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Abstract. This study presents a physics-guided multi-attribute inversion (PG-MAI) method to estimate 

acoustic impedance and porosity from post-stack seismic data using Bayesian Ridge Regression. The 

workflow integrates ten seismic attributes—including amplitude, frequency, and geometric features—

into a regularized linear regression model. The physics-guided aspect is realized through the application 

of rock physics principles during data conditioning and interpretation, ensuring that the predictions 

remain physically and geologically meaningful. The Bayesian formulation introduces prior distributions 

over model coefficients to prevent overfitting and to quantify uncertainty, enhancing model robustness. 

Applied to the F3 Block in the Dutch North Sea, the inversion workflow involves temporal upsampling, 

attribute extraction, and calibration using two well logs. Results show strong spatial continuity and 

geological consistency, with high correlation (>0.90) between predicted and measured log values at 

both wells. Low-impedance and high-porosity zones align with deltaic sands and lobate geometries, 

indicating effective capture of facies heterogeneity. This approach demonstrates its value for reservoir 

characterization in complex siliciclastic settings. 
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INTRODUCTION 

Mapping subsurface rock properties is a fundamental task in geoscientific interpretation, 

particularly for delineating reservoirs with favorable porosity and impedance characteristics. 

These physical properties act as proxies for identifying lithological boundaries, fluid-bearing 

formations, and subsurface mechanical behavior under stress regimes [1]. Among them, 

acoustic impedance (AI) and porosity are critical for decoding rock fabric and assessing 

reservoir quality. However, direct measurements of these properties are limited to well 
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locations, which are typically sparse and unevenly distributed. This presents a significant 

challenge in capturing lateral variability and geological continuity. Moreover, estimating 

porosity from seismic data is inherently ill-posed due to issues such as non-uniqueness, limited 

vertical resolution, and sensitivity to noise. These limitations hinder the reliability of inversion 

results when extended away from well control. Therefore, there is a need for inversion 

frameworks that not only integrate multiple seismic attributes but also incorporate physical 

constraints to improve the accuracy and geological validity of predicted properties across the 

seismic volume. 

To overcome the spatial limitations of well data, geophysicists utilize seismic data, which 

provide continuous lateral coverage and are sensitive to contrasts in elastic properties. Seismic 

inversion is employed to estimate quantitative rock properties, translating reflectivity 

information into acoustic impedance and porosity models. This is particularly critical in areas 

with limited borehole control, as it enables the extrapolation of petrophysical properties across 

the seismic volume. In post-stack seismic inversion—where offset-dependent amplitude 

variations (AVO) are absent—the inversion is constrained to single-trace reflectivity, reducing 

sensitivity to lithological changes [2]. Compared to pre-stack methods, post-stack inversion 

lacks angular information that can help differentiate fluid effects and rock stiffness, making it 

more susceptible to non-uniqueness and limited vertical resolution. Consequently, the 

inversion process must incorporate additional constraints, such as seismic attributes, to 

improve the robustness of predictions. Attributes such as amplitude envelope, instantaneous 

frequency, and geometric curvature provide auxiliary information related to energy 

distribution, stratigraphic variation, and structural patterns, thereby enhancing the geological 

interpretability of the inverted models. In this context, Bayesian inversion frameworks are 

particularly valuable, as they account for uncertainty and regularize solutions in the presence 

of noise and data limitations. 

To compensate for such limitations, multi-attribute inversion techniques have been developed 

to exploit additional features derived from seismic traces, such as envelope, RMS energy, 

instantaneous phase, and signal curvature, which are physically meaningful and sensitive to 

lithological and stratigraphic variations [3]. In this study, ten seismic attributes were extracted 

per trace: original amplitude, amplitude gradient, Hilbert envelope, envelope derivative, RMS 

energy, Gaussian-filtered amplitude, relative impedance (log ratio), instantaneous phase, 

second-order curvature, and smoothed amplitude via medium-scale Gaussian filtering. The 

selection was guided by prior geophysical studies and preliminary correlation analysis with 

well log data, emphasizing both physical interpretability and statistical relevance. Redundancy 

among attributes was assessed using pairwise correlation metrics to minimize multicollinearity 

and ensure complementary information content. These features capture a broad spectrum of 

seismic responses, including reflectivity contrasts, spectral content, and geometric 

deformation. For example, RMS energy and envelope attributes enhance detection of high-

energy facies, while curvature and amplitude gradient highlight structural discontinuities and 

subtle stratigraphic features. Collectively, their integration improves the inversion's ability to 

resolve facies transitions and predict rock properties with greater accuracy in complex 

geological settings. 

A structured and transparent modeling approach is essential to mitigate overfitting and ensure 

geological plausibility in inversion results. Bayesian Ridge Regression (BRR) provides a 

mathematically principled solution by introducing prior distributions over model parameters, 

enabling an automatic trade-off between data fidelity and regularization [4]. In this study, we 
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adopt BRR as the core of the physics-guided multi-attribute inversion (PG-MAI) framework 

due to its closed-form solution, robustness to multicollinearity, and inherent ability to quantify 

predictive uncertainty. Compared to alternatives like Lasso, ElasticNet, or Support Vector 

Regression, BRR avoids the need for extensive grid-based hyperparameter tuning and offers 

probabilistic estimates that are particularly valuable in data-limited settings. Although the 

regularization parameters in BRR are inferred rather than manually set, cross-validation was 

still employed to ensure model generalization. The integration of physically interpretable 

attributes with BRR facilitates an explainable and reproducible inversion process, while the 

posterior covariance estimates provide insight into model confidence—an important 

advantage for reservoir characterization in geologically complex environments. 

This investigation focuses on the F3 Block, a marine hydrocarbon reservoir located in the Dutch 

offshore sector of the North Sea. The area lies within a deltaic siliciclastic regime characterized 

by interbedded sandstone and shale formations that produce laterally heterogeneous seismic 

responses [5]. Situated in the southern part of the North Sea Basin and forming a subunit of 

the tectonically active West Netherlands Basin, the F3 Block presents stratigraphic complexity 

due to sedimentation spanning from the Jurassic to the Lower Cretaceous. The primary 

reservoir units belong to the Vlieland Sandstone, deposited in marginal marine to deltaic 

environments influenced by relative sea-level variations. These variations have generated 

vertically stacked parasequences and lateral facies transitions, which challenge conventional 

inversion methods due to impedance ambiguities and limited well control. The reservoir is 

seismically expressed through discontinuous reflectors, lobate geometries, and amplitude 

dimming in shale-dominated intervals—conditions that justify the application of a multi-

attribute inversion approach. PG-MAI is particularly suitable for this setting because it 

integrates physical constraints with auxiliary attributes to better resolve the subtle impedance 

contrasts and stratigraphic heterogeneity inherent in the F3 system [6]. In deeper sections, 

Jurassic to lowermost Cretaceous (Hettangian–Berriasian) intervals record active rifting and 

paleogeographic compartmentalization, further complicating the seismic image and 

necessitating advanced inversion strategies [7]. 

Porosity values in the F3 Block have been reported to exceed 30% in clean sand layers, 

underscoring its strong reservoir potential [8]. Acoustic impedance in the same field typically 

ranges between 2.5×10⁶ and 6.2×10⁶ kg/m³·m/s, consistent with unconsolidated, shallow 

marine siliciclastics [9]. These well-documented properties establish a reliable baseline for 

evaluating inversion methodologies in a geologically complex setting. Building on this, the 

present study applies a physics-guided multi-attribute inversion (PG-MAI) framework to 

generate spatially continuous and geologically coherent estimates of porosity and acoustic 

impedance from post-stack seismic data. By leveraging well-log calibration and physically 

interpretable seismic attributes, the method seeks to improve prediction accuracy beyond 

traditional linear inversion. We hypothesize that integrating domain knowledge with 

probabilistic regularization will enhance the resolution and geological validity of inverted 

properties, particularly in deltaic settings with facies variability and limited angular information. 

 

 

 

RESEARCH METHODS 
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Multi-Attribute Seismic Feature Analysis 

Seismic attributes are mathematical transformations applied to seismic signals to extract 

diagnostic information about the subsurface. These transformations enhance measurable 

features such as amplitude, phase, and frequency, which are critical for identifying lithological 

variations and potential fluid zones [3]. In this study, the selected attributes were guided by a 

combination of rock physics correlations, prior literature, and exploratory data analysis, 

ensuring both physical relevance and predictive utility. For instance, the Hilbert envelope and 

RMS energy are sensitive to lithofacies and reflectivity strength, while curvature attributes 

highlight stratigraphic discontinuities and structural edges. Relative impedance aids in 

approximating lithological contrasts, and instantaneous phase captures waveform continuity. 

The integration of these attributes provides a richer input space than using amplitude alone, 

enabling improved prediction of reservoir properties when benchmarked against single-

attribute inversions. Chopra and Marfurt emphasized that such multi-attribute frameworks are 

particularly valuable for stratigraphic and structural interpretation, offering enhanced 

resolution and geological context [10]. 

In this study, ten seismic attributes were utilized: original amplitude A(t), amplitude gradient 

dA/dt, Hilbert envelope |H(t)|, envelope derivative d|H(t)|/dt, RMS energy, Gaussian-smoothed 

amplitude, relative impedance log(|A(t)/A(t−1)|), instantaneous phase, second-order curvature, 

and bandpass filtered amplitude. 

The analytic signal formulation can be expressed as: 

𝐻(𝑡)  =  𝐴(𝑡)  +  𝑖Â(𝑡) (1) 

 

Equation (1) defines the analytic signal, H(t), as a complex-valued representation of a real 

seismic trace. In this expression, A(t) denotes the real-valued amplitude of the seismic signal 

at time t, which is the conventional output of seismic acquisition and processing[11]. To 

synthesize a complex seismic trace that encapsulates the signal’s hidden structure, the Hilbert 

transform is unleashed upon the original amplitude function A(t), producing its quadrature 

counterpart Ĥ(t) a mathematically conjured imaginary signal that stands in perfect orthogonal 

contrast to its real twin. Functioning as a spectral phase-rotator, this transform re-phases every 

constituent frequency by 90 degrees, twisting the signal just enough to extract its elusive 

instantaneous attributes from the mathematical shadow 

The imaginary unit i, where i² = −1, is introduced to form the complex component of the signal. 

By combining the original amplitude A(t) with its Hilbert-transformed counterpart 𝑖Â(𝑡), the 

analytic signal H(t) encodes both amplitude and phase information in a single expression. This 

formulation enables the computation of instantaneous seismic attributes such as envelope 

(the magnitude of H(t)), instantaneous phase (the angle of H(t)), and instantaneous frequency. 

 

The analytic signal is fundamental in seismic attribute analysis, as it allows for more detailed 

interpretation of subsurface features through the lens of amplitude and phase variability. It is 

particularly valuable for detecting subtle stratigraphic changes, delineating thin beds, and 

characterizing fluid-sensitive responses. 

|𝐻(𝑡)|  =  √𝐴(𝑡)2 +  Â(𝑡)2    (2) 

 

Equation (2) defines the instantaneous amplitude or envelope of a seismic signal, denoted as 
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|H(t)|. This expression is derived directly from the analytic signal H(t), which was introduced in 

Equation (1) as 𝐻(𝑡) =  𝐴(𝑡) +  𝑖Â(𝑡).    In the context of complex numbers, the magnitude (or 

modulus) of a complex signal z = x + iy is defined as |𝑧|  =  √𝑥2 + 𝑦2. Applying this to the 

analytic signal, where A(t) is the real part and Ĥ(t) is the imaginary part, yields Equation (2) 

The RMS amplitude over a temporal window is calculated to capture average energy content 

[12]: 

𝑅𝑀𝑆 (𝑡) =  √
1

𝜔
 ∑ 𝐴(𝑖)2

𝑡+
𝜔

2

𝑖=𝑡−
𝜔

2

   (3) 

 

Equation (3) defines the Root Mean Square (RMS) amplitude of a seismic trace centered at 

time t, computed over a symmetrical temporal window of length ω. This attribute is designed 

to quantify the local energy content of the seismic signal within a defined time interval and is 

widely used in amplitude-based seismic interpretation 

Seismic Inversion for Acoustic Impedance and Porosity 

Seismic inversion translates seismic reflectivity data into quantitative rock property models. 

One of the principal outputs is Acoustic Impedance (AI), defined as the product of density and 

compressional velocity, which can be related to lithology and porosity. Theoretically, AI 

inversion is based on the convolutional model, where the seismic trace is assumed to result 

from the convolution of a source wavelet with the Earth’s reflectivity series—approximated as 

the logarithmic derivative of AI. However, this inversion process is inherently ill-posed, being 

highly sensitive to vertical resolution limits, ambient seismic noise, and inaccuracies in wavelet 

estimation. In post-stack data, where AVO information is unavailable, the problem is further 

constrained, reducing the ability to resolve subtle elastic contrasts. To ensure inversion stability 

under these conditions, strategies such as careful wavelet extraction, low-frequency trend 

incorporation from well logs, and regularization through statistical or Bayesian frameworks are 

typically employed. These approaches help suppress spurious oscillations, compensate for lost 

low-frequency content, and stabilize the solution by incorporating prior geological knowledge. 

𝐴𝐼 =  𝜌 ·  𝑉𝑝 (4) 

    

(4) 

The reflection coefficient R at an interface between two lithologies is given by: 

𝑅 =
𝐴𝐼2− 𝐴𝐼1

𝐴𝐼2+ 𝐴𝐼1
    (5) 

 

AI is often used in reservoir characterization because it provides indirect sensitivity to porosity 

and fluid content [1]. In the context of clastic systems—sedimentary environments dominated 

by fragments of pre-existing rocks such as sandstones, siltstones, and shales—porosity 

typically exhibits an inverse correlation with AI [13]. This relationship arises because higher 

porosity generally implies lower rock density and velocity, leading to reduced acoustic 

impedance, particularly in unconsolidated or poorly cemented siliciclastic formations like those 

found in the F3 Block. 

 

An empirical multilinear regression model to estimate porosity can be written as: 
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𝜙 =  𝑎0  +  𝑎1 · 𝐴𝐼 + 𝑎2 · 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒1   +  … + 𝑎𝑛 · 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒_𝑛 (6) 

 

Bayesian Ridge Regression (BRR) 

Bayesian Ridge Regression (BRR) extends traditional linear regression by placing prior 

probability distributions over the model parameters, allowing for a principled balance between 

data fit and model complexity [4]. Using Bayes’ theorem, BRR estimates the posterior 

distribution of the regression coefficients, which reduces the risk of overfitting and enables 

uncertainty quantification. The model assumes Gaussian priors on the weights and noise, and 

automatically determines regularization strength through evidence maximization—also 

known as marginal likelihood optimization. This framework not only stabilizes the solution in 

noisy or ill-posed settings but also supports Bayesian model comparison based on posterior 

evidence. The linear model is expressed as: 

𝑦 =  𝑋𝑤 +  𝜀  (7) 

𝜀 ~ 𝑁(0, 𝛼⁻¹𝐼), 𝑤 ~ 𝑁(0, 𝜆⁻¹𝐼) 
 

(8) 

 

Equation (7) and (8) form the foundation of the Bayesian Ridge Regression (BRR) framework. 

Equations (7) and (8) serve as the backbone of the Bayesian Ridge Regression (BRR) paradigm. 

Specifically, Equation (7) delineates the target vector y as a weighted projection of the feature 

matrix X via the coefficient vector w, while embedding a stochastic disturbance term ε to 

encapsulate all chaotic or unexplained variations unaccounted for by the deterministic linear 

formulation. 

 

Equation (8) introduces the probabilistic assumptions underlying BRR. It assumes that the 

noise ε follows a Gaussian distribution with zero mean and precision α (i.e., ε ~ 𝒩(0, α⁻¹)). The 

precision is the inverse of the variance and reflects how tightly the noise is expected to 

concentrate around the mean. Similarly, the weight vector w is assigned a zero-mean Gaussian 

prior with precision λ (i.e., w ~ 𝒩(0, λ⁻¹I)). This prior distribution regularizes the model by 

discouraging large weight magnitudes, which is especially useful in cases with multicollinearity 

or limited training data. 

 

Together, these two equations define a Bayesian formulation of linear regression that balances 

model fit and complexity. Unlike classical linear regression, which provides point estimates of 

coefficients, BRR estimates their full posterior distribution, enabling uncertainty quantification 

and robust predictions under noisy or high-dimensional settings 

The posterior distribution over model weights is given as a multivariate Gaussian  [14]: 

𝑝(𝑤 | 𝑋, 𝑦)  =  𝑁(𝑤 | 𝜇, 𝛴) (9) 

𝛴 =  (𝛼𝑋ᵀ𝑋 +  𝜆𝐼)−1 (10) 

𝜇 =  𝛼𝛴𝑋ᵀ𝑦 (11) 

This regression method is especially robust when applied to high-dimensional seismic 

datasets, as supported by the Scikit-learn framework documentation [15]. 

Methodology 
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In this study, we utilized an open-access dataset from the Dutch sector of the North Sea, 

specifically the F3 Block, which includes a 3D post-stack seismic volume and two 

accompanying well logs, hereafter referred to as Well 34 and Well 61. Initial preprocessing was 

conducted using a 2D seismic extraction with a temporal sampling rate of 4 ms and 911 traces. 

The F3 Block is characterized by deltaic siliciclastic deposition with alternating sand–shale 

sequences, where fluid-sensitive impedance contrasts and subtle stratigraphic variations 

present a suitable testbed for multi-attribute inversion workflows. Due to the moderate burial 

depth and the presence of unconsolidated marine sediments, the seismic reflectivity in this 

area is expected to have a strong correspondence with acoustic impedance variations—thus 

making it highly relevant to employ a physics-guided inversion strategy. 

 

 
Fig 1. Position of 2 Wells in Seismic Traces 

The initial phase of the methodology involved anchoring the temporal seismic domain to 

subsurface geological markers via a rigorous well-to-seismic alignment. This calibration 

entailed synthetically generating a seismic trace by convolving the reflectivity—computed 

from wellbore-derived velocity and density profiles—with a representative wavelet extracted 

from the seismic data. In this study, a statistical wavelet with a length of 100 ms was utilized 

to capture the average seismic response across the volume. The synthetic and observed traces 

were then meticulously correlated and manually realigned to ensure that seismic events 

accurately mirrored lithological boundaries encountered in the borehole. After alignment, the 

resulting time shifts at both Well 34 and Well 61 were 0 ms, indicating a successful tie with no 

residual misfit. The final correlation coefficients were 0.808 for Well 34 and 0.748 for Well 61, 

reflecting reliable temporal correspondence between seismic and geological markers. These 

values are considered robust, especially given the inherent limitations of post-stack data where 

angle-dependent effects and full waveform information are absent. 

To reconcile the mismatch in sampling intervals between seismic traces (originally at 4 ms) and 

well logs (typically recorded at sub-millisecond resolution), the seismic data were temporally 

upsampled to a denser sampling grid equivalent to 2 ms spacing. The upsampling was carried 

out using linear interpolation over a normalized time axis, where each trace was resampled 

from its original discrete points to a higher-resolution grid. This method does not explicitly 

preserve spectral content or account for frequency-domain behavior, but it offers a 

computationally efficient means of increasing vertical sample density. This step is particularly 

important in deltaic depositional environments like the F3 Block, where thin-bedded sand–

shale alternations produce subtle impedance contrasts that may be under-resolved at coarser 

sampling intervals. 

Following the preprocessing stage, a suite of ten seismic attributes was computed from the 

upsampled dataset. These include: (1) raw amplitude, (2) amplitude gradient, (3) Hilbert 

envelope, (4) envelope derivative, (5) RMS amplitude, (6) Gaussian-filtered amplitude, (7) 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1523512026&1&&


Al-Fiziya: Journal of Materials Science, Geophysics,                 Vol.7 No. II 2024, 48-65 

Instrumentation and Theoretical Physics                                                                P-ISSN: 2621-0215, E-ISSN: 2621-489X 

55 
 

relative impedance (logarithmic reflectivity), (8) instantaneous phase, (9) second-order trace 

curvature, and (10) smoothed amplitude using medium-scale Gaussian filtering. 

These attributes were deliberately selected based on their complementary physical sensitivity. 

For instance, the envelope and RMS amplitude highlight signal energy and reflector continuity; 

curvature and phase accentuate stratigraphic geometry; while log reflectivity and gradient-

based attributes are direct proxies for lithological contrasts. In the context of the F3 Block, such 

diversity is crucial to capture both structural deformation and depositional variability, 

especially across channelized sand lobes and interbedded shales. 

To infer subsurface rock properties from these seismic attributes, we implemented a multi-

attribute inversion framework based on Bayesian Ridge Regression (BRR). This statistical 

approach is particularly suited for ill-posed geophysical inversion problems where 

multicollinearity among predictors is prevalent. BRR introduces regularization via Gaussian 

priors over the model weights, stabilizing the solution and providing not only point estimates 

but also posterior uncertainty. The inversion was carried out in two stages: 

First, the model was trained independently for each well using time-aligned intervals between 

seismic and log-derived acoustic impedance and porosity. Second, the trained models were 

applied trace-by-trace across the seismic volume to generate spatial predictions. 

The expected outcome of this methodology is the generation of detailed 2D property maps 

that maintain lateral continuity, vertical geological resolution, and consistency with available 

well data. Specifically, the acoustic impedance and porosity maps are expected to reveal lateral 

variations corresponding to deltaic lobes, channel-fill systems, and potentially hydrocarbon-

charged reservoirs. The incorporation of ten diverse seismic attributes allows the inversion to 

detect complex lithological changes and subtle transitions in depositional facies that may not 

be apparent in single-attribute analysis. The overall workflow is summarized in Fig. 2. Below: 
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Fig 2. PG MAI Workflow 
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RESULTS AND DISCUSSION 

 
Fig 3. 2-D Distribution of Acoustic Impedance and Porosity 

Fig. 3 presents the two-dimensional spatial distribution of both acoustic impedance (AI) and 

porosity derived from the PG-MAI inversion workflow. The AI distribution displays clear lateral 

variability, which corresponds to the interpreted stratigraphic sequences in the F3 Block. Low 

AI values, ranging from approximately 2.5×10⁶ to 3.5×10⁶ kg/m³·m/s, appear in horizontally 

continuous bands that are interpreted as unconsolidated, sand-rich layers with high porosity. 

These values are in agreement with prior inversion studies applied to the F3 Block that report 

comparable ranges of AI in similar depositional facies [16]. In contrast, higher AI values 

exceeding 4.5×10⁶ kg/m³·m/s are associated with compacted shale intervals, which exhibit 

lower porosity and higher acoustic velocities, as also reported in other studies on deltaic 

sequences [17]. 

From a stratigraphic perspective, the lateral continuity and the alternation of impedance 

contrasts reflect the stacking of delta-front parasequences. These parasequences likely 

preserve coarsening- or fining-upward cycles that are expressed as seismic-scale impedance 

layering. The observed alternating high–low AI patterns may indicate shifts between 

distributary mouth bars and interdistributary bays. In sections between trace numbers 200–

400 and 600–850, subtle terminations and undulations in AI values could correspond to 

channel truncations or lobe boundary contacts, which are common in deltaic systems. 

However, these interpretations remain preliminary and would benefit from further validation 

through seismic facies classification and detailed horizon-based stratigraphic correlation. Such 

future work is essential to strengthen the geological framework and confirm the depositional 

significance of the observed impedance patterns. 
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The porosity distribution in Fig. 3 reveals zones exceeding 30% porosity, particularly in 

shallower intervals, consistent with previous findings that identified clean sands with excellent 

reservoir quality in this field. These patterns reflect the alternation of high-energy sand-prone 

facies and low-energy shale-dominated layers, characteristic of a delta-front depositional 

environment. The match between low-AI zones and high-porosity values supports the 

geological consistency of the inversion. These features also suggest facies transitions from 

proximal deltaic sands to more distal shale-prone environments.  

In addition, the vertical stacking of high-porosity zones with lateral extension indicates the 

presence of stratigraphically controlled reservoirs. This implies that the PG-MAI inversion is 

capable of capturing not just lithological variation, but also depositional architecture. The 

lateral continuity of both AI and porosity features supports the geological plausibility of the 

inversion output and underscores the method's robustness in resolving stratigraphic 

variations. 

 

 
Fig 4. Porosity log vs Predicted Porosity of Well 34 

The comparison between predicted and logged porosity in Well 34, as shown in Fig. 4, 

indicates a strong correlation of 0.93. The predicted log effectively captures variations across 

the stratigraphic interval dominated by delta-front sandstones. This agreement confirms the 

predictive power of the PG-MAI framework in handling subtle waveform variations related to 

sedimentary transitions in post-stack seismic data [3]. The porosity profile reflects the 

geological alternation between sand-prone and shale-prone sequences within the F3 Block’s 

shallow marine depositional system, a pattern well-documented in North Sea analogs [8]. The 

effectiveness of the Bayesian Ridge approach in this case lies in its ability to generalize from 

limited well data while preserving vertical resolution, even in zones with weaker reflectivity 

contrasts [4]. 
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Fig 5. Porosity log vs Predicted Porosity of Well 61 

Fig. 5 displays the porosity prediction for Well 61, where a similarly high correlation coefficient 

of 0.91 is achieved. The model demonstrates robust alignment across both shallow and 

intermediate intervals, reinforcing the spatial consistency of attribute-porosity relationships 

across wells. Given the lateral facies heterogeneity typical of the F3 Block’s deltaic depositional 

setting, this level of predictive performance is significant and confirms the stability of the 

inversion method [10]. The strong agreement across both wells suggests that the selected 

seismic attributes—especially the envelope, RMS, and log-impedance ratio—carry meaningful 

geological information tied to porosity-bearing units [1]. This supports prior findings that 

multi-attribute methods are particularly suitable in environments with complex lithological 

transitions [5]. 
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Fig 6. AI vs Predicted AI of Well 34 

Figure 6 presents the comparison between the actual and predicted acoustic 

impedance (AI) log at Well 34. The overall correlation coefficient is 0.93, reflecting 

strong agreement across the stratigraphic section. The predicted AI closely follows the 

trend of the measured log, where transitions between sand and shale dominate. This 

accuracy can be attributed to the sensitivity of attributes like Hilbert envelope, log-

impedance ratio, and RMS amplitude in capturing changes in reflectivity tied to 

lithological interfaces [3]. 

In deltaic environments such as the F3 Block, AI serves as a proxy for lithological 

variation, where lower impedance typically corresponds to porous sandstones and 

higher impedance indicates compacted shale [1]. The ability of the PG-MAI method to 

detect such transitions implies that the multi-attribute set effectively resolves acoustic 

contrasts, even under the limited vertical resolution of post-stack data. Similar studies 

in clastic successions have shown that multi-attribute inversion using BRR improves 

model generalization and reduces susceptibility to local noise [4]. The results also align 

with known rock physics trends where acoustic impedance inversely correlates with 

porosity in unconsolidated siliciclastic formations [10]. 
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Fig 7. AI vs Predicted AI of Well 61 

 

Figure 7 shows the predicted acoustic impedance (AI) for Well 61, which exhibits a strong 

match with the measured log, supported by a high correlation coefficient of 0.91. This result 

demonstrates that the PG-MAI framework effectively captures the lateral and vertical acoustic 

contrasts resulting from lithological variations in the F3 Block [3]. The use of envelope, relative 

impedance, curvature, and other derived attributes significantly enhances the inversion 

sensitivity to reflection geometry and stratigraphic architecture [10]. These results reflect the 

interbedded nature of deltaic sandstone and shale deposits in the study area, where 

impedance changes arise due to porosity contrasts and sedimentary heterogeneity [5]. 

Overall, implementation of the PG-MAI inversion method demonstrates a significant 

enhancement in predicting subsurface petrophysical properties from post-stack seismic data. 

By integrating a diverse suite of seismic attributes—sensitive to amplitude, phase, and 

frequency content—the method effectively compensates for the absence of angle variation in 

post-stack gathers. This approach improves lateral continuity and the vertical resolution of 

inverted properties, consistent with previous findings that emphasize the value of attribute 

complementarity for inversion performance [10]. In the context of the F3 Block, this is 

particularly relevant given its complex depositional environment, where distinguishing subtle 

variations in lithology and stratification is critical for delineating reservoir zones. 

Well-log correlations exceeding 0.90 in both porosity and acoustic impedance predictions 

validate the model’s robustness in capturing petrophysical trends with minimal deviation from 

ground truth data. The stratigraphy of the F3 Block is characterized by alternating sand-shale 

sequences deposited in a shallow marine deltaic system, where high-energy sandstone lobes 

are interbedded with lower-energy muddy layers. This facies architecture requires inversion 

techniques capable of detecting abrupt impedance contrasts and subtle porosity variations 
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across stratigraphic boundaries. The PG-MAI method shows competence in tracing these 

transitions, thereby enabling improved reservoir delineation and facies prediction. 

Furthermore, the application of Bayesian Ridge Regression provides an effective balance 

between fitting the seismic-derived attributes and generalizing beyond noise artifacts. Its 

regularization properties are essential in inversion domains where data density is spatially 

uneven or well control is sparse—conditions commonly encountered in mature offshore 

settings [17]. The resulting impedance and porosity models honor the regional geological 

understanding of the F3 Block, reflecting the progradational patterns and compaction trends 

typical of North Sea clastic systems. 

Accurate mapping of acoustic impedance and porosity plays a pivotal role in guiding drilling 

decisions and reservoir development strategies. Seismic inversion, particularly when enhanced 

with multi-attribute frameworks, has demonstrated the ability to reduce uncertainty in 

lithological interpretation and improve the delineation of prospective zones. This is especially 

critical in stratified clastic environments where facies transitions occur over short vertical and 

lateral distances. Several studies have emphasized that the integration of inversion-derived 

properties with petrophysical trends enhances the reliability of static reservoir models, while 

simultaneously minimizing the risk of misinterpretation caused by amplitude ambiguities or 

noise artifacts [18]. 

Moreover, the use of acoustic impedance inversion in combination with attribute analysis has 

proven effective in capturing porosity variations across channelized sand bodies and 

interbedded sequences, which are often difficult to resolve using conventional amplitude-

based interpretation. Such inversion strategies contribute directly to identifying reservoir 

sweet spots, estimating effective thickness, and refining volumetric calculations [19]. These 

capabilities underscore the strategic importance of physics-guided inversion approaches—like 

PG-MAI—in maximizing predictive accuracy and operational efficiency in data-constrained 

exploration settings. 

 

CONCLUSION AND RECOMMENDATION 

Conclusion 

This study presented the implementation of a Physics-Guided Multi-Attribute Inversion (PG-

MAI) framework that combines Bayesian Ridge Regression with a physically interpretable and 

statistically validated set of seismic attributes to estimate acoustic impedance (AI) and porosity 

from post-stack seismic data. The method was applied to the F3 Block, a stratigraphically 

complex marine-deltaic reservoir characterized by interbedded sandstone and shale 

sequences. This setting provided a suitable test case for inversion under conditions of 

lithological heterogeneity and limited well control. The PG-MAI framework delivered strong 

predictive performance, with correlation coefficients exceeding 0.90 at two well locations. The 

inversion outcomes reflected both lateral and vertical continuity, capturing geological features 

that align with expected depositional architectures, such as deltaic lobes and parasequence 

stacking. These results affirm the model’s capability to resolve geologically significant 

heterogeneities, even when working with the limited bandwidth and resolution constraints of 

post-stack seismic data. 
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Beyond predictive accuracy, the PG-MAI approach contributes to the advancement of seismic 

inversion methodologies by addressing key limitations present in both conventional and data-

driven techniques. Unlike standard linear inversions, which often fail to account for lithological 

variability and struggle in underconstrained regions, PG-MAI introduces regularization 

through Bayesian priors, thereby enhancing model robustness while retaining transparency in 

parameter estimation. Compared to black-box machine learning models such as support 

vector regression or deep neural networks, PG-MAI remains interpretable, reproducible, and 

physically grounded, making it more suitable for geological workflows that require traceability 

of assumptions and outputs. The use of Bayesian Ridge Regression further allows for automatic 

control over model complexity, reducing the risk of overfitting without the need for exhaustive 

hyperparameter tuning. This balance of physical constraints and statistical flexibility makes the 

framework particularly well-suited for applications where well calibration is sparse and 

geological uncertainty is high. 

The selection of seismic attributes was a crucial step in improving inversion reliability. Instead 

of relying on ad hoc or exhaustive feature inclusion, ten attributes were selected based on a 

combination of domain knowledge, sensitivity to lithological variation, and statistical relevance 

to the target properties. These included amplitude-based features (e.g., RMS energy, 

envelope), geometrical descriptors (e.g., curvature, gradient), and phase-related components 

(e.g., instantaneous phase), along with attributes such as relative impedance and smoothed 

reflectivity that were designed to approximate rock-physics behavior. Redundancy among 

attributes was reduced through correlation filtering to ensure that each input contributed 

unique information. This curated set of features enabled the model to capture subtle 

depositional variations and stratigraphic transitions that are often obscured in conventional 

single-attribute inversions. In conclusion, the PG-MAI framework presents a geologically 

consistent, physically informed, and statistically optimized approach to seismic inversion, 

offering a valuable tool for improving reservoir delineation, fluid prediction, and subsurface 

characterization in complex siliciclastic systems. 

 

Recommendation 

To improve the efficiency and reproducibility of the PG-MAI workflow in future applications, 

particularly in data-constrained environments similar to this study, several targeted 

recommendations are proposed: 

a. Future work should evaluate different window sizes systematically, potentially using 

geological or stratigraphic intervals as guidance, to fine-tune vertical resolution 

b. The ten attributes used in this study were selected based on prior interpretability, but 

in future implementations, applying a variance inflation factor (VIF) or correlation 

matrix analysis could help avoid overlapping or redundant predictors, which may 

degrade model robustness. 

c. Although well logs provide reliable calibration, additional validation against core-

derived porosity or production performance (e.g., flow zones, water breakthrough) 

would further enhance model confidence and bridge static-dynamic integration. 
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