ ����
�
��� , 

where θi ∈ R and each random loss may have correlation with other i.e. �(Xi; Xj) ∈ (−1, 1), 

�, � = 1,2,⋯ ,� and � ≠ �. Note that the coefficient � is usually assumed �� = 1, ∀i, see 
e.g. Dhaene et al. [5], and Kim and Kim [6]. 

The usual difficulty in aggregate model is in finding joint distribution, particularly 
when the individual risk component is not independent with other. In what follows, we 
describe a DV method [2] of translated gamma approximation for joint distribution 
function. 
 
TRANSLAted GAMMA APPRoXIMATION 

In general, non-negative random losses are skewed to the right (skewness � > 0 ) and 
are unimodal. Thus, they have roughly the shape of a gamma distribution. Apart from 
the usual parameters α and β, approximation of the distribution function of �(Θ) is 
carried out by allowing a shift over a distance ��, e.g. Kaas et al. ( [7] pp. 32). Then, 
choose α, β, and �� in order to make the approximated random losses has the same 
first three moments as of �(Θ). 

The distribution function of the translated gamma approximation, according to 
Dhaene and Vyncke [2], is given by 

��(�)(�) ≈ � (� − � �; �, �), 



Aggregate Risk Model and Risk Measure-Based Risk Allocation 

15 | InPrime: Indonesian Journal of Pure and Applied Mathematics 
 

where 

�(�; �, �) =
1

Γ(�)
����������� ��

�

�

 

and � ≥ 0. Note that �(�; �, �) is the gamma distribution function. To apply the 
approximation, choose parameters α, β, and �� so that the first, second, and third 
central moments of �(Θ) equal the corresponding moments for the translated gamma 

distribution. Therefore, � = �� +
�

�
, �� =

�

��
, � = 2/√� . We obtain 

� =
4

��
, � = 2/(��), �� = � −

2�

�
, 

where µ, ��, � are mean, variance, and skewness of �(Θ), respectively. 
Without loss of generality, we consider the aggregate risks of dependent identical 

exponential(λ) random losses with � = 2 and �� = �� = 1, then �(Θ) = �� + ��. The 
joint probability function is obtained through the first derivative of joint distribution 
function based on FGM (Farlie Gumbel Morgenstern) family. Thus, we have 

���,��(��, ��) = ���(��)���(��) �1 + � �1 − 2���(��)��1 − 2���(��)�� 

which is equal to 

�� exp�−� (�� + � �)��1 + � �1 − 2 (exp(−���) + exp(−�� �)) + 4exp�−� (�� + � �)���, 

where �  is dependence parameter associated with Pearson’s correlation �. For the case of 
exponential random losses, we have 

� =
�[����]− � [��]�[��]

����(��)���(��)
=
1 ��(1 + �/4) − 1 � �⁄⁄

1 ��⁄
 

and thus we obtain � = 4(� − 1 ). In addition, the expectation of �[��
� ��

�] for    �, � =
1,2 are, respectively �(��

���
�) = � ��⁄  and �(��

���
�) = �(��

���
�) = � ��⁄  and these are 

easy to find. Thus, we obtain distribution function of the translated gamma 
approximations of �(Θ) for the case of two dependent identical exponential(�) sum, 

��(�)(�) ≈ � (� − � �; �, �) =
�

�(�)
∫ ������
����
�

exp(−�� )��, 

for � − � � ≥ 0 , where 

� =
����

(����)�
, � =

����� �

(����)���
, �� =

�(����)����

�(����)
. 

We illustrate in the following Figure 1 of distribution function and its translated 
gamma approximation. It is shown several examples of known distributions. 
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3. RISK MEASURE-BASED RISK ALLOCATION 

VALUE-AT-Risk AND ITS EXTENSION 

For either a single random risk or aggregate risk, a risk measure of Value-at-Risk 
(VaR) provides a value of such risk with the condition that its distribution function is 
greater than or equal certain confidence level. VaR describes the maximum possible loss 
over a given time interval, with a given confidence level e.g. Chen [4]. One may say that 
VaR is a critical value of loss distribution before it reaches the worst risk. VaR may also 
be considered as a system for finance and insurance industries. 

 

Figure 1. The distribution function and its translated gamma approximation. 
 
 

In practice, finding VaR forecast may face difficulty in seeking appropriate loss 
distribution. In particular, we may not obtain the closed representative of inverse of 
distribution function. To handle this problem, VaR is formulated as 

�(�;�) = ���{�: ��(�) = �(� ≤ �) ≥ � } 

where � denotes confidence level. The accuracy of VaR forecast, via its coverage 
probability, is typically bounded to �(���). 

Kabaila and Syuhada [8] [9] provided a method to adjust VaR forecast with better 
coverage properties. The resulted VaR forecast, namely improved VaR, is basically 
obtained by absorbing the �(���). term such that its coverage probability is bounded to  
�����/��. Syuhada [1]  shows the calculation of improved VaR forecast for the case of 
heteroscedastic processes. 

Although VaR is widely-used, it is not a coherent risk measure (Artzner et al., [10]). 
Therefore, alternative coherent risk measure of Tail VaR is presented. Note that Tail 
VaR may be named is Conditional VaR or Expected Shortfall in literature. Basically, 
TVaR forecast calculates expected value or mean for losses beyond VaR i.e. 
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�(�;�) = ���|� > � (�;�)� =
1

1 − �
� �(�;�)��
�

�

. 

TVaR contains more information than VaR by accounting entire right-sided tail starting 
from VaR of the loss distribution. We will apply both VaR and TVaR forecasts for 
aggregate risk model by noting that the distribution of aggregate claims is often skewed, 
e.g. Kaas et al. ( [7] pp. 32) and the translated gamma approximation is employed. 

 

Figure 2. VaR dan TVaR forecasts for aggregate risk - the dependent exponential distribution case. 

Figure 2 above shows VaR and TVaR calculations when we are considering of 
aggregate risk. It illustrates that VaR does not satisfy subadditivity property whilst 
TVaR does. 
 
RISK ALLOCATION FOR AGGREGATE RISK 

Risk allocation is a method performed to divide the aggregate risk down to individual 
risk in order to determine risk contribution. Specifically, we apply proportional and Euler’s 
risk allocation, e.g. Tasche [11], Tasche [12], Kyselova [13]. We present these procedures 
under risk measure forecasts of VaR, improved VaR and TVaR. It is important to note that 
the problem of risk allocation is interesting and non-trivial since the simple sum of risk 
measure of individual losses is usually larger than the aggregate losses. Van Gulick et al. [14] 
defined two key properties for a feasible allocation method. The first is risk contribution 



Fida Addini and Khreshna Syuhada  
 

18 | InPrime: Indonesian Journal of Pure and Applied Mathematics 
 

should not exceed the stand alone risk. The second property is that it should not fall below 
the minimum loss that can occur from this position. 

We assume that the random losses are {��: � = 1,2,⋯ , �} and the aggregate risks is 
total risk is �(Θ) = ∑ ��

�
��� . When a risk measure is applied to aggregate risk model, 

we will decompose this measures to its units.  In other words, we find the non-negative 
real numbers ����(Θ)�, � = 1,⋯ , �, such that 

���(Θ)� = ∑ ����(Θ)�
�
��� . 

There several risk allocation approaches. The first is proportional allocation 
approach. The particular allocated risks are obtained by first choosing a risk measure 
and then attributing the proportion ����(Θ)� = ����(Θ)� to each unit ; � = 1,⋯ , �. If 
the risk measure is law-invariant, the proportional allocation is not influenced by 
dependence between the risks �� [13]. The standard and haircut allocation principles 
are based on allocating the aggregate risks, respectively, using standard deviation and 
VaR as proportion. It leads to the formula of the allocation 

����(Θ)� =
��(��)

∑ ��(��)
�
���

���(Θ)� 

and 

����(Θ)� =
�(��;�)

∑ �(��;�)
�
���

���(Θ)� 

for � = 1,2,⋯ , �. It is clear that this principle does not make allowance for a 
dependence structure between the losses ��  of the individual business units. 
Furthermore, because VaR is not a subadditive risk measure, it may occur that the 
allocated amount exceeds the respective stand-alone measures �(��;�). 

The Euler allocation principle also known as the gradient allocation principle. Euler 
allocation principle is the only per-unit capital allocation principle suitable for 
performance measurement [11]. For the Euler allocation, which is the predominated 
method for risk allocation in aggregate risks, the two key properties are fulfilled. If a 
risk measure is continuously differentiable and positive homogeneous, the Euler 
allocations are given by 

�����|�(Θ)� =
������|�(Θ)�

�ℎ
(�(Θ) + ℎ� �)�

���

 

∀� = 1,⋯ ,� with ���(Θ)� = ∑ �����|�(Θ)�
�
��� . 

According to Tasche [15], we have allocation formulas for the derivation of the 
Euler risk contributions under conditions which the corresponding quantiles are 
differentiable. This is important in order to determine the contribution of quantile-
based risk measures as VaR and TVaR in the form of the partial derivative. 
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Table 1. Risk allocation methods and notations 

Allocation Method RM �(��) ����(Θ)� Reference 

Standard �(��) �(��) 
��(��)

∑ ������
�
���

���(Θ)� Kyselova [13] 

Haircut �(��) �(��) 
�(��;�)

∑ ����;��
�
���

���(Θ)� Kyselova [13] 

Euler ��� �(��;�) �[��|�(Θ) = �(�(Θ);�)] Tasche [11] 

Euler ���� �(��;�) �[��|�(Θ) > �(�(Θ);�)] Tasche [15] 

 
The risk allocation for the above-mentioned risk measures are listed in Table 1. 

Formula for the VaR using Euler allocation is obtained by computing mean of losses ��  
given that the overall loss �(Θ) equal to VaR. While for the TVaR using Euler 
allocation is obtained by computing mean of losses ��  given that the overall loss �(Θ) 
beyond VaR. 
 

Table 2. Risk allocation based on risk measure forecasts. 

 Standard Haircut Euler 

����.��
� (��) 0.8470 0.8274 0.8937 

����.��
� (��) 1.0119 1.0135 0.9652 

Improved ����.��
� (��) 1.2753 1.2744 1.2078 

Improved ����.��
� (��) 1.2945 1.2954 1.3620 

�����.��
� (��) 0.7589 0.7364 0.9916 

�����.��
� (��) 1.1206 1.1225 1.0309 

 
We compute the risk allocations under translated gamma approximation suggested 

in Section 2. Assume that the random losses are dependent identical exponential (λ = 
2), with � = 0.5. Risk allocation results are presented in Table 2. Allocations obtained 
using the standard allocation method and the haircut allocation are similar, but quite 
far from the allocation with the Euler distribution method. This might be due to the 
two methods are not considering dependence between individual risks whilst the Euler 
allocation method does. 

To investigate the risk measure and its allocation obtained using the Euler method, 
we use Euler formulas in Table 1 over various quantile levels. The results are showed in 
Figure 3. Finally, we compare three alternative risk measures for � in Figure 4. As 
expected, all the risk measures increase over the quantile levels. For 0 < � < 0.75, 
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TVaR is the largest followed by the improved VaR and VaR, while improved VaR 
exceeds TVaR and VaR for 0.75 < � < 1. 

 

Figure 3. Euler risk allocation based on risk measure forecasts. 

 

Figure 4. Risk measure forecasts-based for risk allocation. 
 
 

EXAMPLE OF REAL APPLICATION  

We apply and compute risk allocation under translated gamma approximation 
suggested in Section 2 to real data. The data are Indosat (ISAT.JK) and Telkomsel 
(TLKM.JK) stock prices on 25 March 2019 to 25 March 2020. Each data are fitted into 

exponential distribution with parameters ��� = 0.000257 and ��� = 0.00026, with �� = 0.3. 

Note that both parameters have almost the same value so that we assume �� = 0.00026. 
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Figure 5. Euler risk allocation based on risk measure forecasts - real data case. 
 

Table 3. Risk allocation based on risk measure forecasts for real data. 

 Standard Haircut Euler 

����.��
� (��) 14094.7 14056.1 14153.8 

����.��
� (��) 15548.5 15587.1 15489.4 

Improved ����.��
� (��) 11060.9 11186.8 11274.3 

Improved ����.��
� (��) 12582.3 12456.4 12395.9 

�����.��
� (��) 17014.4 17095.9 17244.6 

�����.��
� (��) 18828.2 18746.7 18598.1 

 
There is a considerable difference in value of prediction of VaR, improved VaR and TVaR 

under translated gamma approximation method. This might be due to the parameter �� which has 
little value. As a result, the risk allocation for each risk measure differs quite significantly. We may 
observe these in Table 3 for all three methods.  

Furthermore, there are large differences between allocation obtained using the Euler method. 
The results are shown in Figure 5; since VaR forecast reaches 30000 for � = 0.95, the Euler 
allocation is around 15000. This also applied to TVaR and improved VaR, whose values reach 
23,000 and 35,000 respectively. We compare three alternative risk measures for � from real data in 
Figure 6. As expected, there are large differences between all the risk measures with TVaR is the 
largest followed by VaR and the improved VaR. 
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Figure 6. Risk measure forecasts-based for risk allocation - real data case. 
 
 
4. CONCLUDING REMARK 

The risk allocation for aggregate risks may be applied to heteroscedastic processes 
since financial data are most likely modeled with dynamic volatility. For this case, the 
use of Copula may be more intensive. It is also interesting to consider certain financial 
institution of business entity such as Cooperative in calculating risk measure forecast 
for each member. 
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