Analyzing Economic Resilience of Rural Tourism in Indonesia Using Synthetic Composite Index

Nafiah Ariyani^{1*}, Akhmad Fauzi²

¹Faculty of Economics and Business, Sahid University, Jakarta, Indonesia ²Department of Resources and Environmental Economics, Faculty of Economics and Management, IPB University, Bogor, Indonesia E-mail: ¹arienafiah@gmail.com, ²fauziakhmad@gmail.com

*)Corresponding Author

JEL Classification: Abstract O18 Research Originality: This study used a new method, namely Z32 the Adjusted Mazziotta-Pareto Index (AMPI) to measure and Z38 categorize economic resilience using clustering analysis. In addition, the innovative method had not been previously Received: 28 June 2023 applied to tourism resilience in Indonesia, making this study the first to measure tourism village resilience. Revised: 19 April 2024 Research Objectives: This study aimed to analyze economic Accepted: 26 April 2024 resilience of tourism village destinations in Indonesia from 2019 to 2022 during the COVID-19 pandemic. Available online: September 2024 Research Methods: The procedures were carried out using a quantitative method to determine resilience index of tourism Published regularly: September 2024 village in Indonesia during the COVID-19 pandemic. Data were obtained from form management documents as well as 24 tourism villages across Java, Bali, and West Nusa Tenggara Provinces. Empirical Results: The results showed that the majority of villages were significantly impacted in the initial year of COVID-19, but were able to recover, demonstrating strong capacity and performance in recovering from the pandemic shock. In addition, economic aspects of capacity and performance showed high adaptability after the pandemic, indicating relative resilience to the shock. Implications: The results of this study could inform policies to enhance tourism village resilience in Indonesia. **Keywords:** adjusted mazziotta-pareto index (AMPI); economic resilience; rural development; rural tourism

How to Cite:

Ariyani, N., & Fauzi, A. (2024). Analyzing Economic Resilience of Rural Tourism in Indonesia Using Synthetic Composite Index. *Etikonomi*, *23*(2), 415 – 432. https://doi.org/10.15408/etk.v23i2.33355.

INTRODUCTION

Rural tourism, also known as tourism village, is a series of activities that have been proven to be an essential dimension of rural development (Liu et al., 2023; Shi et al., 2022; Huang et al., 2023; Jamini & Dehghani, 2022; Bayrak, 2022; Stepanova et al., 2023). These activities are also considered innovative for overcoming various problems in rural areas and facilitating sustainable development (Lv et al., 2021). Several studies reported that tourism villages had developed into a new element and kinetic energy for revitalization and development (Neumeier & Pollermann, 2014). Despite believing in its vital role, some parties argue that tourism is vulnerable to various pressures and disruptions (C. Huang et al., 2021; Qin & Chen, 2022; Gallego & Font, 2019). These include financial crises (Chan, 2011), social disruption (Kılıçlar et al., 2018), natural disasters (Rosselló et al., 2020), political conflicts (Zhou et al., 2021), and pandemics (Altuntas & Gok, 2021). The sector vulnerability is closely related to the structure and function of the system, which is easily damaged due to the inability to adapt quickly to disturbances originating from in and outside the system (Qin & Chen, 2022).

According to previous studies, the COVID-19 outbreak from 2020 to 2022 has exerted immense pressure on global tourism (Gössling et al., 2020), leading to an unprecedented crisis (Marco-Lajara et al., 2022). UNWTO recognized 2020 as the worst year in the industry due to a disturbing crisis with significant impacts (Mazilu et al., 2023). The pandemic mainly affected tourism compared to other industries (Henseler et al., 2022) and was the last sector to recover (OECD, 2020). In addition, it was among the first sectors to experience the flagrant consequences of the COVID-19 crisis (Lamhour et al., 2023), with varying levels of impact (Jamini & Dehghani, 2022). The pandemic also raised awareness about the importance of paying particular attention to resilience in facing various external tensions and shocks (Higgins-Desbiolles, 2020; Feng et al., 2021; Hu et al., 2021; Ohe, 2022; Ibanescu et al., 2022). Resilience is an important variable in facilitating the sector's recovery (Pocinho et al., 2022) and maintaining the sustainability of rural tourism (Yu et al., 2023). In addition, it indicates a system's ability to cope and adapt positively to future social and ecological changes (Heslinga et al., 2020) and return to normal conditions after an event that disrupts its state (Hosseini et al., 2016). Several studies also showed that resilience was related to events that caused risks and shocks to a system. Risks are the possibility of adverse events and negative consequences, while shocks occur when risks become a reality (OECD, 2014). Resilience also provides a valuable framework for building bridges between emergencies, contingencies, competitiveness, and sustainable development (Béné et al., 2014).

Since the 21st century, resilience has increasingly become accepted as a framework for understanding world systems, including tourism. Studies exploring this framework in the context of tourism have also experienced growth in complexity and comprehensiveness (Ibanescu et al., 2020). These studies consistently focused on tourism resilience to climate change (Dogru et al., 2019), community resilience, and the importance of involving community leaders with local knowledge to build destination resilience (Kwok et al., 2016), tourism resilience and recovery from COVID-19 (McCartney et al., 2021), resilience and welfare of households that base the livelihoods on tourism (Munanura et al., 2021), communities in tourism village (Lew et al., 2016), the impact of COVID-19 on rural resilience (Yu et al., 2023), and tourism village in Japan during the new normal (Ohe, 2022).

Despite the availability of studies on tourism resilience, there still needs to be gaps in assessing resilience and accounting for temporal fluctuations in tourism shocks (Lamhour et al., 2023). Several reports, such as those conducted by Gaki and Koufodontis (2022), used the resistance index to measure regional tourism resilience using statistical data. Cirer Costa (2024) and (Manner-Baldeon et al., 2024) also focused on community resilience. Therefore, this study measures tourism villages at the destination scale by integrating temporal variations of resilience indicators. A novel method, the Adjusted Maziotta-Pareto Index (AMPI), was introduced to evaluate tourism village resilience based on temporal changes. This research is the first study in Indonesia to address the gap in tourism resilience measurement in the context of tourism villages.

As a nation with abundant potential for rural tourism, the proliferation of tourism villages in Indonesia is anticipated to bolster rural tourism's contribution to enhancing economic growth, fostering community welfare, and conserving nature and rural heritage (Ariyani & Fauzi, 2023). Consequently, the results hold the potential to serve as a guiding framework for fortifying tourism village resilience in Indonesia when confronting various shocks and risks. The results can also be extrapolated to regions sharing similar characteristics to facilitate broader applications beyond Indonesian borders.

METHODS

This study used a quantitative method that focused on tourism villages as participants. It aimed to analyze the economic resilience of tourism villages in Indonesia during the COVID-19 pandemic over different periods and whether there were discernible patterns in village resilience. Economic resilience in this study was defined as the tourism village's ability to maintain and improve performance while facing COVID-19. The parameters to measure the resilience index consisted of the capacity and performance dimensions, which were proxies for the phenomenon of tourism village. These parameters were determined based on focused group discussions with tourism village managers. The capacity dimension was related to resources that were part of the tourism village system, and the performance dimension was related to the results of the work of the tourism village during and after the disturbance occurred. Indicators of capacity and performance dimension are presented in Table 1.

The data used in this study was obtained from tourism village management documents. Twenty-four tourism villages scattered in Java, Bali, and West Nusa Tenggara Provinces were analyzed. The selection process employed a purposive sampling method based on the following criteria: availability of data, presumably impacted by the COVID-19 shock, considered to have an economic and social impact on rural economics, and represented tourism destinations in the three main islands of tourism in Indonesia.

A composite index was used to measure tourism village resilience. This method was appropriated for measuring concepts that one indicator could not capture (Scaccabarozzi et al., 2022), such as tourism. Mazziotta and Pareto (2013) stated that several socio-economic phenomena, including tourism, could not be measured with a single descriptive indicator but must be represented through several dimensions or a combination of different dimensions, with varying degrees, which must be robust. Composite indexes were a valid method for measuring multidimensional phenomena because they allowed the reduction and consideration of different dimensions of a phenomenon (Mazziotta & Pareto, 2017a; Mazziotta & Pareto, 2017b).

Table 1. Resilience Economic Indicators of Tourism Village

	Parameters									
	Capacity		Performance							
•	Capacity building: number of training conducted in a year (times)	•	Tourist: number of tourists during the year (person)							
•	Employee: number of employees in a year (person)	•	Income: total income for a year (IDR)							
•	Village Development Index (VDI): index to maintain villages' potential and ability to achieve sustainable development and prosper village life covering social, economic, and ecological aspects (district)	•	Cost: total cost for a year (IDR)							

In this study, tourism village resilience was measured using a synthetic indicator known as AMPI, developed by Mazziotta and Pareto (2016). This index was carried out with a spatiotemporal method, which had additional benefits over purely spatial or time-series analyses because it allowed the investigator to simultaneously study the persistence of patterns over time and illuminate any unusual patterns. Including spacetime interaction terms could also detect data clustering that could indicate emerging environmental hazards or persistent errors in the data recording process.

AMPI was a variant of the Maziotta-Pareto Index (MPI), developed by Mazziotta and Pareto (2013). MPI was a formative composite index summarizing a series of indicators that were considered irreplaceable; all components must be balanced (de Muro et al., 2011). In addition, it was based on a non-linear function starting from the arithmetic mean, introducing a penalty for units with unbalanced indicator values. The index was designed to meet the following characteristics: (1) normalization of indicators with special criteria that removed units of measurement and effects of variability, (2) independent synthesis of ideal units, since the set of optimal values was arbitrary, nonunivocal and could vary over time, (3) easy calculation, and (4) easy interpretation (Mazziotta & Pareto, 2016)..

AMPI was a non-compensatory composite index that allowed comparability of the data across units and over time. The method started with normalizing data or indicators using the following formula:

$$r_{ij} = \left[\frac{(x_{ij} - Minx_j)}{Maxx_j - Minx_j}\right] * 60 + 70$$

In this study, x_{ij} represented a matrix of n rows which contained unit analysis, and m columns containing indicators. max_{xj} and Min_{xj} were the goalspots for indicator j. Such a normalization was a refinement of MPI designed to appreciate absolute changes over time (Mazziotta & Pareto, 2104). The range of normalization was varied between 70 and 130. When M_{ri} and S_{ri} were denoted as mean and standard deviation of normalized value of unit i, respectively, the generalized form of AMPI was given by the following equation:

$$AMPI_i^{+/-} = M_{ri} \pm S_{ri}cv_i$$

In the equation, $cv_i = S_{ri}/M_{ri}$ represented the coefficient of variation of the unit *i*. The sign \pm indicated whether the phenomenon to be measured was maximized (the higher, the better) or minimized (the lower, the better).

As previously mentioned, AMPI needed a "goalspot" to facilitate interpretation of the results. The reference point of 100, which was the average indicator in a given year, was employed. The higher or lower AMPI value than this reference point indicated whether the unit being analyzed was progressing or regressing. In this case, whether the units were more resilient or vice versa, the procedure to set the goalspot included the following:

$$Ref_{x_j \pm \Delta}$$
 where $\Delta = \frac{(Sup_{x_j} - Infx_j)}{x}$

 Sup_{xj} and Inf_{xj} represented the maximum and the minimum of indicator *j* across all periods and the reference value of indicator *j* (Mazziotta & Pareto, 2017a).

In addition to AMPI, this study used the traditional MPI to compare resilience level of tourism village without using "goalspot" years, such as those used in AMPI. Therefore, MPI measured the level of resilience independent of time (year), indicating that MPI score was calculated for every year from 2019 to 2022.

In AMPI, the calculation of MPI also involved normalizing the data through the z-score method. The formula for normalizing the matrix was in the form of:

$$z_{ij} = 100 + \frac{(x_{ij} - M_{xj})}{S_{xj}} 10$$

Where:

 X_{ii} = original matrix value

 M_{xi} = average value of the indicator (individual column)

 S_{xi} = standard deviation of the indicator (individual column)

Once the normalized values had been calculated, the next step of MPI was to find the aggregation of the index using the following formula:

$$MPI^{+/-} = M_{Zi} \pm S_{Zi}cv_i$$

Where:

 M_{zi} = mean value of the standardized values (horizontally) S_{zi} = standard deviation of the standardized value (horizontally) cv_i = coefficient of variation of the standardized The plus or minus signs in the formula were due to the polarity of the indicators concerning one of the phenomena under study.

In order to capture resilience from COVID-19 shock, the data were collected from 2019 (pre-COVID-19) to 2022 (during and after COVID-19). The original data for all indicators during 2019-2022 from 24 tourism villages, which were the basis for calculating AMPI/MPI, were presented in Appendix A to D.

RESULTS AND DISCUSSION

Before the onset of the COVID-19 pandemic, tourism villages in Indonesia were experiencing promising growth. This growth was evidenced by the emergence of numerous new tourism destinations and the expansion of tourism villages as operators in various regions. Indonesian tourism villages reached 1,831 before the COVID-19 pandemic (Ariyani et al., 2023). However, following the government's official declaration in March 2020 that Indonesia was impacted by the pandemic and the subsequent implementation of large-scale social restrictions, tourism destinations in Indonesia witnessed a significant decrease in visitors and income (Sasongko et al., 2022). Despite these challenges, some tourism villages managed to recover, as indicated by the results of this study.

Table 2 illustrates that one year after the pandemic, all tourism villages experienced a decline in performance, as indicated by a decrease in AMPI scores. The delta (Δ) score from 2019-2020 reflected the changes in the resilience index of 24 tourism villages during this period, which was the most critical for the tourism village sector. Villages examined experienced a decrease in resilience index (negative delta AMPI). However, the impact varied among villages, with some experiencing a minor decrease in resilience scores while others were significantly affected.

From 2019 to 2020, Pentingsari Tourism Village experienced the most significant decline in the resilience index compared to all villages. The government's travel ban policy led to a substantial decrease in tourism arrivals. As a result, villages known for rural and agricultural cultural attractions decided to suspend the services to avoid incurring costs that outweighed the income. Despite abruptly declining visitor numbers and revenue, several other tourism villages were selected to remain open. Some villages continued the operations to uphold tourism village status, engaging in activities like staff training and facility maintenance.

When comparing the 2019-2022 and 2021-2022, significant differences were observed in the tourism resilience index. In 2020-2021, following the COVID-19 pandemic, nearly all villages, except for Tambaksari Village, displayed a notable recovery as evidenced by positive changes in AMPI scores (positive delta AMPI). The result suggested that during this time frame, tourism village successfully adjusted to the challenges posed by the pandemic. The overall increase in the resilience index could be attributed to the implementation of health protocols in the tourism sector (CHSE Protocol), service-related training during the new normal, and adapting tourism destinations into digital formats through travel packages. Digital tourism was introduced to cater to visitors who could not physically visit or were concerned about COVID-19 transmission. Furthermore, government policy's gradual reopening of tourism activities further supported the recovery, leading to a gradual rise in visitor numbers.

According to Table 2, the largest rise in the resilience index was observed in Karangrejo Village between 2020 and 2021. Karangrejo was known for its community-based tourism offerings, focusing on rural and agricultural cultural experiences. With strong community backing, particularly in providing accommodation and adherence to CHSE protocol for visitor health safety, this village had effectively increased visitor numbers, improving other resilience metrics.

			AN	IPI		
iourism village	2019	2020	Δ ₁	2020	2021	Δ_2
Pentingsari	107,543	92,728	-14.815	92,728	99,363	6.635
Karangrejo	103,401	94,608	-8.793	94,608	108,836	14.228
Wanurejo	99,358	96,037	-3.321	96,037	99,233	3.196
Bleberan	103,293	102,091	-1.202	102,091	101,050	1.041
Tinalah	98,628	92,423	-6.205	92,423	101,606	9.183
Gunung Gajah	96,659	95,469	-1.19	95,469	96,610	1.368
Pulau Cemara	97,094	95,242	-1.852	95,242	98,471	3.229
Mandiraja	96,557	95,666	-0.891	95,666	95,744	0.078
Wana Wisata	99,879	97,276	-2.603	97,276	102,027	4.751
Tlogoweru	99,090	94,181	-4.909	94,181	95,247	1.066
Wonosari	96,174	95,931	-0.243	95,931	99,775	3.844
Tlogowero	98,003	95,103	-2.9	95,103	97,693	2.59
Bilebante	104,705	94,876	-9.829	94,876	100,928	6.052
Tambaksari	98,129	96,477	-1.652	96,477	96,436	-0.041
Pampang	96,381	94,768	-1.613	94,768	97,326	2.558
Bendolawang	97,041	94,443	-2.598	94,443	95,986	1.543
Malangjiwan	101,882	97,627	-4.255	97,627	107,394	9.767
Beji	99,838	96,154	-3.684	96,154	96,206	0.052
Tetebatu	104,052	98,319	-5.733	98,319	107,203	8.884
Sade	100,603	96,692	-3.911	96,692	101,590	4.898
Bonjeruk	99,790	95,858	-3.932	95,858	102,940	7.082
Hanjeli	97,321	96,095	-1.226	96,095	95,607	0.488
Tepus	96,584	94,218	-2.366	94,218	98,353	4.135
Cibuntu	97,597	93,544	-4.053	93,544	98,162	4.618

Table 2. Comparison of Tourism Village Resilience Index Pre to During the COVID-19 Pandemic

Source: AMPI Analysis

Table 3 compared AMPI scores representing resilience levels before, during, and after the COVID-19 pandemic, spanning from 2019 to 2022, using 2022 as a reference point. Analysis from Table 7 revealed a notable overall increase in AMPI scores leading up to 2022, which signaled a robust recovery trend post-shock. This trend indicated

that tourism villages had effectively adapted to the challenges posed by COVID-19 and could be considered fully recovered. Among these villages, Karangrejo stood out for its exceptional resilience, as evidenced by the significant positive change in Delta values. The success of Karangrejo could be attributed to the strategic partnerships, particularly with State-Owned Enterprises, which established the Village Economic Center (Balkondes).

Furthermore, the Tourism Awareness Group (Pokdarwis) played a pivotal role in enhancing resilience to the pandemic. The synergy between these entities fostered creativity, driving increased visitor arrivals. The village's strong community engagement in offering homestays and other amenities aligned with health protocols further boosted visitor numbers and revenue performance. These achievements underscored the effective implementation of community-based tourism, successfully navigating external disruptions. Karangrejo's accomplishments had been recognized by the Indonesian government, earning it an award as a sustainable tourism village.

Tourism		AMPI										
Village	2019	2022	Δ ₁	2020	2022	Δ ₂	2021	2022	Δ ₃			
Pentingsari	107,543	118,566	11.023	92,728	118,566	25.838	99,363	118,566	19.203			
Karangrejo	103,401	130,491	27.09	94,608	130,491	35.883	108,836	130,491	21.655			
Wanurejo	99,358	112,524	1.166	96,037	112,52	16.487	99,233	112,524	13.291			
Bleberan	103,293	114,805	11.512	102,091	114,805	12.714	101,050	114,805	13.755			
Tinalah	98,628	120,395	21.767	92,423	120,395	27.972	101,606	120,395	18.789			
Gunung Gajah	96,659	109,813	13.154	95,469	109,813	14.344	96,610	109,813	13.203			
Pulau Cemara	97,094	112,095	15.001	95,242	112,095	16.853	98,471	112,095	13.624			
Mandiraja	96,557	109,006	12.449	95,666	109,006	13.34	95,744	109,006	13.262			
Wana Wisata	99,879	115,969	16.09	97,276	115,969	18.693	102,027	115,969	13.942			
Tlogoweru	99,090	110,458	11.368	94,181	110,458	16.277	95,247	110,458	15.211			
Wonosari	96,174	113,914	17.74	95,931	113,914	17.983	99,775	113,914	14.139			
Tlogowero	98,003	110,091	12.455	95,103	110,091	14.988	97,693	110,091	12.398			
Bilebante	104,705	120,750	16.045	94,876	120,750	25.874	100,928	120,750	19.822			
Tambaksari	98,129	111,619	13.49	96,477	111,619	15.142	96,436	111,619	15.183			
Pampang	96,381	112,194	15.813	94,768	112,194	17.426	97,326	112,194	14.868			
Bendolawang	97,041	109,545	12.504	94,443	109,545	15.102	95,986	109,545	13.559			
Malangjiwan	101,882	124,144	22.262	97,627	124,144	26.517	107,394	124,144	16.75			
Beji	99,838	109,628	9.79	96,154	109,628	13.474	96,206	109,628	13.422			
Tetebatu	104,052	120,301	16.249	98,319	120,301	21.982	107,203	120,301	13.098			
Sade	100,603	118,571	17.968	96,692	118,571	21.879	101,590	118,571	16.981			
Bonjeruk	99,790	124,534	24.744	95,858	124,534	28.676	102,940	124,534	21.594			
Hanjeli	97,321	109,075	11.754	96,095	109,075	12.98	95,607	109,075	13.468			
Tepus	96,584	113,240	16.656	94,218	113,240	19.022	98,353	113,240	14.887			
Cibuntu	97,597	111,961	14.364	93,544	111,961	18.417	98,162	111,961	13.799			

Table 3. Comparison of Tourism Village Resilience Index Post the COVID-19 Pandemic

Source: AMPI Analysis

Table 4 displays the resilience index calculated through the traditional MPI method. Unlike AMPI, MPI evaluated the resilience of individual units (tourism villages) for each year without setting a specific target year like 2022. As illustrated in Table 4, Pentingsari Village achieved the highest MPI score, while Wonosari Village scored the lowest. The high resilience index of Pentingsari could be attributed to the relatively high income than other tourism villages. In 2019, Pentingsari was a popular tourism spot known for the environmentally friendly theme tourism, which was in high demand before the COVID-19 pandemic. However, in 2020, Pentingsari had to cease operations based on a decrease in visitor numbers caused by the rapid spread of COVID-19 and government-imposed restrictions on outdoor activities, as detailed in the preceding section.

Table 4 illustrates that the effects of COVID-19 were experienced diversely among villages, as evidenced by the fluctuation in MPI rankings from 2019 to 2022. The shift in MPI scores rankings was linked to how villages responded to COVID-19 policies, including restricted mobility and stringent travel protocols. Therefore, tourism village resilience was shaped by the capacity to adapt, innovate, and cooperate with partners, influencing public trust in engaging in tourism activities during a pandemic.

	MPI										
iourism village	2019	Rank	2020	Rank	2021	Rank	2022	Rank			
Pentingsari	116	1	96	19	101	10	99	3			
Karangrejo	104	5	104	4	110	1	97	4			
Wanurejo	99	10	100	7	99	12	94	8			
Bleberan	106	2	111	2	103	5	94	9			
Tinalah	99	12	103	5	102	6	96	5			
Gunung Gajah	96	18	98	15	95	20	92	16			
Pulau Cemara	94	23	97	17	96	17	89	21			
Mandiraja	95	22	95	20	93	22	92	15			
Wana Wisata	99	9	97	16	101	8	92	18			
Tlogoweru	95	19	92	24	92	24	87	24			
Wonosari	93	24	98	14	97	15	88	23			
Tlogowero	98	13	98	13	98	14	92	19			
Bilebante	106	3	100	6	101	9	100	2			
Tambaksari	97	15	98	11	96	19	94	7			
Pampang	95	20	98	12	97	16	93	14			
Bendolawang	95	21	93	23	95	21	92	17			
Malangjiwan	102	6	112	1	109	2	95	6			
Beji	101	7	100	9	96	18	89	22			
Tetebatu	105	4	108	3	108	3	93	13			
Sade	100	8	100	8	101	7	93	11			
Bonjeruk	99	11	99	10	103	4	103	1			
Hanjeli	96	17	94	22	93	23	89	20			
Tepus	97	16	96	18	99	11	93	12			
Cibuntu	97	14	95	21	98	13	93	10			

Table 4. Resilience Index 2019-2022 Use MPI Method

Source: MPI Analysis

Although Pentingsari performed well in 2019, the village faced significant challenges when COVID-19 emerged, which led to an abrupt decline in its MPI score from initial place in 2019 to 19th place in 2020. The same year, Malangjiwan emerged as a tourism village with the highest MPI score. The primary attraction of Malangjiwan was the natural spring water therapy, which included elevated pH and oxygen levels (reaching pH 7.5), set amidst picturesque views of rice fields near Mount Merapi, known as Umbul Brintik. Approximately 90% of visitors did not seek only pure water tourism but also a relaxing health retreat. The alignment of this product and the health-focused pandemic context has made Malangjiwan a highly appealing destination. The substantial visitor numbers and revenue generation drove the village's strong resilience index.

In 2021, Karangrejo tourism village stood out as a destination with the highest resilience index. Managed by Balkondes and Pokdarwis, the village actively promoted tour packages showcasing local life and attractions that captivated tourists. Government policies supported the implementation of the CHSE protocol for tourism sites and contributed to its success. Village's commitment to cleanliness and environmental preservation was noteworthy, which led to its designation as a model clean village, a community-wide effort. Additionally, Karangrejo offered meeting rooms, culinary experiences, and hotel and homestay accommodations for out-of-town visitors.

In 2022, Bonjeruk secured the top rank in the resilience index. This village exemplified how the efficiency of financing, alongside income, played a crucial role in determining the resilience of a tourism destination. Bonjeruk Village offered cultural and historical tourism experiences, showcasing rural landscapes, unique culinary delights, and a serene environment that allowed visitors to unwind amidst nature and rich traditions. Following the relaxation of tourism restrictions by the government and the gradual decline of the pandemic, this destination has emerged as a popular choice for tourists locally and internationally. As a result, visitor numbers in the village have surged by up to 300% while maintaining operational efficiency in staffing and costs.

The outcomes of AMPI analysis could be used to categorize tourism villages based on four key characteristics. These included (1) tourism village with a high resilience index (\geq 100) that experienced a decline during the COVID-19 pandemic (quadrant 1), (2) tourism village with a high and consistent resilience index during the COVID-19 pandemic (Quadrant 2), (3) tourism village with a low level of resilience heavily affected by the COVID-19 pandemic (Cluster 3 - C3), and (4) tourism village with a high level of resilience significantly impacted by the COVID-19 pandemic (Quadrant 4). The classification process was conducted using a X-Y diagram, as depicted in Figure 1.

According to Figure 1, there were 3 villages in Quadrant 1, 7 villages in Quadrant 2, 14 villages in Quadrant 3, and none in Quadrant 4. Tourism villages in Quadrant 2 were characterized by being well-established, having sufficient human resources, high motivation, and creativity. These villages also engaged in adequate capacity development and were situated in a district/subdistrict with a developing village index in the independent and advanced village category. In Quadrant 1, although the capacity was less stable than in Quadrant 2, the determination and creativity of

the managers led these villages to possess a high level of resilience. These tourism villages have implemented various strategies to address the challenges posed by the COVID-19 pandemic, particularly by embracing digital technology for promotion and development, which had emerged as a popular tool for capacity enhancement. These initiatives had successfully instilled public trust in visiting rural areas, as evidenced by the rising number of visitors.

Figure 1. Tourism Village Typology Based on Resilience Category

This study provided insight into two things from resilience analysis results using AMPI and the quadrant methods. First, understanding tourism village resilience could be presented more comprehensively through temporal variations before and after COVID-19. Temporal variations through synthetic indicators could describe the dynamics that occurred in performance indicators and the capacity of tourism villages to face shocks. Synthetic indicators were a way to combine multiple individual measurements into a single score that reflected the overall resilience of a tourism destination. These results help policymakers and tourism stakeholders understand a destination's strengths and weaknesses when dealing with disruptions. The individual indicators were then statistically combined into a single score. Using synthetic indicators had benefits in terms of providing a quick and easy way to compare the resilience of different destinations. It could also be used to track changes in resilience over time.

Second, quadrant mapping allowed the study to visualize the relative standing of each tourism village compared to the others. This comparative analysis was crucial for evaluating the current state of villages and the potential trajectories after absorbing the shock. Recognizing this perspective was essential for addressing identified weaknesses and gaining insights from the resilience demonstrated by other tourism villages during challenging times. The quadrant mapping conducted in this study not only aids in enhancing the management of tourism villages but also serves as a valuable tool for local and national decision-makers to assess and enhance the resilience and sustainability of tourism village.

CONCLUSION

This study aimed to assess tourism village resilience in facing the external shock of COVID-19 in different periods and analyze resilience patterns of tourism villages facing the COVID-19 pandemic. The synthetic composite index was selected as an easy-to-use tool to assess resilience, making it easy for policymakers to understand and allowing comparisons across regions and periods. This method was selected to evaluate tourism village resilience in developing countries such as Indonesia. Applying typology analysis through quadrant mapping could unveil resilience patterns across villages. This information served as a valuable foundation for tackling challenges in tourism villages. Quadrant mapping visually represented each village's relative position compared to others. In addition, it was a powerful tool for assessing the current state and the dynamic changes (temporal variations) that each village experiences. This analysis empowered policymakers to identify benchmarks – villages demonstrating relative resilience towards external shocks.

The results revealed that external shocks, such as the COVID-19 pandemic in the early years, significantly impacted most rural tourism destinations. However, creative village managers were able to recover relatively quickly. The results demonstrated that the tourism village was developing innovative ideas to adapt to the new normal. These included developing virtual travel packages using digital technology, human resources training about the pandemic and creative ways to deal with it, and improving infrastructure by focusing on health, cleanliness, safety, and environmental sustainability protocols.

These results implied that resilience was essential for future success in rural tourism management. Understanding the composite index and the indicators could help implement appropriate policy measures for rural tourism. The synthetic resilience indicators obtained from this study could be used to assess village-level tourism resilience and design more effective policy measures to increase resilience. Though it had advantages, this study showed several limitations, specifically in selecting capacity and performance component variables. Including more variables in both components could provide a more comprehensive understanding of the level of resilience and the components. Likewise, broadening the unit of analysis could allow better comparisons in assessing the resilience of rural tourism.

REFERENCES

- Altuntas, F., & Gok, M. S. (2021). The Effect of COVID-19 Pandemic on Domestic Tourism: A DEMATEL Method Analysis on Quarantine Decisions. *International Journal of Hospitality Management*, 92, 102719.
- Ariyani, N., & Fauzi, A. (2023). Pathways toward the Transformation of Sustainable Rural Tourism Management in Central Java, Indonesia. *Sustainability*, 15(3), 2592.

- Bayrak, M. M. (2022). Does Indigenous Tourism Contribute to Indigenous Resilience to Disasters? A Case Study on Taiwan's Highlands. *Progress in Disaster Science*, 14, 100220.
- Béné, C., Newsham, A., Davies, M., Ulrichs, M., & Godfrey-Wood, R. (2014). Review Article: Resilience, Poverty and Development. *Journal of International Development*, 26(5), 598–623.
- Chan, V. K. Y. (2011). The Impact of the Global Financial Crisis on the Entertainment Tourism Industry: A Financial Engineering Case Study of Macao from 2007 to 2010. Systems Engineering Procedia, 1, 323–329. https://doi.org/10.1016/j.sepro. 2011.08.049.
- Cirer Costa, J. C. (2024). Continuity or change after Covid-19 in Tourism in Ibiza and Formentera. *Revista de Métodos Cuantitativos Para La Economía y La Empresa*, 1–24.
- de Muro, P., Mazziotta, M., & Pareto, A. (2011). Composite Indices of Development and Poverty: An Application to MDGs. *Social Indicators Research*, 104(1), 1–18.
- Dogru, T., Marchio, E. A., Bulut, U., & Suess, C. (2019). Climate change: Vulnerability and resilience of tourism and the entire economy. *Tourism Management*, 72, 292–305.
- Feng, L., Guo, J., & Liu, Y. (2021). Research Methodology for Tourism Destination Resilience and Analysis of Its Spatiotemporal Dynamics in the Post-epidemic Period. *Journal of Resources and Ecology*, 12(5), 682–692.
- Gaki, E., & Koufodontis, N. I. (2022). Regional Tourism Resilience and Recovery in Times of Crises. *Geojournal of Tourism and Geosites*, 40(1), 259–266.
- Gallego, I., & Font, X. (2019). Measuring the Vulnerability of Tourist Destinations to the Availability of Air Transport, Using Multi-Criteria Composite Indexes. *Journal* of Destination Marketing and Management, 14, 100382.
- Gössling, S., Scott, D., & Hall, C. M. (2020). Pandemics, Tourism and Global Change: a Rapid Assessment of COVID-19. *Journal of Sustainable Tourism*, 29(1), 1–20.
- Henseler, M., Maisonnave, H., & Maskaeva, A. (2022). Economic Impacts of COVID-19 on the Tourism Sector in Tanzania. *Annals of Tourism Research Empirical Insights*, 3(1), 100042. https://doi.org/10.1016/j.annale.2022.100042.
- Heslinga, J., Groote, P., & Vanclay, F. (2020). Towards Resilient Regions: Policy Recommendations for Stimulating Synergy between Tourism and Landscape. Land, 9(2). 44. https://doi.org/10.3390/land9020044
- Higgins-Desbiolles, F. (2020). Socialising Tourism for Social and Ecological Justice After COVID-19. *Tourism Geographies*, 22(6), 610-623.
- Hosseini, S., Barker, K., & Ramirez-Marquez, J. E. (2016). A Review of Definitions and Measures of System Resilience. *Reliability Engineering and System Safety*, 145, 47–61.
- Hu, H., Qiao, X., Yang, Y., & Zhang, L. (2021). Developing a Resilience Evaluation Index for Cultural Heritage Site: Case Study of Jiangwan Town in China. *Asia Pacific Journal of Tourism Research*, 26(1), 15–29. https://doi.org/10.1080/10941665.2020. 1805476.

- Huang, C., Lin, F., Chu, D., Wang, L., Liao, J., & Wu, J. (2021). Spatiotemporal Evolution and Trend Prediction of Tourism Economic Vulnerability in China's Major Tourist Cities. *ISPRS International Journal of Geo-Information*, 10(10), 644.
- Huang, J. C., Wang, J., Nong, Q., & Xu, J. F. (2023). Using a Modified DANP-mV Model to Explore the Improvement Strategy for Sustainable Development of Rural Tourism. *Sustainability*, 15(3), 2371. https://doi.org/10.3390/su15032371
- Ibanescu, B. C., Eva, M., & Gheorghiu, A. (2020). Questioning the Role of Tourism as an Engine for Resilience: The Role of Accessibility and Economic Performance. *Sustainability*, 12(14), 5527. https://doi.org/10.3390/su12145527
- Ibanescu, B. C., Eva, M., Gheorghiu, A., & Iatu, C. (2022). Tourism-Induced Resilience of Rural Destinations in Relation to Spatial Accessibility. *Applied Spatial Analysis* and Policy, 16, 1237-1254. https://doi.org/10.1007/s12061-022-09439-1.
- Jamini, D., & Dehghani, A. (2022). Evaluation and Analysis of Rural Tourism and Identificatiob of Key Drivers Affectig It in The Face of The Covid Pandemic in Iran. *Journal of Research and Rural Planning*, 11(4), 100–114.
- Kılıçlar, A., Uşaklı, A., & Tayfun, A. (2018). Terrorism Prevention in Tourism Destinations: Security Forces vs. Civil Authority Perspectives. *Journal of Destination Marketing and Management*, 8, 232–246. https://doi.org/10.1016/j.jdmm.2017.04.006.
- Kwok, A. H., Doyle, E. E. H., Becker, J., Johnston, D., & Paton, D. (2016). What is 'Social Resilience'? Perspectives of Disaster Researchers, Emergency Management Practitioners, and Policymakers in New Zealand. *International Journal of Disaster Risk Reduction*, 19, 197–211. https://doi.org/10.1016/j.ijdrr.2016.08.013.
- Lamhour, O., Safaa, L., & Perkumienė, D. (2023). What Does the Concept of Resilience in Tourism Mean in the Time of COVID-19? Results of a Bibliometric Analysis. *Sustainability*, 15(12), 2797. https://doi.org/10.3390/su15129797.
- Lew, A. A., Ng, P. T., Ni, Chin-cheng, & Wu, Tsung-Chiung. (2016). Community Sustainability and Resilience: Similarities, Differences and Indicators. *Tourism Geographies*, 18(1), 18–27. https://doi.org/10.1080/14616688.2015.1122664
- Liu, Y. L., Chiang, J. Te, & Ko, P. F. (2023). The Benefits of Tourism for Rural Community Development. *Humanities and Social Sciences Communications*, 10, 137.
- Lv, L., Hu, J., Xu, X., & Tian, X. (2021). The Evolution of Rural Tourism in Wuhan: Complexity and Adaptability. *Sustainability*, *13*(24), 13534.
- Manner-Baldeon, F., Cavache-Franco, M., & Carvache-Franco, W. (2024). Community Resilience and Its Influence on Sustainable Tourism Development. *Tourism and Hospitality Management*, 30(2), 163–176. https://doi.org/10.20867/thm.30.2.2.
- Marco-Lajara, B., Úbeda-García, M., Ruiz-Fernández, L., Poveda-Pareja, E., & Sánchez-García, E. (2022). Rural Hotel Resilience During COVID-19: The Crucial Role of CSR. *Current Issues in Tourism*, 25(7), 1121–1135.
- Markey, S., Halseth, G., & Manson, D. (2008). Challenging the Inevitability of Rural

Decline: Advancing the Policy of Place in Northern British Columbia. *Journal of Rural Studies*, 24(4), 409–421. https://doi.org/10.1016/j.jrurstud.2008.03.012.

- Mazilu, M., Niță, A., & Drăguleasa, I. A. (2023). Resilience of Romanian Tourism to Economic Crises and Covid-19 Pandemic. WSEAS Transactions on Business and Economics, 20, 328–341. https://doi.org/10.37394/23207.2023.20.31.
- Mazziotta, M., & Pareto, A. (2013). Methods for Constructing Composite Indices: One for All or All for One? *Rivista Italiana Di Economia, Demografia e Statistica*, 67(2), 67–80.
- Mazziotta, M., & Pareto, A. (2016). On a Generalized Non-compensatory Composite Index for Measuring Socio-economic Phenomena. *Social Indicators Research*, 127(3), 983–1003.
- Mazziotta, M., & Pareto, A. (2017a). Measuring Well-Being Over Time: The Adjusted Mazziotta–Pareto Index Versus Other Non-compensatory Indices. *Social Indicators Research*, 136(3), 967–976. https://doi.org/10.1007/s11205-017-1577-5.
- Mazziotta, M., & Pareto, A. (2017b). Synthesis of Indicators: The Composite Indicators Approach. In. Maggino, F (Ed). *Social Indicators Research Series, 70*. Cham: Springer.
- Mazziotta, M., & Pareto, A. (2104). Non-compensatory Aggregation of Social Indicators: An Icon Representation. In Crescenzi, F., Mignani, S. (Eds). Statistical Methods and Applications from a Historical Perspective. Studies in Theoretical and Applied Statistics. Springer, Cham. https://doi.org/doi.org/10.1007/978-3-319-05552-7_33.
- McCartney, G., Pinto, J., & Liu, M. (2021). City Resilience and Recovery from COVID-19: The Case of Macao. *Cities*, *112*, 103130.
- Munanura, I. E., Sabuhoro, E., Hunt, C. A., & Ayorekire, J. (2021). Livelihoods and Tourism: Capital Assets, Household Resiliency, and Subjective Well-being. *Tourism* and Hospitality, 2(4), 347–364. https://doi.org/10.3390/tourhosp2040023.
- Neumeier, S., & Pollermann, K. (2014). Rural Tourism as Promoter of Rural Development
 Prospects and Limitations: Case Study Findings from a Pilot Project Promoting Village Tourism. *European Countryside*, 6(4), 270–296.
- Ohe, Y. (2022). Rural Tourism Under the New Normal: New Potentials From a Japanese Perspective. WIT Transactions on Ecology and the Environment, 256, 51–62.
- Pocinho, M., Garcês, S., & de Jesus, S. N. (2022). Well-being and Resilience in Tourism: A Systematic Literature Review During COVID-19. *Frontiers in Psychology*, *12*, 1–9.
- Qin, F., & Chen, G. (2022). Vulnerability of Tourist Cities' Economic Systems Amid the COVID-19 Pandemic: System Characteristics and Formation Mechanisms—A Case Study of 46 Major Tourist Cities in China. *Sustainability*, 14(5), 2661.
- Rosselló, J., Becken, S., & Santana-Gallego, M. (2020). The Effects of Natural Disasters on International Tourism: A Global Analysis. *Tourism Management*, 79, 104080.
- Scaccabarozzi, A., Mazziotta, M., & Bianchi, A. (2022). Measuring Competitiveness: A Composite Indicator for Italian Municipalities. *Social Indicators Research*, *173*, 53-82.

- Shi, Y., Zhang, J., Cui, X., & Zhang, G. (2022). Evaluating Sustainability of Tourism Projects in Rural Land Development Base on a Resilience Model. *Land*, *11*(12), 2245.
- Stepanova, E., Rozkova, A., Yushkova, L., & Balisheva, M. (2023). Development of Rural Tourism in the Regions of Russia as a Factor of Sustainable Development of Rural Areas. *E3S Web of Conferences*, 376. https://doi.org/10.1051/e3sconf/202337602030.
- Yu, J., Zhang, J., Zhou, M., & Cai, W. (2023). Impact of COVID-19 on the Comprehensive Resilience of Rural Areas—A Case Study of Jilin Province of China. *Sustainability*, 15(4), 3152. https://doi.org/10.3390/su15043152.
- Zhou, B., Zhang, Y., & Zhou, P. (2021). Multilateral Political Effects on Outbound Tourism. Annals of Tourism Research, 88, 103184. https://doi.org/10.1016/j.annals.2021.103184.

Appendix

Pentingsari

Karangrejo

Tourism Village	Capacity Building	Employee	VDI	Tourist	Income (IDR 000)	Cost (IDR 000)		
ntingsari	7	42	0.784	21.263	22.353.430	1.609.445		
rangrejo	10	11	0.702	7.694	1.891.371	862.902		
anurejo	4	9	0.702	1.200	655.586	398.852		
eberan	1	101	0.744	64.943	350.973	951.042		
nalah	2	39	0.709	11.157	427.421	169.812		
unung Gajah	1	6	0.682	20.655	56.700	67.500		

Appendix A. Original Indicator 2019

Wanurejo	4	9	0.702	1.200	655.586	398.852
Bleberan	1	101	0.744	64.943	350.973	951.042
Tinalah	2	39	0.709	11.157	427.421	169.812
Gunung Gajah	1	6	0.682	20.655	56.700	67.500
Pulau Cemara	2	17	0.611	37.563	197.537	104.705
Mandiraja	1	15	0.660	12.000	40.000	55.000
Wana Wisata	1	7	0.649	93.231	753.428	963.610
Tlogoweru	10	6	0.599	500	12.000	15.000
Wonosari	0	17	0.610	47.395	664.956	103.309
Tlogowero	1	11	0.746	27.740	82.125	217.800
Bilebante	5	150	0.689	22.638	1.079.000	679.140
Tambaksari	4	16	0.666	6.291	85.740	72.400
Pampang	0	30	0.689	60	4.428	228
Bendolawang	2	26	0.657	418	2.150	3.500
Malangjiwan	0	19	0.661	20.608	1.610.249	615.133
Beji	5	25	0.752	6.500	32.000	112.000
Tetebatu	5	178	0.681	3.638	960.000	480.000
Sade	6	11	0.671	94.132	390.000	256.000
Bonjeruk	7	27	0.674	2.300	1.548.800	80.500
Hanjeli	2	25	0.657	1.400	65.000	85.000
Tepus	0	15	0.749	106	210.000	20.000
Cibuntu	1	10	0.709	28.964	354.295	201.879

Appendix B. Original Indicator 2020

Tourism Village	Capacity Building	Employee	VDI	Tourist	Income (IDR 000)	Cost (IDR 000)
Pentingsari	0	0	0.799	0	0	0
Karangrejo	0	11	0.720	5.930	757.500	812.053
Wanurejo	0	11	0.720	7.000	486.200	355.858
Bleberan	2	96	0.756	35.939	724.360	434.616
Tinalah	11	31	0.745	2.503	43.589	34.871
Gunung Gajah	0	9	0.706	31.671	98.190	95.703
Pulau Cemara	0	30	0.632	39.288	106.517	141.498
Mandiraja	0	20	0.665	15.000	75.000	60.000
Wana Wisata	2	7	0.662	19.004	175.600	155.314
Tlogoweru	1	6	0.607	50	2.000	1.500
Wonosari	1	17	0.623	36.045	440.582	102.408
Tlogowero	0	5	0.771	11.315	101.835	99.000
Bilebante	6	50	0.707	975	53.625	26.812
Tambaksari	2	16	0.738	6.459	76.120	66.000
Pampang	4	30	0.717	1.765	5.295	420
Bendolawang	0	17	0.660	65	650	800
Malangjiwan	0	19	0.701	132.832	1.062.658	985.251
Beji	2	25	0.793	3.800	76.000	68.000
Tetebatu	5	156	0.681	3.337	656.685	320.000
Sade	4	20	0.686	41.150	100.000	70.000
Bonjeruk	4	29	0.714	1.200	70.250	55.000
Hanjeli	1	15	0.647	950	70.000	50.000
Tepus	0	15	0.749	106	25.000	20.000
Cibuntu	0	10	0.730	0	0	0

Tourism Village	Capacity Building	Employee	VDI	Tourist	Income (IDR 000)	Cost (IDR 000)
Pentingsari	4	45	0.812	1.100	82.500	61.874
Karangrejo	11	12	0.724	6.192	1.048.052	927.398
Wanurejo	0	12	0.724	6.000	424.414	300.004
Bleberan	0	96	0.767	16.293	306.199	183.719
Tinalah	13	44	0.759	3.395	67.850	54.280
Gunung Gajah	0	5	0.709	19.505	61.798	61.107
Pulau Cemara	1	34	0.636	40.030	120.005	117.113
Mandiraja	0	10	0.665	10.000	50.000	45.000
Wana Wisata	2	8	0.669	46.813	561.860	335.82
Tlogoweru	2	6	0.638	100	4.000	6.000
Wonosari	1	17	0.627	48.153	488.063	83.321
Tlogowero	2	4	0.772	9.125	82.125	79.200
Bilebante	7	70	0.709	2.700	202.500	101.250
Tambaksari	0	16	0.740	4.202	51.100	62.000
Pampang	4	30	0.719	323	969	324.000
Bendolawang	1	17	0.729	128	1.500	1.280
Malangjiwan	0	21	0.724	107.060	856.528	684.963
Beji	0	12	0.793	760	15.000	14.860
Tetebatu	4	197	0.692	4.115	884.575	416.000
Sade	6	20	0.695	71.323	113.000	79.000
Bonjeruk	6	41	0.714	14.000	588.400	220.000
Hanjeli	1	15	0.655	500	40.000	33.000
Tepus	5	15	0.795	155	38.800	30.000
Cibuntu	1	10	0.754	17.181	146.905	112.500

Appendix (С.	Original	Indicator	2021
------------	----	----------	-----------	------

Appendix D. Original Indicator 2022

Tourism Village	Capacity Building	Employee	VDI	Tourist	Income (IDR 000)	Cost (IDR 000)
Pentingsari	6	45	0.821	10.219	719.572	546.874
Karangrejo	15	18	0.749	12.006	2.8911	2.197.875
Wanurejo	0	9	0.749	20.000	655	333.008
Bleberan	0	84	0.796	18.524	350.973	210.583
Tinalah	15	44	0.802	9.009	427.421	406.049
Gunung Gajah	1	5	0.715	15.760	56.700	65.540
Pulau Cemara	2	30	0.658	29.091	197.537	107.910
Mandiraja	0	10	0.724	8.000	40.000	40.000
Wana Wisata	2	9	0.690	73.482	753.428	365.426
Tlogoweru	6	6	0.659	300	12.000	9.000
Wonosari	1	17	0.652	68.119	664.956	103.906
Tlogowero	1	4	0.772	9.125	82.125	79.200
Bilebante	5	100	0.796	13.000	1.079.000	431.600
Tambaksari	3	22	0.744	7.824	85.740	81.000
Pampang	5	30	0.760	1.476	4.428.	396
Bendolawang	1	17	0.758	215	2.150	2.000
Malangjiwan	1	20	0.735	145.955	1.610.249	1.175.856
Beji	0	12	0.820	1.600	32.000	28.000
Tetebatu	2	176	0.770	6.257	960.000	448.000
Sade	5	20	0.722	110.540	390.000	273.000
Bonjeruk	9	62	0.758	32.000	1.548.800	816.600
Hanjeli	1	18	0.672	800	65.00	47.000
Tepus	4	24	0.817	909	210.000	168.000
Cibuntu	1	10	0.790	13.137	354.295	201.879