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Abstract. A material is said to be paramagnetic or diamagnetic depends on the sign of its magnetic 

susceptibility. When a material is exposed to an external magnetic field, magnetic susceptibility is defined 

as the ratio of the induced magnetization and the magnetic field. Theoretical study of paramagnetic 

susceptibility and diamagnetic susceptibility are well described by Pauli paramagnetism and Landau 

diamagnetism, respectively. Although paramagnetism and diamagnetism are among the simplest magnetic 

properties of material that are studied in basic physics, theoretical derivations of Pauli paramagnetic and 

Landau diamagnetic susceptibility require second quantization formalism of quantum mechanics. We aim 

to discuss the paramagnetic and diamagnetic susceptibilities for simplest case of quantum system using the 

simplest first quantization formalism of perturbation theory. 
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INTRODUCTION  
 

Paramagnetism and diamagnetism are among the simplest magnetic properties of material that 

are studied in basic physics [1]. A material can be paramagnetic or diamagnetic depends on the 

sign of its magnetic susceptibility [2]. A paramagnetic material has magnetic susceptibility with 

positive sign. On the other hand, a diamagnetic material has magnetic susceptibility with negative 

sign. Magnetic susceptibility is defined as the ratio of its magnetization and the external magnetic 

field that induce its magnetization [3].  

Theoretical study of paramagnetic susceptibility and diamagnetic susceptibility are well 

described by Pauli paramagnetism and Landau diamagnetism, respectively [4]. Theoretical 

derivations of these magnetic susceptibility use second quantization formalism of quantum 

mechanics[5]–[7]. The susceptibilities for a metal with Fermi energy 𝐸𝐹 are determined by its 

density of state at Fermi energy 𝐷𝑂𝑆(𝐸𝐹) as follow. 

𝜒𝑝𝑎𝑟𝑎 = 𝜇𝐵
2𝐷𝑂𝑆(𝐸𝐹), 

(1) 

𝜒𝑑𝑖𝑎 = −
𝜇𝐵
2

3
𝐷𝑂𝑆(𝐸𝐹). 

(2) 

Where the total susceptibility indicates that a metal has a paramagnetic state. 

𝜒 = 𝜒𝑝𝑎𝑟𝑎 + 𝜒𝑑𝑖𝑎 =
2

3
𝜇𝐵
2𝐷𝑂𝑆(𝐸𝐹) > 0 

(3) 

 

Theoretical research on paramagnetic susceptibility of conduction electrons lead to many 

useful effects for functional devices, such as interlayer coupling mediated by conduction spin 

(also known as Rudderman Kittel Kasuya Yosida (RKKY) interaction) [8]–[12], in magnetic 

nanostructures. Diamagnetic susceptibility of conduction electrons are theoretically studied as 

Landau - Peierls susceptibility [7], [13]–[16]. 

The simplest example of quantum system is infinite quantum well [17]. In the infinite 

quantum well, the movement of electrons are confined, and its energy is quantized. The main 

difference between wave function of electron in infinite quantum well and free electron model of 

conduction electron is that the former use vanishing wave function at the infinite potential wall 

while the later used a periodical boundary condition [17], [18]. Artificial confinement of electrons 

in nanostructure is an ongoing research [19], [20]. This article aims to theoretically determine the 

paramagnetic and diamagnetic susceptibilities for simple three-dimensional quantum well.   

 

METHOD  
 

To study the paramagnetic and diamagnetic susceptibility of the system, we need to introduce 

magnetic field magnetic field �⃗�  and vector potential 𝐴  into the Schrödinger equation. To be able 

to appropriately include magnetic field, we consider Pauli-Schrödinger equation that includes 𝐴  

and �⃗�   [21], [22]. Pauli-Schrödinger equation is non-relativistic limit of Dirac equation [22], [23]. 

 

�̂�|𝜓⟩ = (
1

2𝑚𝑒
(𝑝 + 𝑒𝐴 (𝑟 )) ⋅ (𝑝 + 𝑒𝐴 (𝑟 )) +

𝑒ℏ

2𝑚𝑒
𝜎 ⋅ �⃗� (𝑟 ) + 𝑉(𝑟 )) |𝜓⟩ = 𝐸|𝜓⟩ (4) 

Where �⃗� = ∇ × 𝐴  and |𝜓⟩ is two component spinor wave function and 𝜎 = (𝜎𝑥, 𝜎𝑦 , 𝜎𝑧) is 

Pauli matrices. 

𝜎 = (𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧) = ((
0 1
1 0

) , (
0 −𝑖
𝑖 0

) , (
1 0
0 −1

)) (5) 

Infinite three-dimensional quantum well can be modeled by the following potential 

𝑉(𝑥, 𝑦, 𝑧) = {
0, 0 < 𝑥 < 𝐿, 0 < 𝑦 < 𝐿, 0 < 𝑧 < 𝐿
∞, elsewhere

 

 

(6) 
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The solution of the time-independent Schrödinger equation and the boundary condition 
|𝜓⟩(𝑉 = ∞) = 0 dictates that the eigen wave function of the electron for zero magnetic field is 

[17] 

𝜓𝑛𝑥,𝑛𝑦,𝑛𝑧(𝑟 ) = (
2

𝐿
)

3
2
sin
𝑛𝑥𝜋𝑥

𝐿
sin
𝑛𝑦𝜋𝑥

𝐿
sin
𝑛𝑧𝜋𝑥

𝐿
 

(7) 

Since 𝑛𝑗 = 1,2,3,⋯, 𝑗 = 𝑥, 𝑦, 𝑧, the energy is quantized 

𝐸�⃗� =
ℏ2𝜋2

2𝑚𝑒𝐿
2 (𝑛𝑥

2 + 𝑛𝑦
2 + 𝑛𝑧

2) 
(8) 

In low temperature, the maximum energy is the Fermi energy 𝐸𝐹. To be able to analytically study 

the susceptibilities, we assume that 𝐿 is very large. In that case, we can write 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 in term 

of a vector �⃗� =
𝜋

𝐿
(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) and the energy is similar to free electron. 

𝐸�⃗� =
ℏ2𝑘2

2𝑚𝑒
 

(9) 

We can now define 𝐸𝐹 = ℏ
2𝑘𝐹
2/2𝑚𝑒  and any sum over 𝑛𝑥 , 𝑛𝑦, 𝑛𝑧, can be approximated by 

integral over �⃗�  

∑ ⋯

𝑛𝑥,𝑛𝑦,𝑛𝑧

=∑⋯

�⃗� 

∭
𝑑3�⃗� 

(𝜋/𝐿)3 
⋯ (10) 

Under small magnetic field, we can use perturbation theory to get the first order correction for 𝐴  

and �⃗�  to  

�̂�𝐴 =
𝑒

2𝑚𝑒
(𝑝 ⋅ 𝐴 + 𝐴 ⋅ 𝑝 ) (11) 

�̂�𝐵 =
𝑒ℏ

2𝑚𝑒 
𝜎 ⋅ �⃗�  (12) 

respectively.  

Here on, we use the following mathematical description of magnetic susceptibility 

that arise from Landau theory of free energy [24].  

𝜒 = (
𝜕𝑚

𝜕𝐵
)
𝐵=0

 (13) 

The paramagnetic magnetization is 

𝑀𝑝𝑎𝑟𝑎 = −
𝑒ℏ

2𝑚𝑒𝐿
3 
∑  

�⃗� 

⟨�⃗� |𝜎 |�⃗� ⟩
𝐵

 (14) 

and the diamagnetic magnetization �⃗⃗� 𝑑𝑖𝑎  is defined by the following relation to diamagnetic 

current 𝐽 𝑑𝑖𝑎 

∇ × �⃗⃗� 𝑑𝑖𝑎 = 𝐽 𝑑𝑖𝑎 =
−𝑒

𝑚𝑒𝐿
3∑ 

�⃗� 

∑ 

𝑙 

⟨𝑙 |(𝑝 + 𝑒𝐴)|�⃗� ⟩
𝐴

 (15) 

Since ⟨�⃗� |𝜎 |�⃗� ⟩ is zero when number of spin up and down electrons are the same, we can see that 

the system is paramagnetic when there are unpaired electrons (see Figure 1).  
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Figure 1. Spin-dependent Density of State (DOS). Perturbation by a static magnetic field 𝐵 

induces unpaired spin near the Fermi energi by shifting the Density of State of electrons with 

spin up (blue) and spin down (red). Here 𝜇𝐵 = −𝑒ℏ/2𝑚𝑒  is Bohr magneton. 

Here, subscripts A and B indicate that we take into account first order correction of the 

eigenstate due to �̂�𝐴 and �̂�𝐵. 

|�⃗� ⟩
𝐴,𝐵
=∑ 

𝑙 

⟨𝑙 |�̂�𝐴,𝐵|�⃗� ⟩

𝐸�⃗� − 𝐸𝑙 
|𝑙 ⟩ (16) 

 

 

Paramagnetic susceptibility 

To study the paramagnetic susceptibility, we will focus on �̂�𝐵 as the perturbation. The first order 

correction to magnetization due to electron spin as follows. 

𝑀𝑝𝑎𝑟𝑎 = −
𝑒ℏ

2𝑚𝑒𝐿
3 
∑  

�⃗� 

⟨�⃗� |𝜎 |�⃗� ⟩
𝐵
= −

𝑒ℏ

2𝑚𝑒𝐿
3∑ 

�⃗� 

∑ 

𝑙 

⟨𝑙 |𝜎 ⋅ �⃗� (𝑟 )|�⃗� ⟩

𝐸�⃗� − 𝐸𝑙
⟨�⃗� |𝜎 |𝑙 ⟩ (17) 

We note that this is the same as taking the following second order correction of the magnetic 

energy. 

−𝑀𝑝𝑎𝑟𝑎𝐵
2 =

1

𝐿3
∑ 

�⃗� 

∑ 

𝑙 

|⟨𝑙 |�̂�𝐵|�⃗� ⟩|
2

𝐸�⃗� − 𝐸𝑙 
= (

𝑒ℏ

2𝑚𝑒  
)
2 1

𝐿3
∑ 

�⃗� 

∑ 

𝑙 

|⟨𝑙 |𝜎 ⋅ �⃗� (𝑟 )|�⃗� ⟩|
2

𝐸�⃗� − 𝐸𝑙 
 

 

(18) 

Although we focus on static magnetic field, we set �⃗� (𝑥) = �̂�𝐵 cos 𝑞𝑥 and take the limit 𝑞 → 0. 

Using the Pauli matrices identity 𝜎𝑎𝜎𝑏 = 1𝛿𝑎𝑏 + 𝑖𝜖𝑎𝑏𝑐𝜎𝑐 , we can simplify it as follows. 

𝜒𝑝𝑎𝑟𝑎 = −(
𝑒ℏ

2𝑚𝑒  
)
2 1

𝐿3
lim
𝑞→0

 ∑  

�⃗� 

∑ 

𝑙 

|⟨𝑙 | cos 𝑞𝑥 |�⃗� ⟩|
2

𝐸�⃗� − 𝐸𝑙 
 (19) 

⟨𝑙 | cos 𝑞𝑥 |�⃗� ⟩ can be determined by examining the following integral 

⟨𝑙 | cos 𝑞𝑥 |�⃗� ⟩ = (1 1) (
1
1
)
2

𝐿
∫ 𝑑𝑥
𝐿

0

sin 𝑙𝑥𝑥 cos 𝑞𝑥 sin 𝑘𝑥𝑥 = 𝛿𝑙𝑥+𝑞,𝑘𝑥 + 𝛿𝑙𝑥−𝑞,𝑘𝑥 
(20) 

Therefore, integral expression for 𝜒𝑝𝑎𝑟𝑎 is as follows 

𝜒𝑝𝑎𝑟𝑎 = −(
𝑒ℏ

2𝑚𝑒 
)
2

 lim
𝑞→0

 ∭
𝑑3�⃗� 

𝜋3 
(

1

𝐸�⃗� − 𝐸�⃗� −𝑞�̂�
+

1

𝐸�⃗� − 𝐸�⃗� +𝑞�̂�
) 

(21) 
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Landau diamagnetism 
To study the diamagnetic susceptibility, we first examine the magnetization that correspond with 

diamagnetic current 

𝐽 𝑑𝑖𝑎 = ∇ × �⃗⃗� 𝑑𝑖𝑎 =
−𝑒

𝑚𝑒𝐿
3∑ 

�⃗� 

∑ 

𝑙 

⟨𝑙 |(𝑝 + 𝑒𝐴)|�⃗� ⟩
𝐴
. (22) 

To evaluate  𝜒𝑑𝑖𝑎, we substitute �⃗⃗� 𝑑𝑖𝑎 = 𝜒𝑑𝑖𝑎∇ × 𝐴  

−𝜒𝑑𝑖𝑎∇
2𝐴 =

−𝑒

𝑚𝑒𝐿
3∑ 

�⃗� 

∑ 

𝑙 

⟨𝑙 |𝑝 |�⃗� ⟩
𝐴
−
𝑒2𝐴 

𝑚𝑒
 𝑁𝑒   

(23) 

Here 𝑁𝑒 =
1

𝐿3
∑ ⟨�⃗� |�⃗� ⟩�⃗�  is the total density of electrons. Similarly, we can assume 𝐴 = �̂�𝐴 cos 𝑞𝑥, 

therefore 

𝜒𝑑𝑖𝑎𝐴 = lim
𝑞→0

1

𝑞2
−𝑒

𝑚𝑒𝐿
3(∑ 

�⃗� 

∑ 

𝑙 

⟨𝑙 |𝑝 |�⃗� ⟩
𝐴
+ 𝑒𝐴 𝑁𝑒) 

(24) 

Using first order correction of the eigenstate. 

|�⃗� ⟩
𝐴
=∑ 

𝑙 

⟨𝑗 |�̂�𝐴|�⃗� ⟩

𝐸�⃗� − 𝐸𝑗 
|𝑗 ⟩ (25) 

We can evaluate 𝜒𝑑𝑖𝑎 as follows  

𝜒𝑑𝑖𝑎 = −
𝑒2

𝑚𝑒𝐿
3
lim
𝑞→0

1

𝑞2
(∑ 

�⃗� 

∑ 

𝑙 

⟨𝑙 |𝑝2 cos 𝑞𝑥 |�⃗� ⟩

𝐸�⃗� − 𝐸𝑙 
+ 𝑒𝑁𝑒) (26) 

⟨𝑙 |𝑝2 cos 𝑞𝑥 |�⃗� ⟩ can be determined by examining the following integral 

⟨𝑙 |𝑝2 cos 𝑞𝑥 |�⃗� ⟩ = 2 (
2

𝐿
)
2

𝑘𝑥 ∫ 𝑑𝑥
𝐿

0

sin 𝑙𝑥𝑥 cos 𝑞𝑥 sin 𝑘𝑥𝑥 = 𝑘𝑥
2(𝛿𝑙𝑥+𝑞,𝑘𝑥 + 𝛿𝑙𝑥−𝑞,𝑘𝑥) 

(27) 

Therefore, integral expression for 𝜒𝑑𝑖𝑎 is as follows 

𝜒𝑑𝑖𝑎 = −
𝑒2

𝑚𝑒
lim
𝑞→0

1

𝑞2
(𝑒𝑁𝑒 +∭

𝑑3�⃗�  𝑘𝑥
2

𝜋3 
(

1

𝐸�⃗� − 𝐸�⃗� −𝑞�̂�
+

1

𝐸�⃗� − 𝐸�⃗� +𝑞�̂�
)) 

(28) 

 

 

 

 

RESULT AND DISCUSSION 
 

Carrying the integral over all �⃗�  states that has the maximum energy is the Fermi energy 𝐸𝐹, 

we arrive at the following expression for paramagnetic and diamagnetic susceptibility  

𝜒𝑝𝑎𝑟𝑎(𝑞) = 𝜇𝐵
2𝐷𝑂𝑆(𝐸𝐹)(

1

2
+
1 − (

𝑞
2𝑘𝐹

)
2

2𝑞
𝑘𝐹

ln |
𝑞 + 2𝑘𝐹
𝑞 − 2𝑘𝐹

|) 
(29) 

𝜒𝑑𝑖𝑎(𝑞) = −𝜇𝐵
2
𝐷𝑂𝑆(𝐸𝐹)

8 (
𝑞
2𝑘𝐹

)
2

(

 1 + (
𝑞

2𝑘𝐹
)
2

−
(1 − (

𝑞
2𝑘𝐹

)
2
)
2

𝑞
𝑘𝐹

ln |
𝑞 + 2𝑘𝐹
𝑞 − 2𝑘𝐹

|

)

  

 

(30) 

Our result is similar to those of Pauli paramagnetic and Landau-Peierls susceptibility. The limit 

for small 𝑞 → 0 is the same as Eq 1 and 2. Therefore, we can that the magnetic properties of 

electron in an infinite quantum well behave like those of conduction electron in a metal.  
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In a static magnetic field limit, the total susceptibility seems to indicate a paramagnetic 

state (see Figure 2). 

𝜒 = lim
q→0

(𝜒𝑝𝑎𝑟𝑎(𝑞) + 𝜒𝑑𝑖𝑎(𝑞)) =
2

3
𝜇𝐵
2𝐷𝑂𝑆(𝐸𝐹) 

(31) 

However, in a more general system, collective movement of electrons that responsible for 

paramagnetism can have different effective mass than diamagnetism. Since 𝐷𝑂𝑆(𝐸𝐹)  is 

proportional to the effective mass, if consider the different effective mass, the total magnetic 

susceptibility is as follows 

𝜒 = (1 −
1

3

𝑚𝑑𝑖𝑎
𝑚𝑝𝑎𝑟𝑎

)𝜇𝐵
2𝐷𝑂𝑆(𝐸𝐹) 

(32) 

When 𝑚𝑑𝑖𝑎 > 3𝑚𝑝𝑎𝑟𝑎 the system is diamagnetic. 

 

 
Figure 2. Paramagnetic susceptibility 𝜒𝑝𝑎𝑟𝑎(𝑞) and diamagnetic susceptibility 𝜒𝑑𝑖𝑎(𝑞), 

𝜒𝑝𝑎𝑟𝑎(0) normalized to  as a function of 𝑞/2𝑘𝐹. 

 

CONCLUSION 
 

To summarize, we theoretically study the paramagnetic and diamagnetic susceptibility of a system 

with many electrons in infinite quantum well. While paramagnetism and diamagnetism are among 

the simplest magnetic properties of material that are studied in basic physics, theoretical 

derivations of magnetic susceptibilities require second quantization formalism of quantum 

mechanics, we can obtain the susceptibility using first quantization formalism.  

The similar expression of our result with those of Pauli paramagnetic susceptibility and 

Landau-Peierls indicate that the magnetic properties of confined electron in an infinite quantum 

well behave like those of conduction electron in a metal. This is physically important because it 

show that electronic wave function in confined system with vanishing boundary condition behave 

similar to those with a periodic boundary condition.  
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