Indonesian Journal of Pure and Applied Mathematics http://journal.uinjkt.ac.id/index.php/inprime Vol. 2, No. 2 (2020), pp. 65-70 P-ISSN 2686-5335, E-ISSN 2716-2478 doi: 10.15408/inprime.v2i2.14482

Some Notes on Relative Commutators

Masoumeh Ganjali and Ahmad Efranian*

Department of Pure Mathematics and Center of Excellence in Analysis on Algebraic Structures, Fedowsi University of Mashhad, P.O.Box 1159-91775 Mashhad, Iran Email: <u>m.ganjali20@yahoo.com</u>, *<u>erfanian@math.um.ac.ir</u>

Abstract

Let G be a group and $\alpha \in Aut(G)$. An α -commutator of elements $x, y \in G$ is defined as $[x, y]_{\alpha} = x^{-1}y^{-1}xy^{\alpha}$. In 2015, Barzegar et al. introduced an α -commutator of elements of G and defined a new generalization of nilpotent groups by using the definition of α -commutators which is called an α -nilpotent group. They also introduced an α -commutator subgroup of G, denoted by $D_{\alpha}(G)$ which is a subgroup generated by all α -commutators. In 2016, an α -perfect group, a group that is equal to its α -commutator subgroup, was introduced by authors of this paper and the properties of such group was investigated. They proved some results on α -perfect abelian groups and showed that a cyclic group G of even order is not a-perfect for any $\alpha \in Aut(G)$. In this paper, we may continue our investigation on α -perfect groups, we provide an example of a non-abelian α -perfect 2-group.

Keywords: Auto-commutator subgroup; finite *p*-group; normal subgroup; perfect group.

Abstrak

Misalkan G grup dan $\alpha \in Aut(G)$. Suatu α -komutator dari unsur-unsur $x, y \in G$ didefinisikan sebagai $[x, y]_{\alpha} = x^{-1}y^{-1}xy^{\alpha}$. Pada tahun 2015, Barzegar et al. memperkenalkan α komutator dari unsur-unsur di G dan mendefinisikan sebuah perumuman baru dari grup-grup nilpoten dengan menggunakan definisi dari α -komutator yang dinamakan grup α -nilpoten. Mereka juga memperkenalkan suatu subgrup α -komutator dari G yang dilambangkan dengan $D_{\alpha}(G)$ yang merupakan subgrup yang dibangun dari semua α -komutator. Pada tahun 2016, grup α -sempurna, yaitu grup yang subgrup α -komutatornya sama dengan grup itu sendiri, diperkenalkan oleh penulis paper ini dan sifat-sifat grup tersebut juga diselidiki. Mereka membuktikan beberapa sifat dari grup abel α -sempurna dan memperlihatkan bahwa suatu grup siklis G dengan order genap bukan grup a-sempurna untuk setiap $\alpha \in Aut(G)$. Di paper ini kita akan melanjutkan investigasi kita pada grup-grup α -sempurna dan sebagai tambahan dalam mempelajari kesempurnaan relatif dari kelas-kelas dari p-grup berhingga, kita akan melihat contoh dari 2-grup α -sempurna yang non abel.

Kata kunci: subgrup auto-komutator; p-grup berhingga; subgrup normal; grup sempurna.

Mathematics Subject Classification (2010): Primary 20F12; Secondary 20D45.

1. INTRODUCTION

In 1994, an auto-commutator $[x, \alpha] = x^{-1}x^{\alpha}$ of elements $x \in G$ and $\alpha \in Aut(G)$ was introduced by Hegarty, [1]. If α_g is an inner automorphism such that $x^{\alpha g} = g^{-1}xg$ then auto-commutator $[x, \alpha_q] = x^{-1}g^{-1}xg$ is the ordinary commutator of two elements $x, g \in$ G. Hegarty generalized the definition of the center of G, $Z(G) = \{x \in G : x^{ay} = x, \forall y \in G\}$ to the absolute center $L(G) = \{x \in G : x^{\alpha} = x, \forall \alpha \in Aut(G)\}$ of G. One can check that L(G) is an characteristic subgroup of G which is contained in Z(G). He also introduced the autocommutator subgroup of G, denoted by K(G), which is a characteristic subgroup generated by all auto-commutators. Clearly, the commutator subgroup G' is contained in K(G). Investigation of the relative commutators are interesting for some authors, for instance Barzegar et al. [2] also introduced a new generalization of commutators with respect to a fixed automorphism of group G. Let $\alpha \in Aut(G)$, then an α -commutator of two elements $x, g \in G$ is defined as $[x, y]_{\alpha} = x^{-1}y^{-1}xy^{\alpha}$ which is equal to the ordinary commutator $[x, y] = x^{-1}y^{-1}xy$ whenever α is the identity automorphism. In [2], the subgroup which is generated by all α -commutators was denoted by $D_{\alpha}(G)$ and called α -commutator subgroup of G. It is not difficult to prove that $D_{\alpha}(G)$ is a normal subgroup of G that is contained in K(G). Authors of [2] also introduced a new generalization of a nilpotent group G, which is called an α -nilpotent group for a fixed automorphism α of G. Here, we may present the definition of an α -nilpotent group G. We start by the definition of a lower central α -series. $\Gamma_2^{\alpha}(G) = D_{\alpha}(G)$ Put $\Gamma_1^{\alpha}(G) = G$ and and define inductively $\Gamma_{n+1}^{\alpha}(G) = [G, \Gamma_n^{\alpha}(G)]_{\alpha} = \langle [x, y]_{\alpha} : x \in G, y \in \Gamma_n^{\alpha}(G) \rangle, n \ge 1.$ We can see that $\Gamma_n^{\alpha}(G)$ is a normal subgroup of G which is invariant under α and $\Gamma_{n+1}^{\alpha}(G) \leq \Gamma_n^{\alpha}(G)$, for all $n \geq 1$. Following normal series is called a lower central α -series $G \ge \Gamma_2^{\alpha}(G) \ge \cdots \ge \Gamma_n^{\alpha}(G) \ge \cdots$.

A group G is called an α -nilpotent group of nilpotency class n if $\Gamma_n^{\alpha}(G) = \{l\}$ and $\Gamma_{n+1}^{\alpha}(G) \neq \{l\}$. Clearly, if α is considered as the identity automorphism, then an α -nilpotent group is the ordinary one. In [2], it was proved that an α -nilpotent group is nilpotent, but the converse is not valid in general. For instance, authors proved that the cyclic group of order $n = p_1 p_2 \dots p_t$ is α -nilpotent if and only if α is the identity automorphism, for distinct primes p_1, p_2, \dots, p_t . Authors of [3] continued investigation on α -nilpotent groups and proved some new results on this new concept. For example, they proved that an extra special p-group, p is an odd prime number, is nilpotent with respect to a non-identity automorphism $\alpha_g \in Inn(G)$, we can see that nilpotency and α_g -nilpotency are equivalent. Therefore, we may ask the following question.

Question. Is there a non-inner automorphism α of nilpotent group G such that G is α -nilpotent?

This question was answered for finitely generated abelian groups, for more details see [3]. Actually, authors classified all finitely generated abelian groups which are nilpotent with respect to a non-inner automorphism. Furthermore, they proved some results on relative normal and absolute normal subgroups of some classes of finite groups. In [4], they introduced an α -perfect group G, a group which is equal to its α -commutator subgroup, for a fixed automorphism α of G. If G' is the ordinary commutator subgroup of G, then $G' \leq D_{\alpha}(G)$ for all $\alpha \in Aut(G)$. It follows that if G is a perfect group, then it is perfect with respect to all its automorphisms. One can check that an α -nilpotent group cannot be α -perfect, but the symmetric group of order n!, S_n is an example of a non-nilpotent group where is not α -perfect, because $D_{\alpha}(S_n) = (S_n)' = A_n$ for all $\alpha \in Aut(G)$. The relative perfectness of abelian groups was studied by authors of [4]. In this paper, we may continue our investigation on relative perfect groups and prove some new results on some classes of finite paper.

2. RELATIVE PERFECT GROUPS

In this section, we recall the definition of an α -perfect group for a fixed automorphism α . At first, we present some results on relative perfect groups that were proved in [4]. Finally, we may add some new results on non-abelian relative perfect groups.

Definition 2.1. Let G be a group and $\alpha \in Aut(G)$. A group G is called an α -perfect group, whenever $G = D_{\alpha}(G)$.

Definition 2.2. If *G* is a finite group and $\alpha \in Aut(G)$, then a subgroup *H* of *G* is called an α -normal subgroup of *G*, denoted by $H \stackrel{\alpha}{\leq} G$, if $g^{-1}hg^{\alpha} \in H$ for all $g \in G$ and $h \in H$. If *H* is α -normal with respect to all automorphisms $\alpha \in Aut(G)$, then *G* is called an absolute normal subgroup of *G*.

Lemma 2.3. ([4]) Let *H* be a subgroup of finite group *G*, then (i) if there exists an $\alpha \in Aut(G)$ such that $H \stackrel{\alpha}{\leq} G$, then *H* is a normal subgroup of *G*, (ii) *H* is an absolute normal subgroup of *G* if and only if $K(G) \leq H$.

It might be important to find all proper absolute normal subgroups of given finite group G. In [3] and [4], the structure of absolute normal subgroups of some classes of finite groups were given. For instance, we have the following results.

Lemma 2.4. ([4]) If $G \cong Z_{2^n m}$ such than (2,m) = 1, then the proper subgroup H of G is absolute normal if and only if H = 2G.

Theorem 2.5. ([3]) (i) If $D_{2n} = \langle x, y : x^n = y^2 = 1, yxy = x^{-1} \rangle$, then $\langle x \rangle$ is the only proper absolute normal subgroup of D_{2n} . (ii) Semi-dihedral 2-group $SD_{2^{n+1}} = \langle x, y : x^{2n} = y^2 = 1, yxy = x^{-1} = x^{2^{n-1}-1} \rangle, n \ge 3$ has the only proper absolute normal subgroups given by $\langle x \rangle, \langle x^2 \rangle, \langle x^2, y \rangle, \langle x^2, yx \rangle$. (iii) Generalized

quaternion 2-group $Q_{2^{n+1}} = \langle x, y : x^{2^n} = 1, x^{2^{n-1}} = y^2, yxy^{-1} = x^{-1} \rangle, n \ge 3$ has the only proper absolute normal subgroup $\langle x \rangle$. (iv) Twisted dihedral 2-group $S_*D_{2^{n+1}} = \langle x, y : x^{2^n} = y^2 = 1, yxy^{-1} = x^{2^{n-1}+1} \rangle, n \ge 3$ has the only proper absolute normal subgroup $\langle x^2, y \rangle$.

Theorem 2.6. ([3]) If p is an odd prime number and $M_n(p) = \langle x, y : x^{p^{n-1}} = y^p = 1, xy = yx^{p^{n-2}+1} \rangle$, $n \ge 3$, then $M_n(p)$ does not possess a proper absolute normal subgroup.

Next lemma, talks about the existence of an α -normal subgroup in abelian α -perfect group G.

Lemma 2.7. ([4]) Let *G* be a finite abelian group. Then *G* is α -perfect if and only if G does not possess a proper α -normal subgroup.

If G is a finite cyclic group of order n, then $\alpha \in Aut(G)$ if and only if $x^{\alpha} = ux$ such that (u, n) = 1, for all $x \in G$. We denote such α by α_u .

Lemma 2.8. ([4]) Let G be a cyclic group of order n and $\alpha_u \in Aut(G)$ be a non-identity automorphism. Then G is α_u -perfect if only if (u - 1, n) = 1.

By Lemma 2.8, we can conclude that there is no α -perfect cyclic group of even order, for all automorphisms α of such group. If p is an odd prime number, then $Z_{p^r}, r > 1$, is α_u -perfect for each 1 < u < p, but it is not α_{p+1} -perfect.

Now, we are ready to prove some new results on relative perfect groups.

Lemma 2.9. If α_g is an inner automorphism and $\beta = \alpha \circ \alpha_g$, then G is α -perfect if and only if is β -perfect.

Proof. We can see that $[x, y]_{\beta} = [x, y]_{\alpha} [y, g]^{\alpha}$ and since $[y, g] \in G' \leq D_{\alpha}(G)$ and $D_{\alpha}(G)$ is α -invariant, then $[x, y]_{\beta} \in D_{\alpha}(G)$ and so $D_{\beta}(G) \leq D_{\alpha}(G)$. We can write $\alpha = \beta \circ \alpha_{g}^{-1}$ and prove $D_{\alpha}(G) \leq D_{\beta}(G)$. Now, we are done.

Example 2.10. (i) If *G* is isomorphic to one of the groups where are defined in Theorem 2.5, then *G* possesses a proper absolute normal subgroup. Furthermore, we know that $D_{\alpha}(G) \leq K(G)$, for all $\alpha \in Aut(G)$. So by Lemma 2.3, $D_{\alpha}(G)$ is a proper subgroup of *G* and *G* is not α -perfect for any $\alpha \in Aut(G)$. (ii) Assume that that $Q_8 = \langle xy : x^4 = 1, x^2 = y^2, yxy^{-1} = x^{-1} \rangle$, $n \geq 3$ and $\alpha \in Aut(Q_8)$ is an automorphism by argument $x^{\alpha} = y$ and $y^{\alpha} = xy$. Then $D_{\alpha}(Q_8) = Q_8$ and Q_8 is an α -perfect group.

By Theorem 2.6, if $G \cong M_n(p)$, then G does not possess any proper absolute normal subgroup. Here, we may prove that $M_n(p)$ is not α -perfect for any $\alpha \in Aut(G)$. **Theorem 2.11.** If $G \cong M_n(p) = \langle x, y : x^{p^{n-1}} = y^p = 1, xy = yx^{p^{n-2}+1} \rangle$ for an odd prime number p and $n \ge 3$, then G is not α -perfect for any $\alpha \in Aut(G)$.

Proof. We can see that $|G| = p^n$, $Z(G) = \langle x^p \rangle$, $G' = \langle x^{p^{n-2}} \rangle$. The automorphism group of G, Aut(G) is equal to $\left\{ \alpha_{ijk} : x^{\alpha_{ijk}} = x^i y^j, y^{\alpha_{ijk}} = x^{kp^{n-2}} y, 0 \le i \le p^{n-1} - 1, i \ne 0, 0 \le j, k \le p-1 \right\}$. It is not difficult to see that $[x, x]_{\alpha_{ijk}} = x^{i-1} y^j, [x, y]_{\alpha_{ijk}} = x^{(k+1)p^{n-2}}, [y, x]_{\alpha_{ijk}} = x^{p^{n-2}} x^{i-1} y^j, [y, y]_{\alpha_{ijk}} = x^{kp^{n-2}}$. Therefore, $D_{\alpha_{ijk}}(G) = \langle x^{i-1} y^j, x^{p^{n-2}} \rangle$. If $i \ne 1$, then $|x^{i-1} y^j| = |x|$, also $(i-1)p^{n-2} = p^{n-2}$ and for a positive integer m we have $(x^{i-1} y^j)^m = x^{m(i-1)-(i-1)j\left(\frac{m(m-1)}{2}\right)p^{n-2}y^{mj}}$.

Now, if we put $m = p^{n-2}$, then since $n \ge 3$, $p^{n-2} \ge p$ and $(x^{i-1}y^j)p^{n-2} = x^{(i-1)p^{n-2}} = x^{p^{n-2}}$. It means that $x^{p^{n-2}} \in \langle x^{i-1}, y^j \rangle$ and $D_{aij}(G) \in \langle x^{i-1}, y^j \rangle$ is a proper subgroup of G, because $|x^{i-1}y^j| = p^{n-1}$. Now if, i = 1 and $j \ne 0$, then $D_{aij}(G) \in \langle y^j, x^{p^{n-2}} \rangle$ and since $|y^j| = |x^{p^{n-1}}| = p$, then $D_{aij}(G) \ne G$. In case j = 0, we have $D_{aij}(G) = G' \ne G$. If $i \ne 1$ and $i \stackrel{p}{=} 1$ then $i = 1 + lp^s$, where (l, p) = 1, s = 1, 2, ..., n-2. In this case, G is α_{ijk} -nilpotent by Theorem 4.10 of [2] and so $D_{\alpha_{ijk}}(G) \ne G$. Hence, we are finished.

Theorem 2.12. Let p be an odd prime number. If $G = \langle a, b : a^{p^2} = b^{p^3} = 1, a^{-1}ba = b^{p+1} \rangle$ is a p-group of order p^5 and nilpotency class three, then G is not α -perfect for any $\alpha \in Aut(G)$.

Proof. The automorphism group of G is $Aut(G) = \{\alpha_{z,\omega,\mu} : a^{\alpha_{z,\omega,\mu}} = a(a^zb^{\omega})^{\mu}, b^{\alpha_{z,\omega,\mu}} = a^zb^{\omega}; zp \stackrel{p^2}{=} 0, \omega \neq 0, \mu p^2 \stackrel{p^3}{=} 0\}$. Let $\alpha = \alpha_{z,\omega,\mu} \in Aut(G)$, be an arbitrary automorphism such that z = pt and $\mu = pk$ for some integers $t, k \in \mathbb{Z}$. Then (i) $[a,a]_{\alpha} = (a^{pt}b^{\omega})^{pk} = a^{p^2tk}b^{\omega \frac{(p+1)^{p^2tk}-1}{(p+1)^{ptk}-1}} = b^{\omega \frac{(p+1)^{p^2tk}-1}{(p+1)^{ptk}-1}}$, (ii) $[a,b]_{\alpha} = a^{-1}b^{-1}aa^{pt}b^{\omega} = a^{-1}ab^{-p-1}a^{pt}b^{\omega}$ $= b^{pt+\omega-p-1}$, (iii) $[b,a]_{\alpha} = b^{-1}a^{-1}ba(a^{pt}b^{\omega})^{pk} = b^{p}b^{\omega \frac{(p+1)^{p^2tk}-1}{(p+1)^{ptk}-1}}$, and (iv) $[b,b]_{\alpha} = b^{-1}a^{pt}b^{\omega} = a^{pt}b^{-(p+1)^{pt}}$ Assume that $\alpha \in D_{\alpha}(G)$, then there exists an integer j such that $a = (a^{pt}b^{-(p^{2}t+1)})^{j}$. Put $m = \frac{(p+1)^{pt}-1}{(p+1)^{pt}-1}$, then since $Z(G) = \langle b^{p^{2}} \rangle$ we have $a = (a^{pt}b^{-1})^{j}b^{-p^{2}tj}$ and $a^{ptj}b^{-m}b^{-p^{2}tj} = a$. We know that $ba = ab^{p+1}$, so we can conclude that $ba^{pt}b^{-m}b^{-p^{2}tj} = a^{ptj}b^{-m}b^{-p^{2}tj}b^{p+1}$, and so $a^{ptj}b^{(p+1)^{ptj}}b^{-m} = a^{ptj}b^{-m}b^{p+1}$ and $b^{(p+1)^{ptj}} = b^{p+1}$. But $b^{(p+1)^{ptj}} = b^{p^{2}tj+1}$, therefore we have $b^{p^{2}tj+1} = b^{p+1}$ and $b^{p^{2}tj-p} = 1$ which implies that $p^{3} \mid p^{2}tj - p$, a contradiction. Hence $D_{\alpha}(G) < G$ and G is not α -perfect.

In [4], has been shown that for every finite abelian group G, there exists a finite abelian group H and $\alpha \in Aut(H)$ such that $D_{\alpha}(H) \cong G$. Here, we may improve this result to finitely generated abelian groups.

Proposition 2.13. If $\alpha \in Aut(G)$ and $\beta \in Aut(H)$, then $D_{\alpha \times \beta}(G \times H) = D_{\alpha}(G) \times D_{\beta}(H)$.

Proof. It is straightforward.

Theorem 2.14. Assume that $G = \underbrace{Z \times Z \times \cdots \times Z}_{t-times} \times G_1$ such that G_1 is a finite abelian group. Then there exist an abelian group *H* and $\alpha \in Aut(H)$ such that $D_{\alpha}(H) \cong G$.

Proof. By Theorem 3.7 of [4], for finite group G_1 , there exist abelian group H_1 and $\beta \in Aut(H_1)$ such that $D_{\beta}(H_1) \cong G_1$. Now, if $\alpha_i \in Aut(Z_i \times Z_i)$ by argument $(a,b)^{\alpha_i} = (a+b,b)$, then $D_{\alpha_i}(Z_i \times Z_i) = \langle -(a,b) + (a,b)^{\beta} : a,b \in Z_i \rangle = \langle (b,0) : b \in Z_i \rangle \cong Z$, where $Z_i \cong Z$ for i = 1, ..., t. Now, it is enough to put $H = \underbrace{Z \times Z \times \cdots \times Z}_{2t-times} \times H_1$ and $\alpha = \alpha_1 \times \cdots \times \alpha_t \times \beta$, then $D_{\alpha}(H) = D_{\alpha_1}(Z \times Z) \times D_{\alpha_2}(Z \times Z) \times \cdots \times D_{\alpha_t}(Z \times Z) \times D_{\beta}(H_1) \cong G$, and the proof is completed.

REFERENCES

- [1] P. Hegarty, "The absolute centre of a group," J. Algebra, vol. 169, p. 929–935, 1994.
- [2] R. Barzegar and A. Erfanian, "Nilpotency and solubility of groups relative to an automorphism," *Caspian J. Math. Sci.*, vol. 4, no. 2, pp. 271-281, 2015.
- [3] A. Erfanian and M. Ganjali, "Nilpotent groups related to an automorphism," *Proc. Indian Acad. Sci. (Math. Sci.)*, vol. 128:60, pp. 1-12, 2018.
- [4] M. Ganjali and A. Erfanian, "Perfect groups and normal subgroups related to an automorphism," *Riverche Mat,* pp. 1-7, 2016.