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Abstract 
Wind speed is one of the most important weather factors in the landing and takeoff process of airplane 
because it can affect the airplane's lift. Therefore, we need a model to predict the wind speed in an area. 
In this research, the wind speed forecast using the ARIMA model is discussed which has differencing 
parameters in the form of fractions. This model is called the ARFIMA model. In estimating differencing 
parameters two methods are considered, namely parametric and semiparametric methods. Exact 
Maximum Likelihood (EML) is used under parametric method. Meanwhile, four methods 
semiparametric estmation are used, i.e Geweke and Porter-Hudak (GPH), Smooth GPH (Sperio), Local 
Whittle and Rescale Range (R/S). The result shows the best estimation method is GPH with the 
selected model is ARFIMA (2,0.334,0). 
Keywords: ARFIMA, Parametric Method, Semiparametric Method. 

 

Abstrak 
Kecepatan angin merupakan salah satu faktor cuaca yang penting dalam proses pendaratan dan tinggal 
landas pesawat karena dapat mempengaruhi daya angkat pesawat. Oleh karena itu, diperlukan suatu 
model untuk memprakirakan kecepatan angin di suatu wilayah. Artikel ini membahas prakiraan 
kecepatan angin dengan menggunakan model ARIMA yang memiliki parameter differencing berupa 
bilangan pecahan. Model ini disebut model ARFIMA. Pada estimasi parameter differencing terdapat dua 
metode yang digunakan pada penelitian ini, yaitu metode parametrik dan metode semiparametrik. 
Metode parametrik yang digunakan adalah Exact Maximum Likelihood (EML) dan empat metode 
semiparametrik yang digunakan adalah Geweke and Porter-Hudak (GPH), Smooth GPH (Sperio), Local 
Whittle dan Rescale Range (R/S). Hasil analisis menunjukkan pada kasus ini metode estimasi terbaik adalah 
GPH dengan model terpilih adalah ARFIMA(2,0.334,0). 
Kata kunci: ARFIMA, Metode Parametrik, Metode Semiparametrik. 
 

 

1. INTRODUCTION  

Wind is one of the weather elements that has important role in determining the weather and 
climate conditions in a particular area. Wind energy benefits can be obtained depending on the wind 
speed and geographical conditions of an area. Several studies has been conducted to determine the 
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effect of wind speed in various aspects of life and the importance of predicting wind speed in an area 
such as predicting short-term wind speed to get input for the wind turbin controller [1]. In addition, 
it is also needed to estimate the wind speed on the airport runway when the plane is going to land and 
takeoff. Information regarding wind speed on the runaway surface is one of the important factors in 
the process of aircraft’s landing and takeoff as it can affect the aircraft’s lift and prevent the aircraft 
from slipping. Several studies using the ARIMA Box-Jenkins methods have been proposed to predict 
wind speed, including Ulinnuha [2] and Desvina [3]. In general, the ARIMA(�, �, �) was introduced 
by Box and Jenkins [4] to model non-stationary time series data. Non-stationary series shows a slow-
decaying autocorrelation function (ACF). The order d  in ARIMA(�, �, �) is used to model a series 
that is not stationer in mean, where d represents differencing that takes positive integer numbers. For 
d that can take any fraction numbers, ARFIMA (Autoregressive Fractional Integrated Moving 
Average) can be utilized a generalization of ARIMA model [5]. In ARFIMA model, the series has long 
term dependency properties. 

Estimating the appropriate d value will yield a good model fit. Estimation methods for d parameter 
can be divided into classes, i.e. parametric and semiparametric methods. Parametric method estimates 
all parameters in ARFIMA model in one step by using parametric approaches. The most commonly 
parametric method used is Exact Maximum Likelihood (EML) [6]. On the other hand, semiparametric 
methods is carried out in two steps. The first step is estimating the d value and the second step is 
estimating the AR and MA parameters. In semiparametric methods, the most commonly used 
methods are Geweke dan Porter-Hudak [7], Reisen dan Lopes [8], Kunsch [9] dan Robinson [10]. 

In this study, we predict wind speed at Soekarno-Hatta airport using ARFIMA model where 
paremeter d is estimated using parametric and semiparametric methods. Geweke dan Porter-Hudak 
(GPH), Smooth GPH (Sperio), R/S dan Local Whittle are considered for the semiparametrc approaches 
while EML is considered for the parametric approach. We use wind speed daily data over the period 
of December 1st, 2017 to November 30th, 2018. It is obtained from the NNDC Climate Data             
Online [11]. 

2. METHODS 
 
2. 1. Long Memory Process 

A time series is said to be a process with long-term memory if the autocorrelation function decays 
slowly to zero, showing that between far apart observations are still strongly correlated [12]. This 
condition of long-term memory can be seen from the value of Hurst (H) which can be obtained from 

the statistic R/S [12]. The Hurst value is determined by computing the mean  �� =
�

�
∑ ��
�
��� , adjusted 

mean ��
���

= �� − ��,  cumulative deviation ��
∗ = ∑ ��

����
��� , range of cumulative deviation �� =

max(��
∗, ��

∗, … , � �
∗)− min(��

∗, ��
∗, … , � �

∗), and standard deviation �� = �
�

�
∑ (�� − �� )

��
���  from time 

series data where � = 1,2, … �. The value of H can be calculated by the following formula:  

� =
log(�/�)�
log (�)

. 

If the computed H is equal to 0.5 then the series are random, if 0 < � < 0.5 then the series shows       
short-term memory, and if  0.5 < � < 1 then the series shows long-term memory. 

 
 



Devi Ila Octaviyani, Madona Yunita Wijaya and Nina Fitriyati 
  

 

112 | InPrime: Indonesian Journal of Pure and Applied Mathematics 
 

2. 2. ARFIMA model 
Autoregressive Fractionally Integrated Moving Average (ARFIMA) model is one of the most 

appropriate model for time series data with long-term memory that has been developed by Granger 
and Joyeux [9], and also Hoskings [7]. ARFIMA (�, �, �) can be expressed as follows [13]: 

��(�)(1 − �)
��� = ��(�)�� , 

where {�����«««�} is white noise process, ��(�) is AR polynomial equation of order �, ��(�) is MA 

polynomial equation of order �, and (1 − �)� is fractional difference operator. 

According to Hoskings [7], fractional difference operator on ARFIMA(�, �, �) is a generalization 
from an infinite binomial series [14]:  

∇�= (1 − �)� = ∑ �
�
�
��

��� (−1)��� ,  

Where B is a backward shift operator, Γ(�) is a gamma function, and �
�
�
� =

�!

(���)!�!
=

�(���)

�(���)�(�����)
  

is a binomial coefficient. Several characteristic of fractionally integrated series for various values of d 
are as follow [15]: 
a. If � =  0, then the process shows autocorrelation function with exponential decay as an ARMA 

process, 
b. If � ∈ (0 , 0.5), then the series is correlated with long memory having positive dependency 

between distant observations denoted by positive autocorrelation and slow-decaying and also have 
moving average representation of infinite order, 

c. If � ∈ (−0.5 , 0), then the series is correlated with long memory having negative dependency 
denoted by negative autocorrelation and slow-decaying and also have autoregressive representation 
of infinite order, 

d. If |�|≥ 0.5, maka proses panjang tidak stasioner.  

2. 3. Estimation of Fractional Difference Parameter with Parametric Method  
Parametric method is able to estimate all parameters in the ARFIMA model in one step [16]. In 

this study, the parametric method used is Exact Maximum Likelihood (EML) method introduced by 
Sowell (1992). This method uses the likelihood principal to estimate �, �, dan � in the ARFIMA 
model. Given the general form of ARFIMA (�, �, �) model as follows: 

�1 − � �� − � ��
� − ⋯− � ��

��(1 − �)�(�� − �)     =�1 + ��� + ���
� + ⋯+ � ��

����, 

�� =
�1 − � �� − � ��

� − ⋯− � ��
��(1 − �)�(�� − �)

�1 + ��� + ���
� + ⋯+ � ��

��
, 

where ��~� (0, ��). The probability density function of � = (��, ��, . . , ��) is defined as: 

�(�|�, �, �, �, ��
�)= (2���

�)�
�

� exp�−
�

���
� ∑ ��

��
��� �,  

The likelihood function can be written as follows: 
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Estimation of �, �, �, �  can be obtained by maximizing equation (1) and this is referred as maximum 
likelihood estimation [4].  

2. 4. Estimation of Fractional Difference Parameter with Semiparametric Methods  
Estimation of fractional difference parameter with semiparametric methods is carried out through 

two steps. The first step is estimating the fractional difference parameter (d) and the second step is 
estimating AR and MA parameter [16]. The most popular semiparametric method used is Geweke dan 
Porter-Hudak (GPH). GPH method is performed by forming spectral density function or spectral 
equation of ARFIMA model through spectral regression equation (�(�)) with log-periodogram as 
the dependent variable and the series of autocovariance ��  as pair of Fourier transformation: 

ln�������= β� + �����4sin
�(��

�)�+ ��,  

where �� =
���

�
, � = 1,2, . . , �. The estimation of d is  ���, �� represents � = √� Fourier frequency, 

and ����� denotes the sample periodogram defined as �����=
�

���
|∑ ���

�� ���
��� |�. The second 

step of GPH method is build ARMA model by using Box-Jenkins method after the estimated 

fractional difference parameter is obtained from the GPH method (�����).  
The next semiparametric method is called Sperio method introduced by Reisen and Lopes (1999). 

It is a modification from GPH method by replacing the periodogram with the smoothed spectral 
density. Reisen and Lopes (1999) proposed to use Blackman-Tukey type of estimation for the spectral 
density [17]: 

�� (�)=
�

��
∑ � �

�

�
��̂�

���� (�)cos (��) .  

This estimated smoothed periodogram is denoted by �������� .  
The third semiparametric method is Local Whittle estimation that is also commonly used for 

estimation of fractional difference parameter. This method was proposed by Kuensch (1987) and was 
modified by Robinson (1995). Local Whittle estimation of fractional difference parameter, denoted by 

��������� , is obtained by maximizing the likelihood of log Local Whittle on Fourier frequency that goes 
to zero [18]: 

�(�)= −
�

���
∑ ����;��
�
��� .  

 

The last semiparametric method considered in this study is Rescaled Range Statistic (R/S) or 
often called as Hurst statistic test. The last semiparametric method is Rescaled Range Statistic (R/S) or 
Hurst test. Besides being used to see indication of long-term memory in time series data, R/S statistic 
can also be used to estimate the fractional difference parameter with the following equation: 

� = � − 0.5. 
 
2. 5. Model Diagnostic Checking 

Diagnostic checking is carried out to check the adequacy of fitted model to the observed data in 
order to reveal model inadequacies and to achieve model improvement. The diagnostic checking is 
done by observing if the model residual follows a white noise process or not, that is checking if the 
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residuals are independent by using Ljung Box-Pierce test [4] and also checking if the residuals are 
normally distributed by using Jarque-Bera test [16].  

 
2. 6. Selection of Best ARFIMA Model 

Selection of best fitted model can be determined by Akaike Information Criteria (AIC) [19]. The 
AIC values takes into account how well the model fits the observed data and the number of parameters 
used the fitted model. It can be computed by using the following formula: 

���= −2log(�������  ������ℎ���)+ 2�.  

where � = � + � + 1  if the model contains intercept and � = � + �  if the model does not cointain 
intercept [19].  

A good model is considered and expected to be the best model for fitting data in sample and at 
the same time it is also a good model for forecasting out sample data. MAPE (Mean Absolute 
Percentage Error) is one of many criteria to test for the validity of the fitted model and will be used 
in this study. It is defined as the mean of the sum absolute deviation of predicted and observed value 
dividing by the observed value [20]: 
 

���� =
�

�
∑ �

������

��
��

��� × 100,  

where �� is the actual series, ���  is the predicted series, and N is the number of data sample.  

4. RESULTS 

Figure 1 displays the trend of wind speed at Soekarno-Hatta airport on a daily basis. It can be 
seen that the series are not stationer in variance as the fluctuations of the data tend to change over 
time or are not constant. A formal test is performed by using Box-Cox transformation to evaluate if 
transformation is needed to make the variance stationary in time.  

 

Figure 1. Plot of wind speed at Soekarno-Hatta airport. 

Figure 2 indicate that the rounded value of optimal � is not close to 1 and the range of lower and 
upper limit do not contain 1. According to this plot, the data needs to be transformed using square 

root transformation of �� (���). Afterwards, the stationary test in the mean is also performed by using 
ADF (Augmented Dickey Fuller) test. The result shows that we have strong evidence to reject the null 
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hypothesis of non-stationary data since the p-value is less than 0.05 (p=0.01). Therefore, we can 
conclude that the wind speed data is already stationary in mean. 

 

 
Figure 2. Box-Cox Profile Log Likelihood. 

 
 To identify if there is a long-term dependency, Hurst (H) statistic is calculated to the observed data. 

The computed � =
���(�/�)�

��� (�)
= 0.738 indicates that the transformed wind speed data has long-term 

dependency, thus ARFIMA(p,d,q) is the most appropriate model to be fitted to the observed data. 
 
4.1. ARFIMA(�, �, �) Model Building with Parametric Method 

In building ARFIMA model with parametric approach, the candidate models can be identified 
from the plot of ACF and PACF of the differenced series. A temporary d value is obtained by fitting 
ARFIMA(0, �, 0) model. The estimated d is 0.397 (se=0.045). To identify the order of p and q as 
ARFIMA model, the value of d is set to 0.397. According to the plot of ACF and PACF, the model 
candidates are ARFIMA(2, �, 0),  ARFIMA([7],�, 0),  ARFIMA([2,7], �, 0),  ARFIMA(0, �, 2), 
ARFIMA (0, �, [7]), ARFIMA (0, �, [2,7]),  ARFIMA (2, �, 2),  ARFIMA ([7], �, [2]), 
ARFIMA ([2,7],�, [2]), ARFIMA ([2],�, [7]),  ARFIMA ([7],�, [7]),  ARFIMA ([2,7], �, 7), 
ARFIMA([2], �, [2,7]), and ARFIMA([2,7], �, [2,7]). Next, the parameters (�, �, �) for each 
candidate model are then estimated simultaneously by using EML method. Table 1 summarizes the 
estimated parameters for each model.  

According to Table 1, ARFIMA([7], 0.409,0), ARFIMA([2,7], 0.45,0), ARFIMA(0,0.41,[7]), A
RFIMA(0,0.45,[2,7]), ARFIMA(2,0.439,2),  ARFIMA([7], 0.449,[2]), dan ARFIMA([2], 0.452,[7]) 
models have all the parameters significant in the model. Table 2 summarizes the comparison of these 
7 models based on AIC values. It shows that ARFIMA(2,0.439.2) has the lowest AIC value. 

Table 1. Estimated parameter of ARFIMA(�, �, �) Using EML Method. 

No. 
ARFIMA(�, �, �) 

Model 
Parameter Coefficient 

Standard 
Error 

Sig. 

1 (2, �, 0) 
�� 0.082 0.089 No 

��  -0.148 0.066 Yes 

� 0.399 0.070 Yes 

2 ([7], �, 0) 
��  -0.132 0.059 Yes 

� 0.409 0.043 Yes 
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Table 2. Estimated parameter of ARFIMA(�, �, �) Using EML Method (continued) 

No. 
ARFIMA(�, �, �) 

Model 
Parameter Coefficient 

Standard 
Error 

Sig. 

3 ([2,7],�, 0) 

�� -0.160 0.061 Yes 
��  -0.125 0.058 Yes 
� 0.450 0.039 Yes 

4 (0,�, 2) 

�� -0.089 0.112 No 
�� 0.112 0.077 No 
� 0.385 0.088 Yes 

5 (0, �, [7]) 
�� 0.132 0.060 Yes 
� 0.410 0.043 Yes 

6 (0,�, [2,7]) 

�� 0.139 0.058 Yes 
�� 0.126 0.061 Yes 
� 0.450 0.040 Yes 

7 (2,�, 2) 

�� 0.540 0.204 Yes 
�� -0.796 0.116 Yes 
�� 0.541 0.265 Yes 
�� -0.671 0.151 Yes 
� 0.439 0.055 Yes 

8 ([7], �, [2]) 

�� -0.126 0.059 Yes 
�� 0.142 0.059 Yes 
� 0.449 0.040 Yes 

9 ([2,7],�, [2]) 

�� -0.261 0.215 No 
�� -0.120 0.059 Yes 
�� -0.105 0.217 No 
� 0.447 0.040 Yes 

10 ([2], �, [7]) 

�� -0.161 0.061 Yes 
�� 0.128 0.060 Yes 
� 0.452 0.039 Yes 

11 ([7], �, [7]) 

�� -0.443 0.722 No 
�� -0.323 0.769 No 
� 0.406 0.044 Yes 

12 ([2,7],�, 7) 

�� -0.159 0.062 Yes 
�� -0.150 0.449 No 
�� -0.026 0.466 No 
� 0.449 0.040 Yes 

13 ([2], �,[2,7]) 

�� -0.331 0.209 No 
�� -0.172 0.211 No 
�� 0.125 0.059 Yes 
� 0.448 0.040 Yes 

14 ([2,7],�, [2,7]) 

�� -0.432 0.232 No 
��  0.227 0.369 No 
�� -0.277 0.242 No 
�� 0.348 0.359 No 
� 0.447 0.040 Yes 

 
4.2. ARFIMA(�, �, �) Model Building with Semiparametric Methods 

In semiparametric method, the fractional difference parameter is estimated separately from the A
R and MA coefficients. Table 3 presents the estimated value of d by using the four semiparametric m
ethods. 
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Tabel 3. AIC values of ARFIMA model fitted with EML method. 

  ����� ARFIMA(�, �, �) Model AIC 
0.409 ([7],�, 0) -1773.942 
0.450 ([2,7],�, 0) -1780.581 
0.410 (0,�, [7]) -1773.884 
0.450 (0, �, [2,7]) -1779.35 
0.439 (2,�, 2) -1787.438 
0.449 ([7], �, [2]) -1775.627 
0.452 ([2], �, [7]) -1776.487 

 
Table 4. Estimated value of d using semiparametric method. 

Method d Standard Error 

Geweke dan Porter-Hudak (GPH) 0.334 0.076 

Smoothed GPH (Sperio) 0.359 0.033 
Local Whittle 0.352 0.039 
R/S 0.238 0.048 

 
Model identification as ARFIMA(p,d,q) is conducted by using the plot of ACF dan PACF. With 

GPH method, the candidate models are ARFIMA(2, �, 0), ARFIMA([7], �, 0), ARFIMA([1,2,7], �, 0), 
ARFIMA(0, �, 1), ARFIMA(0, �, [7]), ARFIMA(0, �, [1,7]), ARFIMA(2, �, 1), ARFIMA([7].�, 1), ARFI
MA([1,2,7], �, 1), ARFIMA(2, �, [7]), ARFIMA(2, �, [1,7]), ARFIMA([1,2,7], �, [7]), ARFIMA([1,2,7],
�, [1,7]), and ARFIMA([7], �, [7]). With Sperio method, the candidate models are ARFIMA(2, �, 0), A
RFIMA([7], �, 0), ARFIMA([2,7], �, 0), ARFIMA(0, �, 2), ARFIMA(0, �, [7]), ARFIMA(0, �, [2,7]), AR
FIMA(2, �, 2), ARFIMA([7], �, [2]), ARFIMA([2,7], �, [2]), ARFIMA([2], �, [7]), ARFIMA([7], �, [7]), 
ARFIMA([2,7], �, 7), ARFIMA([2], �, [2,7]), and ARFIMA([2,7], �, [2,7]). With Local Whittle method, 
the candidate models are ARFIMA(2, �, 0), ARFIMA([7], �, 0), ARFIMA([2,7], �, 0), ARFIMA(0, �, 2), 
ARFIMA (0, �, [7]),  ARFIMA (0, �, [2,7]),  ARFIMA (2, �, 2),  ARFIMA ([7], �, [2]), ARFIMA ([2,7], �
, [2]), ARFIMA([2], �, [7]), ARFIMA([7], �, [7]), ARFIMA([2,7], �, 7),ARFIMA([2], �, [2,7]), ARFIMA
([2,7], �, [2,7]). Lastly with R/S method, the candidate models are ARFIMA(1, �, 0),ARFIMA(1, �, 1), AR
FIMA(0, �, 1), ARFIMA(0, �, 4), ARFIMA(0, �, [1,4]), ARFIMA(1, �, [4]), and ARFIMA(1, �, [1,4]). 

Based on these candidate models, not all parameters are significant at 5% level. Those models w
ith insignificant parameter are excluded from the candidates. Table 4 summarizes the comparison for 
all models with their corresponding AIC values. According to Table 4, the best fitted model with the 
lowest AIC value with GPH method is ARFIMA(2, �, 0). Based on Sperio method, ARFIMA(2, �,
0) has the smallest AIC value as compared to ARFIMA([7], �, 0),ARFIMA(0, �,[7]) and ARFIMA

(2, �, 2)  with ��������  = 0.359. Based on Local Whittle method, ARFIMA(2, �, 2)  model has the 

smallest AIC value as compared to ARFIMA([7], �, 0), ARFIMA([2,7], �, 0), ARFIMA(0, �, [7]), 

ARFIMA(0, �, [2,7]), ARFIMA([7],�, [2]),  and ARFIMA([2], �, [7]) with ��������� = 0.352. Ba

sed on R/S method, the smallest AIC values is for ARFIMA(0, �, 1) where ���/� = 0.238. 
Diagnostic model is performed to the selected model by evaluating the assumption of the residu

als that follow normal distribution and whether they are independent. The Jarque-Bera test as indicat
ed in Table 5 shows that the residuals do not violate the normality assumption since the p-values are 
greater than 0.05. The Ljung-Box test to examine the assumption of independent indicates that the r
esiduals do not correlate since the p-value is greater than 0.05. Thus, the residuals follow white noise 
process.  
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Table 4. Comparison of ARFIMA model using semiparametric method. 

Semiparametric Method Model ARFIMA  AIC 

GPH (����� = 0.334) ARFIMA(2,�, 0) -1786.023 

ARFIMA([7],�, 0) -1770.698 

ARFIMA(0,�, 1) -1785.356 

ARFIMA([1,2,7],�, [7]) -1767.478 

ARFIMA([7],�, [7]) -1757.494 

Sperio (��������  = 0.359) ARFIMA(2,�, 0) -1786.023 

ARFIMA([7],�, 0) -1770.698 

ARFIMA(0,�, 1) -1785.356 

ARFIMA([1,2,7],�, [7]) -1767.478 

ARFIMA([7],�, [7]) -1757.494 

Local Whittle (���������  =
0.352) 

ARFIMA([7],�, 0) -1773.893 

ARFIMA([2,7],�, 0) -1779.591 

ARFIMA(0,�, [7]) -1773.836 

ARFIMA(0,�, [2,7]) -1778.372 

ARFIMA(2,�, 2) -1787.139 

ARFIMA([7],�, [2]) -1774.698 

ARFIMA([2],�, [7]) -1775.391 

R/S (���/� = 0.238) ARFIMA(0,�, 1) -1784.631 

ARFIMA(1,�, 0) -1783.05 

ARFIMA(0,�, [4]) -1766.393 

ARFIMA(1,�, [4]) -1779.315 

 
Table 5. Normality and independent test. 

� 
ARFIMA 

Model 

P-value from 
Normality 

test 

P-value from 
Ljung-Box test 

����� =  0.334 (2, �, 0) 0.939 0.885 

��������  = 0.359 (2, �, 0) 0.956 0.857 

��������� = 0.352 (2, �, 2) 0.944 0.672 

���/� = 0.238 (0, �, 1) 0.823 0.863 

����� = 0.439 (2, �, 2) 0.975 0.725 

 

Diagnostic model checking reveals that the candidate model based parametric and semiparametric 
methods show a good fit model since none of the assumptions are violated. Next, we examine all 
these five models in terms of accuracy by using MAPE. Table 6 shows that the smallest MAPE value 

is for ARFIMA(2, �, 0) with ����� = 0.334. This model has MAPE of 17.760, showing that the model 
has relatively good forecasting ability.  
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Table 6. Forecasting accuracy. 

� ARFIMA Model MAPE 

����� =  0.334 (2,�, 0) 17.760 
��������  = 0.359 (2,�, 0) 17.791 
��������� = 0.352 (2,�, 2) 18.029 
���/� = 0.238 (0,�, 1) 17.838 
����� = 0.439 (2,�, 2) 18.242 

ARFIMA(2, �, 0) model with ����� = 0.334 can be expressed as follows: 

��(�)∇
� �� = ��, 

⟺ (1 − � �� − � ��
�)(1 − �)�.����� = ��  

⟺ (1 + 0.148� − 0.117��)(1 − �)�.����� = ��. 
 

The value of (1 − �)�.��� expresses the long-term memory in the seires. If (1 − �)�.����� is denoted 
by �� showing a long-term memory, then: 

(1 + 0.148� − 0.117��)�� = ��, 
⇔ � � + 0.148��� − 0.117�

��� = ��. 

where (1 − �)�.��� can be written as: 

(1 − �)�.���= 1 − 0.334� −(0.334)(1 − 0.334)�� −
�

�
(0.334)(1 − 0.334)(2 − 0.334)�� − ⋯  , 

⇔ (1 − �)�.���= 1 − 0.334� − 0.112�� − 0.062�� − ⋯  . 

Thus, ARFIMA (2,0.334,0) model can be expressed as follows: 

⇔ � � + 0.148��� − 0.117�
��� = ��, 

⇔ (1 − 0.334� − 0.112�� − 0.062�� − ⋯ )�� + (1 − 0.334� − 0.112�� − 0.062�� − ⋯ )0.148����
− (1 − 0.334� − 0.112�� − 0.062�� − ⋯ )0.117���� = ��, 

⇔ � � − 0.186���� − 0.278���� − 0.04���� − ⋯ = � �, 
⇔ � � = 0.186���� + 0.278���� + 0.04���� − ⋯+ � �, 

The results of the forecasted wind speed in Soekarno-Hatta airport from period of December 1st, 
2018 to December 14th, 2018 using ARFIMA (2,0.334,0) can be seen in Table 7.  

 Table 7. Results of forecasted wind speed value. 

Date 
Wind Speed Forecast 

(Knot) 
Date 

Wind Speed Forecast 
(Knot) 

01/12/2018 5.582 08/12/2018 5.585 

02/12/2018 5.582 09/12/2018 5.586 

03/12/2018 5.583 10/12/2018 5.586 

04/12/2018 5.583 11/12/2018 5.587 

05/12/2018 5.584 12/12/2018 5.587 

06/12/2018 5.584 13/12/2018 5.588 

07/12/2018 5.585 14/12/2018 5.588 
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5. CONCLUSIONS 

The semiparametric methods yield different estimate of fractional difference parameter, i.e. 

����� =  0.334, �������� = 0.359, ��������� = 0.352, and ���/� = 0.238 obtained from the GPH, Sperio, 
Local Whittle, and R/S methods, respectively, while the estimated fractional difference parameter is 

����� = 0.439 based on parametric method. The best fitted model to forecast the wind speed is 
ARFIMA(2, �, 0) with GPH semiparametric method with MAPE accuracy value of 17.76. The 
selected model can be expressed as follows: 

�� = 0.186���� + 0.278���� + 0.04���� − ⋯+ � �. 

From the above equation, it can be seen that the wind speed at Soekarno-Hatta airport have long-ter
m memory. This might be due to the tendency of repeated wind cycles over time. The forecasted val
ues in the next 14 days in the beginning of December 2018 show very little increase in wind speed. 
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