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Abstract. One dimensional quantum harmonic oscillator is well studied in elementary textbooks
of quantum mechanics. The wave function of one-dimensional oscillator harmonic can be written
in term of Hermite polynomial. Due to the symmetry of the spring energy, the wave functions of
two-dimensional and three-dimensional harmonic oscillators can be written as products of the
one-dimensional case. Because of that, the wave functions of two- and three-dimensional cases
are focused on cartesian coordinates. In this article, we utilize polar and spherical coordinates to
describe the wave function of two- and three-dimensional harmonic oscillators, respectively. The
radial part of the wave functions can be written in term of associated Laguerre polynomials.
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INTRODUCTION

In elementary textbooks of quantum mechanics, one dimensional quantum
harmonic oscillator is well studied using a potential energy analogous to classical
harmonic oscillator

1
V(x) = Eszxz. (1)
Here M is mass of the particle, w is the characteristic radial frequency. The eigen wave
function of the Schrédinger equation (p2/(2m) + V(x))y = iAy can be written in term
of Hermite polynomials H,, [1]
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_i a 1 2.2
Prq = e Bt | ——— e 2 g, (ax).

2nnlT
Here @ = \/Mw/h, and E,, = (n + %) hw is the quantized energy.
However, the potential is a central potential V(7) =%ma)2r2 and therefore the

eigen wave functions should be able to be written as a product of radial and angular
wave functions [2]. The angular wave functions of two- and three-dimensional potentials
wit central symmetry are well-described using sinusoidal and spherical harmonics
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functions, respectively [3]. However, studies of higher dimension quantum
oscillators elude the discussion of radial wave function [4]-[8].

It may be due to the additive property of the norm of 7. Because of that, the
generalization of the potential energy into two and three dimensions is
straightforward

1
EMa)Z(x2 +y2), for 2d,
V() =4, 3)
EMa)Z(x2 + y2 +z2), for 3d.
Because of this symmetry, the wave functions of two- and three-dimensional cases are
focused on cartesian coordinates

. 1
( g = e~ i(nrny+)ot (zn ‘T\/_) e_iaz(x2+y2)an(ax)an(ay), (4)
n.\vm
3
_i 3 a z _1
Wag = € l(nx+ny+nz+2)wt (m)Z o 2a2(x2+y2+zz)an(ax)an(ay)an(aZ).

Coefficient of time-dependent exponential indicates that the energy eigenvalues also
have the additive properties.
hw(nx +n, + 1), for 2d, (5)
E, =

= 3
hw (nx +n, +n,+ E)' for 3d.

In this article, we utilize polar and spherical coordinates to describe the wave
function of two- and three-dimensional harmonic oscillators, respectively. The
understanding of radial wave function should provide better insight on the mathematical
physics of basic quantum mechanics.

VARIABLES SEPARATIONS OF SCHRODINGER EQUATION

Schrodinger equation of quantum particle under the influence of central potential
energy

h? 1 d (6)
g2 2..2 > — iH (3
< ZMV +2mw r >1/)(r,t) lhatll)(r,t),
can be rewritten using variable separation with energy’s eigen values E
1 h? 1 ih OT(t) (7)
(g2, = 2,.2 N=—F=— -7
u(?)( oMY TmeT )u(r) T ot '

to arrive at the time-independent wave function u(7) and space-independent T(t). One
can show that straight-forwardly shows that

T(t) = e A", ®)
The Laplacian V2 in polar (r, 8) and spherical (r, 8, ¢) coordinates is
® 10 10 or 24 ©
- arz T 7ar T2 o602’ or e
02 290 1 1 9 /. d 1 02
a2 m*rz(sme%(sm%) +—eﬁ) for 3d.
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In the following subsections the time-independent wave function is further
separated into radial and angular wave functions. In particular, the radial wave equation
can be written as associated Laguerre differential equation [9]

<xd—2+(v+1—x)i+A>LV(x) (10
dx? dx AN
where Lj(x) is the associated Laguerre polynomial [10]. For non-integer v, L} is also
called generalized Laguerre function [11].

Two-dimensional quantum harmonic oscillator in polar coordinate

Substituting u(¥) = R(r)0(6)
1 (d* 1d 1] 1 d?e(9) amn
R(r)<d7+;a+rz 8(6) 62 )R(T) =E
we can arrive at the equation for radial R(r) and angular wave function ©(6)

1 (d* 1d 2 (12a)
0 (m* rar ﬁ)R@ =E
1 d20(0) _ g (12b)
0(6) do?
The solution of Eq. (12b)
1 . 13)
0(0) = —6’”9. (
1 6) NeT
Setting R(r) =r'le 227" £(a?r?), substitution Eq. (12a) can be written in similar
form to Eq. (10)
d? d E (+1 (14)
<um+(l+1 u)—+%— )f()
Therefore
1
R(r) « rle_?“zrzLﬁi(azrz), (15)
and the quantization of eigen energy is similar to Eq. (5)
E, =ho(n+1+1). (16)

Three-dimensional quantum harmonic oscillator in spherical coordinate

Substituting u(#) = R()0(6)d(¢)
2 2
(2 L S (o) + ;6—])1«@# "

R \dr? " rdr r2|r?sin6 a6 00)  r?sin?0 d¢p?
we can arrive at the equation for radial R(r) and angular wave function ©(6)
1 (d?> 2d hl(l+1) (18a)
m(d— rar ) )=
1 1 9/, 0 m? (18b)
@ <m%<51n 9%) - Sin? 9> 00) =-l(l+1),
1 de@) (18¢)
d(p) d¢p? '
The solution of Eq. (17b) and (17¢) is the spherical harmonics function [12], [13]
0(0)P(¢) = Yim (6, ¢). (19
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1
Setting R(r) = rle_E“ZTZg(aZrz), substitution Eq. (12a) can be written in similar
form to Eq. (10)

d? 3 d E (+3/2) (20)
<“W+(l+z‘“)a+znw‘ 2 )9(”)'
Therefore

1 1 21
R(r) <r e_fazrleJZ (a?r?), 1)

and the quantization of eigen energy is similar to Eq. (5)

3

E, =hw <2n +1+ E) (22)

RADIAL AND ANGULAR WAVE FUNCTIONS

Eq. (51) and (21) show that the radial wave functions can be written in term of
associated Laguerre polynomials. The normalization factors that satisfy

{ f [R(r)]?rdr, for2d, (23)
— 0
1= o
f [R(r)])?r2dr, for 3d,
0
can be found using the orthogonality of associated Laguerre polynomials
” rv+k+1
f xke ™ Lk (x) LK, (x) dx = ¥ 5, (24)
0 '
Such that
12 2142 1 (23)
- (n(-cll-)l)' rle 2" LL(a%r?),  for2d,
R(7) =«
12(a)2!+3 1 1
%rle—iazrzl}rjz ((ZZT'Z) for 3d.
r (Tl +1+ 7)

Here I'(x) is the Gamma function.

Concerning the angular wave function Egs. (12b) and (18b-c) can be associated
with the eigen equations of the angular momentum in two and three dimensions,
respectively [14]. Eq. (12b) is equivalent with the eigen equation

L,40(6) = hle(8) (24)
of the two-dimensional angular momentum
(25)

Meanwhile, Eq. (18b) is equivalent with the eigen equations
L3Yim (6, @) = h21(L + DYy (6, ) (26)

2+ L3qYim (6, ¢) = imYin (6, 9)
of the three-dimensional angular momentum

R 0 0 0 0
Lzq = —ih [2(—sin¢%—cotecos¢%) +§/(cos¢%—cot0 sind)%)

(27)

4,0
Zad)

Finally, the full time-space dependent eigen wave function is
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’ 1 21+2
Z(;al l)l rle—%azrzl}n(aZrZ)eilee—i(2n+l+1)(1)t' for Zd’ (28)

nl z(a)zl+3

F(n+l+7)

1 1+ =i 3
rle_?azrsz 2 (@r2)Y, (6, d)e 1(2’“'”2)“”, for 3d.

CONCLUSION

Two- and three-dimensional quantum oscillator harmonics is discussed in terms of

radial and angular eigen wave functions. The angular wave functions are well-described
using sinusoidal and spherical harmonics functions, respectively. Using appropriate

1
ansatz, it is shown that the radial wave function is proportional to rle %" Lk (a?r?),
where [ is related to the eigenvalues of angular momentum operators and LY is
generalized/associated Laguerre polynomials.
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