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Abstract 
Traffic congestion on the freeway is a serious problem for modern society. Dynamic traffic 
management is a good alternative solution to improve efficiency on congestion problems. This article 
aims to analyze parts of freeway traffic network by using METANET model which is part of 
macroscopic traffic flow model that describes a set of parameters such as mean speed, traffic flow, 
and density of a traffic system. The piecewise-affine (PWA) approximation on METANET model is 
used to design traffic predictive controls and test them on a traffic model structure. This approach 
guarantees more intensive calculation for METANET traffic flow model in nonlinear form in the 
context of model predictive control (MPC). Some equations in the METANET model will be 
approximated by PWA function. With PWA-MPC approximation as direct calculation, equation of 
PWA model can be transformed into mixed-integer linear programming (MILP). Furthermore, to see 
the control of the model with MPC control, numerical simulations will be carried out on mean speed, 
traffic density, traffic flow, queue length, and MPC control. We use time 0 – 2.5 hours. Simulation 
result shows that the density of traffic, traffic flow, and queue length decreased in this time period, 
while the mean speed increased. 
Keywords: traffic control; model predictive control; piecewise-affine model; METANET; mixed-
integer linear programming (MILP). 

 

Abstrak 
Kemacetan lalu lintas di jalan bebas hambatan merupakan masalah yang sangat serius bagi masyarakat 
modern. Pengelolaan lalu lintas yang dinamis merupakan solusi alternatif yang baik untuk 
meningkatkan efisiensi pada masalah kemacetan. Artikel ini bertujuan untuk menganalisis bagian 
jaringan pada jalan bebas  hambatan dengan mengkaji model METANET yang termasuk bagian dari 
model arus lalu lintas secara makroskopik yang menggambarkan kumpulan parameter seperti 
kecepatan rata-rata, arus lalu lintas, dan kepadatan. Pendekatan piecewise-affine (PWA) pada model 
METANET digunakan untuk mendesain kendali prediktif lalu lintas dan mengujinya pada suatu 
struktur model lalu lintas. Pendekatan ini menjamin penghitungan yang lebih intensif untuk model 
arus lalu lintas METANET yang berbentuk nonlinear dalam konteks kendali model prediktif (model 
predictive control/MPC). Beberapa persamaan pada model METANET akan didekati oleh fungsi PWA. 
Dengan pendekatan PWA-MPC sebagai perhitungan secara langsung, persamaan model PWA dapat 
diubah menjadi program linear bilangan bulat campuran (mixed- integer linear programming/MILP). 
Selanjutnya untuk melihat keterkendalian model dengan kendali MPC, simulasi numerik akan 
dilakukan terhadap kecepatan rata-rata, kepadatan lalu lintas, arus lalu lintas, panjang antrian, serta  
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kendali MPC. Waktu yang digunakan pada simulasi adalah 0 – 2.5 jam. Hasil simulasi menunjukkan 
bahwa kepadatan lalu lintas, arus lalu lintas, panjang antrian mengalami penurunan dalam kurun waktu 
tersebut, sedangkan kecepatan rata-rata mengalami peningkatan. 
Kata Kunci: endali lalu lintas; model lalu lintas berbasis kendali prediktif; pendekatan model piecewise-
affine; METANET; program linear bilangan bulat campuran. 

 

1. INTRODUCTION  

Model-based predictive control for traffic network is used for the needs to track traffic 
conditions and take into account optimization approaches such as speed limits that produce optimal 
control. In this article, models for traffic flow is selected macroscopically resulting a well accurate 
description to provide traffic demand, traffic conditions, and output in one side of traffic network 
[1][2][3]. A METANET-traffic model is used in this study to model the freeway traffic          
network [4][5].  

Model predictive control (MPC) is a control model satisfying the above criteria so that this type 
of control is suitable to be applied in the traffic control problems, one of them is the METANET 
model. The problem of designing MPC control is an optimization control method applied on the 
horizon structure. This control is used on a model that is processed to obtained control signal by 
minimizing the objective function [6]. 

The previous MPC control is applied in the traffic control model such as Hegyi [7] producing 
nonconvex nonlinear optimization problems (METANET). Generally, the MPC nonlinear 
optimization problems are difficult to solve quickly in order to achieve optimal values. In the 
METANET model problem, a PWA approach is selected from the nonlinear function, thus it is 
possible to formulate MPC optimization problems as a mixed-integer linear programming (MILP) 
problem [8][9]. The PWA piecewise-affine formulation on the METANET model is used in the 
MPC network that has nontrivial solution, however, the formulation can yield best solution as 
compared to the initial nonlinear model [8][9][10]. 

2. METHOD 

MPC control is a control technique that uses a model to predict output along the horizon of 
future prediction, then applies the first element of the series of optimal control inputs that minimize 
the cost function. The basic idea of MPC is illustrated in Figure 1 [11][12]. There are two cases in 
MPC i.e. MPC without constraints and MPC with constraints. One model that are suitable for traffic 
control problem in MPC is METANET.  

In traffic control problem, METANET model represents traffic network as direct graph with 
link denoted by index m that correspond to a segment. Segments are freeway that stretches and links 
are collection from several segments on freeway. In our research, every link is divided into mN  

segments denoted by index i  (Figure 2) where mL  represents the length of segment between 500-

1000m. Based on [14], line is part of the road used for vehicle traffic which is physically in the form 
of road works. 
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Figure 1. Model Predictive Control. 

 

Figure 2. Freeway link divided into several segments in METANET model. 
 
There are some related variables for traffic condition in every segment i  of link i.e. m is traffic flow 
is denoted by , ( )m iq k  (vehicle/hour), traffic density is denoted by , ( )m i k  (vehicle/km/lane), and 

mean speed is denoted by , ( )m iv k  (km/how). The amount of k  represents the instant time st kT , 

where sT  is time step used for traffic flow simulation (commonly 10sT s ). For stability purpose, 

interval time step simulation for every link m  must satisfy the following inequality equation

,m free m sL v T  where ,free mv  is mean speed when a driver assumes that the traffic flows are free. 

Traffic flow in each segment i  of link m  at time k  is equal to traffic density multiply by the 
mean speed and number of lines on each segment that is denoted by m , so that the following 

equation can be obtained: 

       , , ,( ) ( ) ( ) .m i m i m i mq k k v k                                                     (1) 

Traffic density on segment i  of link m  at time 1k   is equal to the traffic density at time k  plus 
traffic flow change on the link for segment i  at timek . Thus, the following equation can be 
obtained: 

, , , , 1
( 1) ( ) ( ) ( )

0
m m i m i m i m i

k k q k q k

T L

  


      
 
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, , , 1 ,
( 1) ( ) ( ) ( )m m i m i m i m i

s m

k k q k q k

T L

  


         

, , , 1 ,( 1) ( ) [ ( ) ( )].s
m i m i m i m i

m m

T
k k q k q k

L
 


      

These equations describe traffic density changes by time. 
Traffic speed and density are influenced by time and segment. However, mean speed is 

described as follows: 
1. Relaxation indicates that a driver is trying to reach the desired speed, ( )V  , relaxation time is 

denoted by  . 
2. Convection indicates unstable speed caused by vehicle inflows. 
3. Anticipation indicates that a driver adjust the speed according to traffic condition to 

immediately pull over. The   shows the speed that is affected by anticipation time and   is 

density involved in anticipation time. 
Form the above definitions, we get: 

 
 

, , , , 1 , 1 ,

, , ,

,

( 1) ( ) ( ) ( ) ( ) ( )1
( ) ( ( )) ( )

( )

m i m i m i m i m i m i

m i m i m i

m i

v k v k v k v k k k
v k V k v k

T L Lk

 


   
    

    
  

 
 

, , , , 1 , 1 ,

, , ,

,

( 1) ( ) ( ) ( ) ( ) ( )1
( ) ( ( )) ( )

0 0 0( )

m i m i m i m i m i m i

m i m i m i

s m mm i

v k v k v k v k k k
v k V k v k

T L Lk

 


   
    

     
  

 
 

, , , 1 , , 1 ,

, , ,

,

( 1) ( ) ( ) ( ) ( ) ( )1
( ) ( ( )) ( )

( )

m i m i m i m i m i m i

m i m i m i

s m mm i

v k v k v k v k k k
v k V k v k

T L Lk

 


   
    

     


  
 

, , 1 , , 1 ,

, , , ,

,

( )[ ( ) ( )] [ ( ) ( )]
( 1) ( ) ( ( )) ( )

( )

s m i m i m i s m i m is
m i m i m i m i

m m m i

T v k v k v k T k kT
v k v k V k v k

L L k

  


   
  

      


           (2) 

where 

     ,

, , , ,

,

( )1
( ( )) min exp ,(1 ) ( )

ma

m i

m i free m control m i

m crit m

k
V k v v k

a


 



   
           

,                   (3)  

and ma  is a parameter on fundamental diagram, ,crit m  is a critical density if traffic flow is maximal, 

(1 )  is a non-compliance factor in drivers with speed limit shown and , , ( )control m iv k  is speed       

limit [7][15]. 
The starting point or point of departure is modeled by a simple queuing model. Some involved 

variables in point of departure are length of queue ( )ow k  (vehicles), traffic demand ( )od k  

(vehicle/hour) and outflow ( )oq k  (vehicle/hour). Those variables are related so that the following 

equation can be formed: 

( 1) ( )
( ) ( )o o

o o

w k w k
d k q k

T

 
 


 

( 1) ( )
( ) ( )

0
o o

o o

s

w k w k
d k q k

T

 
  


 

               ( 1) ( ) ( ) ( )o o s o ow k w k T d k q k                                           
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The outflow of a starting point depends on traffic conditions of the corresponding mainstream 

segment and the existence of ramp metering control measures ( )or k , where  ( ) 0,1or k  . Thus, 

outflow equation can be expressed as , ,1

, ,

( )( )
( ) min ( ) , ( ) ,

jam m mo
o o o o o

s jam m crit m

kw k
q k d k r k C C

T

 

 

  
       

 

where oC  is the capacity of the on-ramp under free flow traffic conditions and 
,jam m  is the 

maximum density from link m connecting to the on-ramp. The   shows speed will decline caused by 
merging phenomena at on-ramps. If there is traffic flow from on-ramp to freeway then we define 
the following equation: 

 
 

 

, , , , 1

, , ,

,

, 1 , ,1

,1

( 1) ( ) ( ) ( ) 1
( ) ( ( )) ( )

( )

( ) ( ) ( ) ( )

( )

m i m i m i m i

m i m i m i

m i

m i m i o m

m m m

v k v k v k v k
v k V k v k

T L k

k k q k v k

L L k




   

  

  





  
   

  


 

 

 

 
 

 

, , , 1 ,

, , ,

,

, 1 , ,1

,1

( 1) ( ) ( ) ( ) 1
( ) ( ( )) ( )

( )

( ) ( ) ( ) ( )

( )

m i m i m i m i

m i m i m i

s m m i

m i m i o m

m m m m

v k v k v k v k
v k V k v k

T L k

k k q k v k

L L k




   

  

  





  
    




 



 

 

   

, , 1 ,

, , , ,

, 1 , ,1

, ,1

( )[ ( ) ( )]
( 1) ( ) ( ( )) ( )

[ ( ) ( )] ( ) ( )
.

( ) ( )

s m i m i m i s
m i m i m i m i

m

s m i m i s o m

m m i m m m

T v k v k v k T
v k v k V k v k

L

T k k T q k v k

L k L k




   

     






     


 

 

         (4) 

2.1. Piecewise Affine (PWA) Approximation 
Given a function : nf R R . Function f is called PWA function if consists of collection of 

affine functions that can be defined on polyhedral and can be expressed as ( ) T
i if x a x b   if ix . 

Some methods for PWA approximation are 
1. Least Square Optimization  

The least square optimization method is well known method by taking the difference between 
initial function and the approximated curve. Nonlinear function of a single variable can be 
determined by one region of numbers of interval of PWA function. For example, the following 
PWA problem can be solved by the least square. Given function f  that is defined on interval 

 min max,x x  and function PWAf  is continuous on interval min
�,�,�,�,�,�

∫ (����(�) − �(�))���.
����

����
 Thus, 

����(�) =

⎩
⎪
⎨

⎪
⎧ � +

� − ����

� − ����

(� − �), for  ���� ≤ � < �

� +
� − �

� − �
(� − �),         for  � ≤ � < �

� +
� − �

���� − �
(� − �), for  � ≤ � ≤ ����.

 

2. PWA Identification 
Identification of PWA is a collection of algorithms that produces PWA approximation 
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according to a set of data points. Therefore, this approach is very useful for complex 
multivariable function. There are three methods used in PWA identification, i.e. clustering, 
linear identification, and pattern recognition methods. These methods are not suitable to be 
used in this identification, thus the most appropriate method for bivariate identification is 
multicatgory robust linear programming (MRLP) algorithm [16]. 

3. Partial constant piecewise approximation 
An approximation of bivariate function using several complete variables consists of domain 
segment on one of the variables, where each region is a set at constant value. In general, 
bivariate function ( , )f x y  can be approximated as follows: assuming variable x  and y  have 

relative distance max min

max

x x

x


 and max min

max

y y

y


, variable x  is selected to be drawn from each 

region. To select variable x  on interval 1[ , ]i ix x   for 1, 2,..., 1i N   where 1 minx x  and maxNx x  

can be written as: 1( , ) ,
2

i ix x
f x y f y 

  
 

 for  1,i ix x x  . 

2.2. Piecewise Affine Approximation in METANET Model 
METANET model is a nonlinear equation that will be approximated by using PWA function 

[17]. This model is constructed by developing new model, i.e. with linearization on equations (1), (2), 
(3), and (4). 
 
2.2.1. Nonlinear traffic flow equation  

To model traffic flow equation, we can approximate using PWA identification and constant 
piecewise approximation on one of variables in equation (1). Speed variable , ( )m iv k  is chosen with 

the smallest domain as compared to traffic flow variables. This variable is replaced with mean value 

on each sub domain. Thus, equation (1) becomes 1

, ,( ) ( )
2

j j

m i m m i

v v
q k k  

  for , 1( ) ,m i j jv k v v     , 

where j = 1,2,…,n. Interval 1,j jv v     can be chosen one by one by considering the approximated 

function form or by determining more advanced method using optimization.  

2.2.2. Speed equation  
Several variables in equation (2) and (3) can be replaced by constant value based on fixed value 

determined by historical data. In equation (2), some problems must be related to the following 
descriptions. First, speed variable appears in exponential factor in equation (3). Density variable 
appears in exponential factor in the first term of function (3). This function represents fundamental 
diagram where speed is as traffic density function. Some variables in equation (3) are replaced by 
constant values, i.e. 

freev  equals to 102km/hour, ma  equals to 1.876, crit  equals to 33.5 

vehicle/km/line and   equals to 0.1. Thus, equation (3) becomes

,

, , ,

( )1
( ( )) min 102exp ,(1.1) ( ) .

1.867 33.5

ma

m i

m i control m i

k
V k v k




   
    
     

 Then, multiplication of speed 

variable in equation (2) is  , , 1 ,( ) ( ) ( )m i m i m iv k v k v k  , speed variable , 1 ( )m iv k  is constant based on the 

value determined by the historical data.  The error in this method is caused by multiplication 
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between speed variables and constant value s

m

T

L
. Association between these two causing relatively 

small error, the value s

m

T

L
 is close to 2.78 ×10-3 hour/km.  

Division between density variable with other densities is 
 
, 1 ,

,

( ) ( )

( )

m i m i

m i

k k

k

 

 
 


 , multiplication 

between 
 
, 1 ,

,

( ) ( )

( )

m i m i

m i

k k

k

 

 
 


 and s

m

T

L




 causing relatively small error, the value s

m

T

L




 is close to 

33.33km2/km/line. Adding density on the denominator part in the function is constant denoted by 

 , i.e. 40 vehicle/km/line. Thus, we obtain 
 
, 1 ,

,

( ) ( )
33.33

( )

m i m i

m i

k k

k

 

 
 


. The last function in equation (4) is 

 
,1

,1

( ) ( )

( )

s o m

m m m

T q k v k

L k



  



. This function exists when there is speed decline from entrance deviation to 

freeway. Substituting the parameter value to the function, we can get 
 

5
,1

,1

1.13 10 ( ) ( )

( ) 40

o m

m

q k v k

k





. 

2.2.3. From PWA to MPC 
The results from PWA METANET model can be obtained when it is combined with MPC 

optimization method. PWA model can be written as a mixed-integer language program with several 
decision variables of integer and domain ratio [13]. Given dummy binary variable (denoted by 

, , {0,1}a b    ) to show whether some regions apply associative rule with one of affine pieces in its 

PWA function (i.e. PWA function :y R  with one of affine pieces :f R  and 
nR ). 

Next, c is an arbitrary constant and   shows machine precision used to change perfect inequality to 
imperfect inequality. Thus, yielding the following properties: 

(i) ( ) 1f x c     is true if and only if 

( ) ( )(1 )

( ) (1 ) ( )

f x c M c

f x c m



   

    


     
 

(ii) Variable ( )y f x , if and only if  

( ) (1 )

( ) (1 ),

y M

y m

y f x m

y f x M









 
 


   
   

 

(iii) Binary value a b   , if and only if 

0

0

1.

a

b

a b

 

 

  

   


   
     

 

2.3. Controlling Predictive Model for Traffic Control Model  
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MPC control is used based on the size of state variable at time k, performing state prediction 
along prediction horizon denoted by 

pN . One of many possible optimization methods for traffic 

model is by maximizing traffic flow, the spread of traffic density, and minimizing the difference of 
control variables. The most used objective function is minimizing the total times spend (TTS) in the 
system, where TTS is the total waiting vehicles at on-ramps to freeway added by waiting time in that 
road, and the penalty equation in the changes of decision variables. MPC algorithm is used to 
determined control signal that minimizing the following objective function ( ) ( ) ( )MPC

TTS MPCJ k J k J k  . 

This objective function minimizes vehicle waiting time at on-ramp and along the queue in the 
mainstream segment at point of departure before entering the freeway, thus we get: 

,
1 ( , )

( ) ( ) ( )
sim

all all

N

TTS s m m m i o
k m i I o O

J k T L k w k 
  

 
   

 
   , 

where simN  represents optimal time simulation, allI  is a set of pair (m,i) from every link and segment 

in that network and allO  is a set of index from all points of departure. Next, the main objective of 

MPC control is to reduce TTS on prediction horizon, i.e.

,
( , )

( ) ( ) ( )
p

all all

k N

MPC
TTS s m m m i o

j k m i I o O

J k T L j w j 


  

 
   

 
  

 

where {1, 2,..., }pj N . Given penalty equation in 

input deviation and horizon control c pN N , then control signal is assumed to be constant, i.e. 

   
1

22

, , , ,
( , )

( ) ( ) ( 1) ( ) ( 1)
c

all all

k N

MPC ramp o o speed control m i control m i
j k o O m i C

J k a r j r j a v j v j
 

  

 
       

 
   , 

where rampa  and speeda  are load coefficients and allC  is all sets of pair index from link and segments. 

 
3. RESULTS AND DISCUSSIONS 

The case study of METANET model simulation in freeway traffic network is depicted in          

Figure 3. In segment 3 and 4, speed limits are given. Here, iO  is a set of origin of intersection i, iL  is 

the speed limit, and 1D  is the destination. 

 
 
 

 
 

Figure 3. Simulation model for case study. 

To simulate the model, we use some parameters value i.e. ����� = 102
��

����
, �� = 10 �, � =

18 �, � = 40
�������

�� ����
, � = 60

���

����
, ���� = 180

�������

�� ����
, ����� = 33.5

�������

�� ����
, ��� = 4000

�������

����
, ��� =
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2000
�������

����
, �� = 1 ��, ���� = 40 �, �� = 3 ����, ��(�) = 1, � = 0.1, � = 0.0122, and �� = 1.867. 

We use Matlab to simulate this model. The MPC control graph for METANET model with PWA 
approximation is shown in Figure 4. This figure shows that traffic flow experiences a decrease to 
zero for time between 0 to 2.5. Traffic flow in link 1 of segment 2 to link 2 of segment 2 experiences 
an increase and decline at the end. Figure 5 shows the traffic density in each link and segment. This 
figure show that the traffic density will decline to zero. The lines describe every link and segment of 
the traffic flow. 

 

Figure 4. Traffic flow (in hour). 
 

 

Figure 5. Traffic density. 
 

Figure 6 displays mean speed in every link and segment. From this figure, we can see that the 
mean speed tends to increase. In this figure, we also show that the speed in link 1 of segment 3 and 
4 approaches 100 causing by speed limit. Figure 7 shows the length of queue of the traffic network. 
According to this figure, length of queue in link 1 of segment 1 and link 2 of segment 1 experiences 
a decrease to zero.  
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Figure 6. Mean speed. 

 

Figure 7. Length of queue. 

 

Figure 8. Objective function. 

Figure 8 describes the objective function to be controlled. In this figure we can see that objective 
function decrease to zero in all links. Figure 9 shows objective function given MPC control.  It also 
shows a decreasing trend to zero. 
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Figure 9. MPC control. 

4. CONCLUSION 
 

METANET model is a nonlinear model. To transform the model into linear form then PWA 
approximation is considered. PWA approximation consists of least square optimization method, 
PWA identification, and partial constant piecewise affine approximation. METANET model is 
approximated by PWA by substituting parameter values to the model. Based on study case, only the 
mean speed shows increasing trend and the density of traffic, traffic flow, and queue length tend to 
decrease in this time period. Mean speed in link 1 of segment 3 and 4 approaches 100. It’s caused by 
the speed limit.  
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