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Abstrak. Karena memiliki elektron konduksi, logam merupakan reflektor yang baik untuk 

gelombang elektromagnetik. Gelombang elektromagnetik yang menembus permukaan logam 

memiliki kedalaman tembus yang terbatas. Ada dua limit yang sering dipelajari dengan baik dalam 

buku teks fisika. Limit pertama adalah limit gelombang elektromagnetik frekuensi tinggi yang 

menembus logam dengan konduktivitas kecil dan medan statis (frekuensi rendah). Limit kedua 

adalah gelombang elektromagnetik yang menembus superkonduktor (logam dengan 

konduktivitas sangat besar). Dalam artikel ini kami mempelajari daerah pertengahan antara dua 

limit ekstrim ini. Dengan menetapkan kerapatan arus listrik sebagai jumlah total arus Ohmik dan 

diamagnetik, kami menunjukkan transisi antara dua batas ini. 

 

Kata Kunci: Penetrasi Elektromagnetik, skin depth, diamagnetic current, Maxwell equations, London 

equation. 

 

Abstract. Due to its conducting electron, metal is a good reflector for electromagnetic wave. An 

electromagnetic wave penetrating a metallic surface has a finite penetrating depth. There are two 

limit that are well studied in the physics textbooks. They are high frequency electromagnetic wave 

penetrating a metal with small conductivity and a static (low frequency) field penetrating a 

superconductor (metal with infinitely large conductivity). In this article we study the intermediate 

regime between these two limits. By setting the electric current density as the total sum of both 

Ohmic and Diamagnetic currents, we derive the penetration depth in the intermediate regime., 

we show the transition between these two limits. 

  

Keywords: Electromagnetic penetration, skin depth, diamagnetic current, Maxwell equations, 

London equation. 

 

 
DOI : 10.15408/fiziya.v4i1.19790 

 

 

 

 

 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1523512026&1&&
mailto:adam@sci.ui.ac.id
http://dx.doi.org/10.15408/fiziya.v3i1.16158


Al-Fiziya: Journal of Materials Science, Geophysics,               Vol.4 No. I Tahun 2021, 1 - 7 

Instrumentation and Theoretical Physics                                                         P-ISSN: 2621-0215, E-ISSN: 2621-489X 
 

2 

INTRODUCTION 

 

Due to its conducting nature, electromagnetic waves are reflected by metallic 

surface. The reflection mechanism can be mathematically described by substituting the 

following Ohmic current into the Maxwell equation[1]. 

𝐉 = 𝜎𝐄, (1) 

where 𝐉 is electric current density, 𝜎 is conductivity and 𝐄 is the electric field. In the limit 

of small conductivity, the skin depth of the penetrating electromagnetic wave is inversely 

proportional to the conductivity of the metal[2].  

𝛿 =
2

𝜎
√

𝜀

𝜇
. (2) 

Here 𝜀 is the permittivity and 𝜇 is the permeability. Because of that, one can expect that 

the skin depth of superconductor is zero. However, Meisner effect shows that a 

penetrating magnetic field has a finite skin depth, also known as London penetration 

depth 𝑙, is not zero [3], [4]. 

𝑙 = √
𝑚

𝜇𝑛𝑒2
. (3) 

Here 𝑚 is the electron mass, −𝑒 is the electron charge and 𝑛 is the carrier density. London 

penetration can be derived by substituting the following London diamagnetic current 

into the Maxwell equation and taking a static limit [5]–[7]. The reflection of 

electromagnetic field in superconductor is mainly caused by the London diamagnetic 

current 

𝐉 = −
𝑛𝑒2

𝑚
𝐀. (4) 

Here 𝐀 is the vector potential. 

 

𝛿  and 𝜆 are two limiting cases that are well studied in the physics textbooks [1], 

[8]. In this article, we focus on the intermediate regime where the effect of both ohmic 

and diamagnetic current are important. The effect of Ohmic current has been widely 

studied in surface designs [9], [10].  On the other hand, the study of diamagnetic current 

is gaining increasing attention in physics [11], [12] and related areas [13], [14]. 

 

METHOD: MATHEMATICAL FORMALISM 

 

The dynamics of electric field 𝐄 and magnetic field 𝐁 in a material is best described 

by Maxwell equations. The Maxwell equations can be written in term of scalar potential 

𝜙 and vector potential 𝐀. 

 

𝐄 = −𝛁𝜙 −
∂𝐀

𝜕𝑡
, (5a) 

𝐁 = 𝛁 × 𝐀, (5b) 

By using Lorentz gauge condition,  

𝛁 ⋅ 𝐀 + 𝜀𝜇
𝜕𝜙

𝜕𝑡
= 𝟎, (6) 

one can obtain the partial differential equations for 𝜙 and vector potential 𝐀 [15]  
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(𝛁𝟐 −
𝜕2

𝑐2𝜕𝑡2) 𝜙 = −
𝜌

𝜀
, (6a) 

(𝛁𝟐 −
𝜕2

𝑐2𝜕𝑡2) 𝐀 = −𝜇𝐉. (6b) 

Here 𝑐 = 1/√𝜀𝜇 is the speed of light in the material. We will solve Eqs. (6a) and (b) by 

choosing 𝜙 = 0. In this case one can show that for electromagnetic wave propagating in 

𝑥 direction, the solution of 𝐀, 𝐄 and 𝐁 that have the following form 

𝐀 = 𝐴�̂�𝑒𝑖(𝑘𝑥−𝜔𝑡) (7a) 

𝐄 = −
𝜕𝐀

𝜕𝑡
= 𝑖𝜔𝐴�̂�𝑒𝑖(𝑘𝑥−𝜔𝑡) (7b) 

𝐁 = 𝛁 × 𝐀 = 𝑖𝑘𝐴�̂�𝑒𝑖(𝑘𝑥−𝜔𝑡) (7c) 

Here 𝑘 is the wavenumber and 𝜔 is the frequency. Using this choice of 𝜙 and vector 

potential 𝐀, we can derive the penetration depth by examining the imaginary part of 𝑘 

because it creates an exponentially decaying term in the electromagnetic fields. The 

inverse of this imaginary term is the penetration depth. 

In the following subsections we illustrate the derivation of these two limits: high 

frequency electromagnetic wave penetrating a metal with small conductivity and a low 

frequency field penetrating a metal with large conductivity, by consider Ohmic and 

diamagnetic current, respectively. In the next Section we will combine both currents to 

see the penetration depth for intermediate regimes. 

 

Reflection by Ohmic current 

To study the limit of high frequency electromagnetic wave penetrating a metal with 

small conductivity, we solve Eq. (6b) by substiting Eq. (1). 

(𝛁𝟐 −
𝜕2

𝑐2𝜕𝑡2) 𝐀 = −𝜇𝐉Ohm = 𝜇𝜎
𝜕𝐀

𝜕𝑡
  (8) 

Substituting Eq. (7) to Eq. (8) we arrive at the following equation  

(−𝑘2 +
𝜔2

𝑐2
+ 𝑖𝜇𝜎𝜔) 𝐴�̂�𝑒𝑖(𝑘𝑥−𝜔𝑡) = 0 (9) 

The dispersion 𝑘(𝜔) can then be derived as follows.  

𝑘 =
𝜔

𝑐
√1 +

𝑖𝜎

𝜀𝜔
 (10) 

For small conductivity and large frequency 𝜎 ≪ 𝜀𝜔, one can show that the imaginary part 

of 𝑘 is proportional to 𝜎 

lim
𝜎≪𝜀𝜔

𝑘 =
𝜔

𝑐
(1 +

𝑖𝜎

2𝜀𝜔
) =

𝜔

𝑐
+ 𝑖

𝜎

2
√

𝜇

𝜀
 (11) 

The inverse of this imaginary term is the penetration depth in Eq. (2).  

 

Reflection by Diamagnetic current 

To study the limit of low frequency electromagnetic wave penetrating a metal with 

large conductivity, we solve Eq. (6b) by substituting Eq. (4). 

(𝛁𝟐 −
𝜕2

𝑐2𝜕𝑡2) 𝐀 = −𝜇𝐉Dia = 𝜇
𝑛𝑒2

𝑚
𝐀  (12) 

Substituting Eq. (7a) to Eq. (12) we arrive at the following equation  

(−𝑘2 +
𝜔2

𝑐2
− 𝜇

𝑛𝑒2

𝑚
) 𝐴�̂�𝑒𝑖(𝑘𝑥−𝜔𝑡) = 0 (13) 

The dispersion 𝑘(𝜔) can then be derived as follows.  
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𝑘 =
𝜔2

𝑐2
− 𝜇

𝑛𝑒2

𝑚
 (15) 

For small frequency, 𝑘 is purely imaginary 

lim
𝜔→0

𝑘 = 𝑖𝜇
𝑛𝑒2

𝑚
 (16) 

Its inverse is the London penetration depth in Eq. (3). 

 

RESULT AND DISCUSSION: REFLECTION BY OHMIC AND 

DIAMAGNETIC CURRENT 

 

 To study the intermediate regime, we set the electric current density as the total 

sum of both Ohmic and Diamagnetic currents. 

𝐉 = 𝐉Ohm + 𝐉Dia = 𝜎𝐄 −
𝑛𝑒2

𝑚
𝐀 (17) 

In terms of 𝛿 and 𝑙: 

𝜇𝐉 =
2

𝑐𝛿

𝜕𝐀

𝜕𝑡
−

1

𝑙2
𝐀 (18) 

We can solve the expression for 𝐀 by substituting Eq. (8) back to Eq. (6b) 

(𝛁𝟐 −
𝜕2

𝑐2𝜕𝑡2) 𝐀 = −
2

𝑐𝛿

𝜕𝐀

𝜕𝑡
+

1

𝑙2
𝐀 (19) 

Substituting Eq. (7a) to Eq. (12) we arrive at the following equation  

(−𝑘2 +
𝜔2

𝑐2
+ 𝑖

2𝜔

𝑐𝛿
−

1

𝑙2) 𝐴�̂�𝑒𝑖(𝑘𝑥−𝜔𝑡) = 0 (20) 

The dispersion 𝑘(𝜔) can then be derived as follows.  

𝑘 = √
𝜔2

𝑐2
−

1

𝑙2
+ 𝑖

2𝜔

𝑐𝛿
 (21) 

To discuss the penetration depth i.e. the inverse of the imaginary part of k, we need to 

look at two frequency regimes separated by the critical frequency 𝜔0 = 𝑐/𝑙 

  

High frequency 𝜔 > 𝑐/𝑙 

In this case, the dispersion 𝑘(𝜔) can be written as follows 

𝑘 =
1

𝑐
((𝜔2 − 𝜔0

2)2 + (
2𝑐𝜔

𝛿
)

2

)

1
4

𝑒𝑖𝛼/2  (22a) 

𝛼 = tan−1
2𝑐𝜔

(𝜔2 − 𝜔0
2)𝛿

 (22b) 

Its imaginary part is as follows. 

Im 𝑘 =
1

𝑐
((𝜔2 − 𝜔0

2)2 + (
2𝑐𝜔

𝛿
)

2

)

1
4

sin
𝛼

2
 (23a) 

=
1

𝑐√2
√√(𝜔2 − 𝜔0

2)2  + (
2𝑐𝜔

𝛿
)

2

− (𝜔2 − 𝜔0
2) (23b) 
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Low frequency 𝜔 < 𝑐/𝑙 

In this case, the dispersion 𝑘(𝜔) can be written as follows 

𝑘 =
𝑖

𝑐
((𝜔0

2 − 𝜔2)2 + (
2𝑐𝜔

𝛿
)

2

)

1
4

𝑒−𝑖𝛽/2  (24a) 

𝛽 = tan−1
2𝑐𝜔

(𝜔0
2 − 𝜔2)𝛿

 (24b) 

Its imaginary part is as follows. 

Im 𝑘 =
1

𝑐
((𝜔0

2 − 𝜔2)2 + (
2𝑐𝜔

𝛿
)

2

)

1
4

cos
𝛽

2
 (25a) 

=
1

𝑐√2
√√(𝜔0

2 − 𝜔2)2  + (
2𝑐𝜔

𝛿
)

2

+ (𝜔0
2 − 𝜔2) (25b) 

 

  
(a) (b) 

 
(c)  

Figure 1. Penetration depth 𝑑 as a function of 𝛿/𝑙 and 𝜔/𝜔0. (a)Penetration depth normalized to 

𝑙. By normalizing 𝑑 to 𝑙 we can clearly see that in the limit of low frequency, 𝑑 approach 𝑙. 

(b)Penetration depth normalized to 𝛿. By normalizing 𝑑 to 𝛿 we can clearly see that in the limit of 

high frequency, 𝑑 approach 𝛿. (c) Illustration of penetration of electromagnetic wave.   
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Electromagnetic penetration depth 

We note that Eq. (23b) and (25b) are exactly the same. Because of that the penetration 

depth d can be summarize in one expression  

𝑑 =
𝑙√2

√√(
𝜔2

𝜔0
2 − 1)

2

 + (2
𝑙
𝛿

𝜔
𝜔0

)
2

− (
𝜔2

𝜔0
2 − 1)

=
𝛿

√2
√√(1 −

𝜔0
2

𝜔2
)

2

 + (2
𝑙

𝛿

𝜔0

𝜔
)

2

+ (1 −
𝜔0

2

𝜔2
) 

(26) 

Using Eq. (26), we can illustrate penetration depth 𝑑 as a function of 𝛿/𝑙 and 𝜔/𝜔0. In 

Fig. 1a and 1b, 𝑑 is normalized to 𝑙 and 𝛿, respectively. We can clearly see that our result 

converges to the following well-known limits. 

lim
𝜔≪𝜔0

𝑑 = 𝑙 
(27a) 

lim
𝜔≫𝜔0

𝑑 = 𝛿 
(27b) 

Furthermore, we can see that when 𝛿 = 𝑙, 𝑑 ≈ 𝑙 = 𝛿.  

 

CONCLUSION 

 

 To summarize, we study the intermediate regime between two well-studied limits: 

high frequency electromagnetic field penetrating a metal with small conductivity and a 

static field penetrating a superconductor. The former limit can be derived by consider 

Maxwell equations with Ohmic current. On the other hand, the later limit is obtained by 

focusing on the diamagnetic current. 

 By setting the electric current density as the total sum of both Ohmic and 

Diamagnetic currents, we derive the penetration depth in the intermediate regime. The 

penetration depth that include both contribution of Ohmic and diamagnetic currents 

depends on the ratio of 𝛿/𝑙 and 𝜔/𝜔0 (see Eq. (26) ). Figure 1 show that our result 

converges to the following well-known limits. When 𝛿 = 𝑙, the penetration depth does 

not depend strongly to frequency. 
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