The Analysis Of Micromechanic On Creating Of Gypsum Board Strengthened By Bintaro Fruit Fiber (Cerbera Manghas) With 3d Orientation

Tri Adelia, delovita vita ginting, Romi Fadli Syahputra

Abstract


This research succeeded in modifying the manufacture of gypsum board with the addition of natural fiber, namely bintaro fruit with the 3D orientation arrangement method. The raw materials for this research are gypsum flour and Bintaro fruit fiber as a matrix and filler. Bintaro fruit fiber previously carried out an alkalization process where the fiber was soaked in a solution of NaOH and distilled water for 24 hours. The manufacture of composites using the ratio of the matrix mass fraction and the filler mass fraction is as follows 100: 0, 99: 1, 98: 2 and 97: 3. The characterizations carried out include density test, moisture content test, flexural strength test and micromechanical analysis. Gypsum board composite based on micromechanical calculations resulted in the highest density value in the control sample, in the best density value was at the filler fraction of 3%, the best moisture content value in the control sample, the flexural strength test value the best of the control sample, but the filler fraction is 3% of the sample with the best fracture resistance. 3D orientation in theory and practice has fulfilled the principle that it is able to increase the physical and mechanical value of gypsum board.


Keywords


Gypsum, Bintaro fruit, 3D orientation, composite, micromechanical analysis

Full Text:

PDF

References


S. Muntongkaw, S. Pianklang, dan N. Tangboriboon, “Modifications to improve properties of gypsum ceiling composites as multifunctional construction by embedding Typha angustifolia fiber and natural rubber latex compound,” Case Study. Constr. Mater., vol. 15, no. August, hal. e00658, 2021, doi: 10.1016/j.cscm.2021.e00658.

G. Iman dan T. Handoko, “Pengolahan Buah Bintaro sebagai Sumber Bioetanol dan Karbon Aktif,” Pros. Semin. Nas. Tek. Kim. “Kejuangan,” vol. 2005, hal. 1–5, 2011.

L. Boccarusso, M. Durante, F. Iucolano, D. Mocerino, dan A. Langella, “Production of hemp-gypsum composites with enhanced flexural and impact resistance,” Constr. Build. Mater., vol. 260, hal. 120476, 2020, doi: 10.1016/j.conbuildmat.2020.120476.

A. Erbs, A. Nagalli, K. Querne de Carvalho, V. Mymrin, F. H. Passig, dan W. Mazer, “Properties of recycled gypsum from gypsum plasterboards and commercial gypsum throughout recycling cycles,” J. Clean. Prod., vol. 183, hal. 1314–1322, 2018, doi: 10.1016/j.jclepro.2018.02.189.

H. Fathurrahman, A. Neolaka, dan R. Arthur, “Comparison of Pineapple Leaves (Ananas Comosus L. Merr) Gypsum Board On Commercial Gypsum Board Seen From Physical and Mechanical Properties Based On Sni Specification of Panel or Gypsum Board 03-6384-2000,” vol. 3, hal. 121–130, 2020.

P. J. Callus, A. P. Mouritz, M. K. Bannister, dan K. H. Leong, “Tensile properties and failure mechanisms of 3D woven GRP composites,” Compos. Part A Appl. Sci. Manuf., vol. 30, no. 11, hal. 1277–1287, 1999, doi: 10.1016/S1359-835X(99)00033-0.

M. Pankow, B. Justusson, M. Riosbaas, A. M. Waas, dan C. F. Yen, “Effect of fiber architecture on tensile fracture of 3D woven textile composites,” Compos. Struct., vol. 225, no. January, hal. 111139, 2019, doi: 10.1016/j.compstruct.2019.111139.

N. Tableau, Z. Aboura, K. Khellil, F. Laurin, dan J. Schneider, “Multiaxial loading on a 3D woven carbon fiber reinforced plastic composite using tensile-torsion tests: Identification of the first damage envelope and associated damage mechanisms,” Compos. Struct., vol. 227, hal. 111305, 2019, doi: 10.1016/j.compstruct.2019.111305.

S. Prasojo, S. M. B. Respati, dan H. Purwanto, “Pengaruh alkalisasi terhadap kompatibilitas serat sabut kelapa ( Cocos Nucifera ) dengan matriks polyester,” J. Ilm. Cendekia Eksakta, vol. 2, no. 2, hal. 25–34, 2018.

J. Diniarto, “Analisis Struktur Material Laminasi Untuk Lambung Kapal Kayu Tradisional,” hal. 46, 2011.

A. K.Kaw, Mechanics of Composite Materials, First edit. America, 1997.

A. Nurhidayat dan D. D. Susilo, “Pengaruh Fraksi Volume Pada Pembuatan Komposit Hdpe Limbah- Cantula,” Program. Pascasarjana. Tek. Mesin Univ. Sebel. Maret Surakarta, vol. 14, no. 02, hal. 1–70, 2013.

w K. H. Altenbach, J. Aitenbach, Mechanics of Composite Struct[1] w K. H. Altenbach, J. Aitenbach, Mechanics of Composite Structural Element, First edit. Germany, 2004.ural Element, First edit. Germany, 2004.

L. M. RACHMAWATI, “Pengolahan Citra Digital untuk Identifikasi Void pada Permukaan Komposit dan Pengaruh Void Tersebut Terhadap Sifat Mekanik Komposit,” Universitas Telkom, 2020.

N. Nuryati, R. R. Amalia, dan N. Hairiyah, “Pembuatan Komposit Dari Limbah Plastik Polyethylene Terephthalate (Pet) Berbasis Serat Alam Daun Pandan Laut (Pandanus tectorius),” J. Agroindustri, vol. 10, no. 2, hal. 107–117, 2020, doi: 10.31186/j.agroindustri.10.2.107-117.

H. Wardhana dan N. H. Haryanti, “Variasi Komposisi Serat Purun Tikus (Eleocharis dulcis) dan Waktu Perendaman KMnO4 terhadap Sifat Fisik Komposit Papan Semen,” Semin. Nas. Tah. VI, hal. 30–38, 2019.




DOI: https://doi.org/10.15408/fiziya.v5i2.29783 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


Web Analytics Made Easy - StatCounterView My Stats

Flag Counter

Creative Commons License

This work is licensed under a CC-BY-SAÂ