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Abstract 
In financial and insurance industries, risks may come from several sources. It is therefore important to 
predict future risk by using the concept of aggregate risk. Risk measure prediction plays important role in 
allocating capital as well as in controlling (and avoiding) worse risk. In this paper, we consider several risk 
measures such as Value-at-Risk (VaR), Tail VaR (TVaR) and its extension namely Adjusted TVaR (Adj-
TVaR). Specifically, we perform an upper bound for such risk measure applied for aggregate risk models. 
The concept and property of comonotonicity and convex order are utilized to obtain such upper bound. 
Keywords: coherent property; comonotonic rv; convex order; tail property; Value-at-Risk (VaR). 

 

Abstrak 
Dalam industri keuangan dan asuransi, risiko dapat berasal dari beberapa sumber. Konsep risiko agregat 
diperlukan untuk memprediksi risiko di masa yang akan datang dari risiko tersebut. Prediksi ukuran risiko 
memiliki peran yang penting dalam mengalokasikan modal dan dalam mengendalikan atau menghindari risiko 
yang mungkin terjadi. Dalam artikel ini digunakan beberapa ukuran risiko seperti Value-at-Risk (VaR), Tail-
VaR (TVaR), dan pengembangannya yaitu AdjustedTVaR (Adj-TVaR). Secara khusus, dihitung batas atas dari 
ukuran risiko pada model risiko agregat. Konsep dan sifat-sifat dari peubah acak komonotonik dan orde 
konveks digunakan dalam menentukan batas atas tersebut.  
Kata kunci: ekor distribusi; orde konveks; peubah acak komonotonik; sifat koheren; Value-at-Risk (VaR). 

 
 

1. INTRODUCTION 

In financial and insurance industries, risks may come from several sources. It is therefore 
important to predict future risk by using the concept of aggregate risk. Suppose that SN represents 
aggregate risk of collection of random losses {Xi : i = 1, 2, … , N } given by 

1 2    · · ·  ,N NS X X X     
 

where the random losses are not necessarily independent, e.g. McNeil et al. [1], Tse [2]. Note that the 
random variable N is usually assumed to follow a discrete distribution whilst Xi is continuous random 
loss. 

For a single random loss, X, with probability distribution determined by parameter vector θ, the risk 
measure Value-at-Risk (VaR) is defined as maximum tolerated risk at a given level of significance, e.g. 
McNeil et al. [1], Nieto and Ruiz [3]. VaR  is very important in allocating capital as well as in controlling 
(and avoiding) worse risk. Basically, VaR is calculated via its inverse of distribution function i.e. 
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1( ( ), ) xVaR X F   
 

for α ∈ (0, 1). When we deal with either such inverse does not exist or the case of discrete loss, VaR 
may be obtained through inf{x|FX (x) ≥ α}. Although VaR is widely used, it is not a coherent risk 
measure. 

There have been some works carried out by authors to seek an improvement of VaR, besides 
describing formulas of VaR and CoVaR e.g. Nadarajah et al. [4]. Their efforts may be derived in two 
different directions. The first is improvement of VaR prediction accuracy i.e. the coverage probability 
of VaR prediction is closer to the target nominal or significant level. The example of this is an 
improved VaR in which the method was developed by Kabaila and Syuhada [5] [6]. The second 
improvement is seeking alternative risk measure that captures coherent property. 

Provided VaR, we are able to calculate another risk measure as the mean of losses beyond VaR, 
known as Tail Value-at-Risk (TVaR), e.g. Artzner et al. [7], as follows 

1

( ) [ | ( )] ( )
1

   .
1

uTVaR X E X X VaR X VaR X du  




  
   (1) 

The value of TVaR in general is greater than its VaR and. Furthermore, TVaR is a coherent risk 
measure. On the extensions of TVaR is Modified CoVaR of Jadhav et al. [8] in which this proposed 
paper relies on loosely. In particular, our aim is to find an upper bound for TVaR applied for aggregate 
risk model. To do this, the concept of comonotonicity and convex order are utilized. Note that, 
although VaR is widely-used, it is not a coherent risk measure. It is therefore we apply and seek 
alternative risk measures. 

This paper is organized as follows. Section 2 describes of Adjusted TVaR (Adj- TVaR) of Jadhav 
et al. [8]. The upper bound of Adj-TVaR for aggregate risk and its comonotonic counterpart is given 
in Section 3. Section 4 concludes. 

 
2. THE RISK MEASURE OF ADJUSTED TAIL VALUE-AT-RISK (ADJ-TVaR) 

The risk measure TVaR may be interpreted as the second tolerated risk after VaR. TVaR is 
expected to occur for less than 1 − α. We may differentiate the value of TVaR for class of 
distributions, such as normal, heavy-tailed and extreme. The heavier of tail distribution the greater 
value of TVaR. 

 
Theorem 2.1. (Jadhav et al. [8]) For a random loss X and some )1,0(  and ]1.0,0[c ,

(X)RAdj - TV a ca ),(   is defined as the mean loss in the interval between VaRα(X) and )(1)1(
XVaR c 

 

i.e. 

1( 1) ), (
( ) [ | ( ) ( )   ccAdj TVaR X E X VaR X X VaR X     

     (2) 

where its confidence level is α + (1 − α)1+c. 

Let VaRα(X) = a and 1( )1
( ) bcVaR X

   
 . From (2) we obtain 

( 1),

1 1
   ( ) ( ) ( )

( ) (
 .

 1 )

b b

c X Xc

a a

Adj TVaR X xf x dx xf x dx
P a X b

  
  

     
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By substituting FX (x) = µ, x = F −1(µ), and f (x)dx = dµ, 
1(1 )

1
, 1( )

1
 ( )d .

1
( )

( ) 

c

c Xc
Adj TVaR X F

 

 
 



 



 

   

For the case of an aggregate risk, SN, the Adj-TVaR(α,c)(SN ) is given by 
1(1 )

1
, 1( ) ( )

(

1
 ( )d .

1 )

c

Nc N c SAdj TVaR FS
 

 
 



 



 

   

PrOPERTY-2.1. The Adj-TVaR is a coherent risk measure. 
To verify that Adj-TVaR is coherent risk measure, it will be shown that it fulfill subadditivity 

properties [5]. Consider X1 and X2 be individual risk and S2 aggregate of X1 and X2. Thus, 

 
  
  

1 1

2 2

2 2

1
1

1
( , ) 1 ( , ) 2 ( , ) 2

1 1 1 1
1 1

1 1 1 1
2 2

1 1 1
2 2

1 ( )

(1 ) (Adj-TVaR ( ) Adj-TVaR ( ) Adj-TVaR ( ))

(1 ) | ( ) (1 )

| ( ) (1 ) (1 )

| ( ) (1 )

X

c
c c c

c c
X X

c c
X X

c
S S

F

X X S

E X F X F

E X F X F

E S F S F

E X

  





   

   

  





   

   

  

  

        

       

     

 I
   

 

   

1 1 1 1 1
1 21 2 2

1 1 1
22 2

1 1 1 1 1 1
1 21 1 2 2

1 1
22 2

2(1 ) ( ) (1 )

2 ( ) (1 )

1 ( ) (1 ) ( ) (1 )

2 ( ) (1

c c
X X X

c
S S

c c
X X S S

X X

X F F X F

F S F

F X F F S F

F X F

E X

E S

E X

E X

    

  

     

 

    

  

     

 

       

   

       

  

    
      

 
  

        

I

I

I I

I
   1 1 1 1

22 2
) ( ) (1 )c c

S SF S F          

      
I

 

and we obtain 
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Thus, for S2 = X1 + X2, we have 

( ) (, 2 , 1 , 2) ( )Adj-TVaR   Adj-TVa( ) ( ) ( )R   Adj-TVaRc c cS X X     

that proves subadditivity property. 
The following figures illustrate the value of Adj-TVaR for several distribution on the probability 
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function curve, in comparison to its VaR. 

 
 

Figure 1: Adj-TVaRα(X) on probability function curves: (a) Normal, (b) Uniform, (c) Pareto,                

(d) Weibull 
 

PrOPERTY-2.2.   The  value  Adj-TVaR,  in  the  same  level  of  confidence,  has  lower value than its 
corresponding TVaR. 

To prove the above property, we will show that at α + (1 − α)1+c significance level, 

1 )1 ,(( )
TVaR Adj-TVa( ) ( ).Rc c XX

   
 Suppose that on right-tailed there is two intervals, 

1
1I ,1 c      and 1

2 (1 ) ,1cI        . Thus, for every 1Ip and 2Iq ,    1 1- -
X XF p  = F q , 

such that 

Let 1 − (1 − α)1+c = a and α + (1 − α)1+c = b, we have 

1
1 1 1 1

1
1 1

.
b a b

X X X X
a b a
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X X
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

   

 

  
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   

 
 

 

from which we can conclude that 1 )1 ,(( )
TVaR Adj-TVa( ) ( ).Rc c XX

   
  

 
3. UPPER BOUND OF ADJ-TVaR FOR AGGREGATE RISK 

When a risk measure is applied to aggregate risk model, it may not be easy to the equality between 
the risk measure of aggregate risk and the aggregate of risk measure of individual risk. In other words, 
we may only seek whether subadditivity property applies for such risk measure. 

As before, consider an aggregate risk of SN . Let X = (X1, X2, ..., XN ) be random vector and 
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NXXXX ,...,F,F,FF
321

are their corresponding marginal distribution function. Now, for any random 

vector X not necessarily comonotonic, its comonotonic counter- part is defined as any random vector 
with the same marginal distributions and with the comonotonic dependency structure. It can be 
proven that a random vector is comonotonic if and only if all its components are non-decreasing (or 
non-increasing) functions of the same random losses (see McNeil et al., 2005). 

The comonotonic counterpart of X will be denoted by 1 2  ,  ,  ...,  ( ) c c c c
NX X XX and 

1 2

1
1

1 1
2( ) ( ( ), ( ),.,  ,  ..., .., ( ))  

N

d

X
c c

N X X
cX X X F U F U F U   .  

A random vector is comonotonic if and only if its marginal distribution function are non-
decreasing function of the same random variable. Suppose that Sc be the sum of every component    
of Xc. Sc can be expressed as 

1 2+ + . . . .c c c c
N NS X X X  

 
Definition 3.1. Let X1 and X2 be two random variables. 

 
(i) X1 is said to be smaller than X2 in convex order (X1 ≤co X2) if 

   1 2( )  ( )E g X E g X  
 

for any convex function g such that the expectation exist. 

(ii) X1 is said to be smaller than X2 in stop loss order (X1 ≤sl X2) if 

   1 2 1 2( ) ( )    [ , ] [ ]E X K E X K and E X E X      
 

for every RK . 

 
PrOPERTY-3.1.   If  X1 precedes  X2 in  convex  order  sense  i.e  if  X1 ≤co X2 ,  then 

E[X1] = E[X2] and Var[X1] ≤ Var[X2]. 
 
PrOPERTY-3.2.  X1 ≤co X2 if only if X1 ≤sl X2. 

Theorem 3.1. For any random vector X = (X1, X2, ..., XN ) we have that [9] 

  c
N co NS S  (3)

 
In the following proposition, we argue that risk measure of Adj-TVaR for aggregate risk is lower 

than the corresponding Adj-TVaR for its comonotonic counterpart. 

 

Proposition 3.1. For any aggregate random variable SN and ��
�  counterpart of it, we have that if 

c
NslN SS   then their respective Adj-TVaR are ordered: 

( ),) (, ( )     ( )c c
N sl N c N c NS S Adj TVaR S Adj TVaR S       (4)
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Proof: First, we assume   .c
N sl NS S According to Dhaene et al. [10] if   c

N sl NS S  than 

   α αVarR  VarR .c
N NS S

 

That inequality causes 
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By substituting 1(  , (  ) )c c
N NS S

F s s F    and (  ,)c
NS

f s ds d we obtain 

1(1 )
1

, 1

1
Adj-TVaR (  ( ) .

(1 )
)

c

c
N

c
c N c S

S F d
 

 
 



 





    

Suppose that 1(1 ) ,c b     we have the following  
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and this proves our proposition. 
 

4. CONCLUDING REMARK 

The risk measure of Adj-TVaR for aggregate risk and its comonotonic counter- part may be 
applied to the Copula TVaR of Brahim et al. [11]. In practice, many random losses really depend on 
other losses that are not necessarily its component of aggregate risk. 
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