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Automated Glaucoma Detection and
Classification from Large-Scale Fundus Image

Dataset Using YOLOvVS8 and CNN

Sheikh Aminul Islam!, Humana Khan?, Taslim Taher?

Abstract—Glaucoma is a major eye condition that slowly
damages the optic nerve and remains one of the top causes of
permanent blindness around the world. This study presents an
automated framework for early detection and classification of
glaucoma using artificial intelligence techniques applied to
large-scale retinal fundus image dataset of over 17,000 images.
The optic disc (OD) and optic cup (OC) were localized using
YOLOVS. Following this, we conducted Region of Interest (ROI)
extraction and contour masking to isolate the OD and highlight
critical regions for further examination. We extracted essential
features, such as the Cup-to-Disc Ratio (CDR), Vertical CDR
(VCDR), neuroretinal rim (NRR) thinning, and compliance with
the ISNT (Inferior > Superior > Nasal > Temporal) rule, resulting
in a detailed tabular dataset. For classification, we applied ML
and DL models. YOLOvVS8 demonstrated superior detection
precision and CNN led the classification models with 87.13%
accuracy. The proposed method offers a reliable, automated
solution that can support large-scale glaucoma screening in
clinical settings. This framework has the potential to assist
ophthalmologists by improving the speed and accuracy of early
glaucoma diagnosis, reducing the risk of vision impairment in
affected patients.

Index Terms—Glaucoma detection, fundus
machine learning, deep learning, YOLOVS.

images, CNN,

I. INTRODUCTION

laucoma is a progressive eye disease that damages the
optic nerve, often due to increased intraocular pressure,
and is a leading cause of irreversible blindness worldwide [1].
Commonly referred to as the "silent thief of sight," glaucoma
typically remains asymptomatic until significant vision loss has
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occurred [2]. The motivation behind this study is driven by the
critical need for early detection to prevent irreversible vision
impairment and improve patient quality of life.

Globally, glaucoma affected approximately 76 million
individuals by 2020, with projections indicating a rise to 111.8
million by 2040 [3]. In 2010, glaucoma had already caused
blindness in 8.4 million people, and this number is expected to
increase to 22 million by 2040 [4]. In Bangladesh, a 2022
survey by the Bangladesh Glaucoma Society reported that 13%
of individuals over 35 are affected, with 2 million confirmed
and 5 million suspected cases. Among 12,000 participants,
3.2% were diagnosed with glaucoma, and the prevalence has
surged by 20% over the past two decades [S5]. These alarming
statistics underscore the urgent need for effective glaucoma
screening programs worldwide.

Clinically, glaucoma is evaluated through key structural
changes in the OD and OC. Diagnostic indicators include the
CDR, NRR thinning, rim-to-disc area ratio, disc diameter, and
compliance with the ISNT rule [8]-[10]. The NRR, located
between the OC and the outer margin of the OD, is a critical
region where glaucomatous damage is most evident [9].
Additionally, vertical elongation of the optic cup and defects in
the retinal nerve fiber layer are hallmark signs of disease
progression [11]. Fundus imaging remains the primary
modality for assessing these clinical markers, but manual
analysis is time-consuming, subject to human error, and may
lead to delayed diagnosis.

Traditional glaucoma detection methods rely on extensive
clinical testing, which is expensive and inaccessible in
low-resource settings. Moreover, manual evaluation of the
CDR from fundus images is prone to inter-observer variability.
To address these challenges, deep learning (DL) and object
detection technologies have emerged as promising alternatives.
CNN have demonstrated excellent performance in medical
image classification, offering automated and scalable solutions
[12]. Additionally, YOLO object detection models have
achieved real-time detection capabilities in various image
analysis tasks, making them highly relevant for glaucoma
screening.

However, many prior studies either focused solely on
classification without precise localization of the OD and OC or
utilized older versions of object detection models, which lacked
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the accuracy of newer architectures. There remains a gap in
integrating advanced detection techniques like YOLOVS with
CNN-based classification pipelines for comprehensive
glaucoma diagnosis.

To bridge this gap, this study proposes an automated
framework that leverages YOLOv8 for accurate OD and OC
localization, followed by clinical feature extraction and
CNN-based glaucoma classification. By incorporating
clinically significant features such as the ISNT rule and NRR
thinning, this research aims to improve diagnostic precision and
provide a scalable, cost-effective solution for early glaucoma
detection, especially in low-resource environments.

II. RELATED WORK

A. CNN-Based Models for Glaucoma Detection

Deep learning, particularly CNNs, has driven significant
advancements in automated glaucoma detection from fundus
images. Amer Sallam et al. [1] fine-tuned pre-trained CNN
architectures such as AlexNet, VGG, GoogleNet, and ResNet
using the LAG dataset (3,758 fundus images), achieving an
accuracy of 86.9% in detecting optic nerve damage. However,
these models primarily focused on CDR-based features,
potentially overlooking other structural indicators. Similarly,
Silvia Ovreiu et al. [6] employed DenseNet121 on the RETINA,
ACRIMA, and RIM-ONE datasets, achieving 95.6% accuracy
in early glaucoma detection. Although effective, the approach
relied heavily on high computational resources and lacked
clinical feature integration. Alexandre Neto et al. [10]
evaluated Xception, ResNet152V2, and Inception ResNetV2
on RIM-ONE r3, DRISHTI-GS, and REFUGE datasets,
successfully identifying glaucoma indicators like optic nerve
damage and disc cupping. Yet, these models did not incorporate
domain-specific clinical rules such as the ISNT rule or
asymmetry analysis.

B. Segmentation Techniques

Accurate segmentation of the OD and OC is crucial for
reliable CDR computation. Mamta Juneja et al. [2] proposed
G-Net for OD and OC segmentation on the DRISHTI-GS
dataset, achieving 95.8% and 93% segmentation accuracies,
respectively. However, the method’s reliance on traditional
segmentation techniques may limit adaptability to complex
clinical scenarios. WangMin Liao et al. [8] introduced
EAMNet, integrating ResNet with multi-layer average pooling
for optic nerve head localization. Their model achieved a Dice
coefficient of 0.9 and an AUC of 0.88 on the ORIGA dataset.
While this method improved localization, it required
substantial training data to maintain generalizability. Reference
[16] enhanced segmentation accuracy using an attention-based
CNN, achieving mean Dice scores of 0.989 for OC and 0.999
for OD, but the approach’s computational complexity could
challenge real-time deployment in low-resource settings.

C. Hybrid and Ensemble Approaches

Hybrid models have been employed to improve diagnostic
accuracy by combining deep learning and traditional classifiers.
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Also, [13] combined CNN feature extraction with SVM, KNN,
and RF classifiers on 1,500 fundus images from Edo Eye
Hospital, achieving a high accuracy of 99%. Such ensemble
methods improve generalization by leveraging diverse
classifiers but often suffer from increased model complexity,
making them less practical in resource-constrained settings.
Meanwhile, [14] advanced this concept by integrating
DeepLabv3+ with ensemble learning on 2,787 retinal images,
achieving 99.7% segmentation accuracy and 99.53%
classification accuracy. Despite their impressive results, these
systems often prioritize performance over clinical
interpretability and can be computationally demanding.

D. Clinical Feature Integration

Studies focusing on clinical rule-based integration have
addressed some of these shortcomings. While [15] introduced a
cost-effective screening method combining CDR analysis with
the ISNT rule, achieving 92.9% accuracy while emphasizing
neuroretinal rim width in 113 images from Mettapracharak
Hospital. Although promising, the study's limited sample size
restricts its generalizability. A.A. Alqgarni employed
attention-enhanced CNNs to improve segmentation accuracy,
achieving mean Dice scores of 0.989 for the OC and 0.999 for
the OD, but the lack of integrated classification limits its
clinical utility. Other research [17] compared the IST and ISNT
rules in assessing neuroretinal rim width across 1,856 eyes,
concluding that the IST rule offered better specificity (91.2%)
and sensitivity (89.7%). These clinically focused studies
contribute valuable diagnostic insights but often lack
comprehensive automated pipelines that combine segmentation,
classification, and clinical evaluation.

Many existing studies rely heavily on vertical CDR as the
primary diagnostic feature, often neglecting critical clinical
indicators such as NRR thinning, the ISNT rule, and asymmetry
between the eyes. Furthermore, most models are evaluated on
limited datasets without considering variations in image quality,
patient demographics, and clinical settings. The proposed study
addresses these gaps by integrating YOLOVS for accurate optic
disc and cup detection and using CNN-based classification that
incorporates both deep features and clinical diagnostic rules.
This combined approach aims to improve robustness,
generalizability, and diagnostic relevance for early glaucoma
detection.

III. METHOD

A. Dataset

This study uses a subset of the SMDG-19 Glaucoma
Dataset, which is publicly available on Kaggle in PyTorch
format [18]. The dataset includes 17,242 retinal fundus images,
which are arranged into training, validation, and testing sets.
Each of these sets features images categorized into two
different classifications:
e C(lass 1: Fundus images diagnosed with glaucoma.

Class 0: Healthy fundus images.

Figure 1 provides an overview of the dataset. This dataset
aims to identify the OD and OC in the images, both of which
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are crucial for glaucoma evaluation. Following segmentation,
various features are extracted.

Fig. 1. Overview of the dataset, showcasing samples of the images used in this
study.

To facilitate machine learning-based classification, these

extracted features are organized into a structured tabular format.

This tabular structure enables the implementation of a range of
supervised learning models aimed at glaucoma detection and
assessing its severity. The considerable size and variety of
retinal images within the dataset enhance its robustness,
making it an appropriate resource for developing and testing
automated glaucoma detection systems.

B. Proposed system

This study proposes an automated and systematic approach
for glaucoma detection from retinal fundus images, structured
into three sequential stages: detection, feature extraction, and
classification. The process begins with the detection of the OD
and OC using a YOLO-based model, specifically trained to
accurately localize these critical regions. Following detection,
essential features such as the CDR, structural asymmetries, and
other shape-based indicators are extracted to support reliable
differentiation between glaucomatous and non-glaucomatous
cases. In the final stage, ML and DL classifiers are employed to
categorize the images based on the extracted features. This
structured pipeline is designed to ensure smooth progression
from detection to final classification, aiming to improve both
diagnostic accuracy and processing efficiency. The complete
workflow is illustrated in Fig. 2. By combining advanced object
detection, feature engineering, and classification techniques,
the proposed system enhances early glaucoma screening and
supports timely clinical intervention.

1) Detection, to initiate the analysis, a YOLO-based model is
employed to detect the OD and OC from dataset. This
model is specifically trained to accurately locate these vital
areas, which are crucial for further analysis and assessment
of glaucoma.

2) Feature extraction, once the OD and OC are detected, key
features—such as CDR, as well as shape and structural
characteristics, are extracted. These features are essential
for differentiating glaucomatous images from normal ones,
providing critical data for classification.

3) Classification, in the final phase, the classification of retinal
images is carried out to determine whether they are
glaucomatous or normal. This classification stage utilizes
ML and DL models which are trained on the extracted
features. These models analyze the input data and provide
the corresponding label based on their learned patterns and
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characteristics.

This approach follows a well-organized process, ensuring
that each step flows smoothly into the final task of
classification. The complete process of the framework is shown
in Fig. 2, providing a clear visual representation of the
workflow. This automated pipeline guarantees both accuracy
and efficiency in the glaucoma screening process. By using
advanced detection and classification methods, the approach
helps with early diagnosis, which can greatly support clinical
decisions and improve patient care.

Detection
_ * Model "

Fundus Image

ROl Extraction

Detect optic cup
& optic disc

Preprocessing

OD Mask OC Mask

Classification | Tabular Dataset
assification abular Datasef Feature
m Model < Create Extraction

Fig. 2: Proposed system architecture.

C. Dataset for Detection Task

For the detection task, the dataset was carefully labeled to
highlight the OD and OC regions, which play a key role in
diagnosing glaucoma accurately. The images were annotated
using the Computer Vision Annotation Tool (CVAT), a
commonly used tool in computer vision projects for labeling
and preparing data. Initially, polygons were drawn to outline
the OD and OC areas, which were then converted into bounding
boxes which are the required format of YOLO models.

Figure 3 illustrates an example of the annotated fundus
images, showcasing the bounding boxes that indicate the OD
and OC areas clearly. This process is vital for training the
detection model, as it ensures the model can effectively locate
and identify the important regions in retinal images.

D. Data Preprocessing for Detection

The dataset underwent several preprocessing steps. To
maintain uniformity, all images were resized to 512x512 pixels
and normalized before processing. Some data augmentation
techniques were applied, such as flipping, adjusting brightness,
rotating, and adding Gaussian noise. The bounding boxes were
adjusted to match the augmented images accordingly.
Furthermore, class balance was achieved to prevent bias during
the training of the model.

E. Detection of Optic Disc and Optic Cup

In this study, YOLOvVS and YOLOvV8 models were used to
detect the OD and OC. These advanced object detection models
were trained on an annotated dataset to accurately determine
the OD and OC regions, which are crucial for glaucoma
diagnosis. Both models were carefully evaluated to ensure
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accurate localization, laying a strong foundation for the next
steps of feature extraction and classification.
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Fig. 3. Example of annotated fundus images using CVAT

YOLOvVS was chosen for its high speed, accuracy, and
real-time processing capabilities, making it particularly
well-suited for clinical applications. Its anchor-free architecture
and advanced feature fusion significantly enhance the
localization of small, overlapping structures, which is critical
for accurate glaucoma screening. It provides fast and reliable
detection with low computational cost, enabling scalable
deployment even in resource-constrained clinical settings. Its
performance in this study further validated its effectiveness and
suitability for precise detection.

The results from the detection phase provided important
bounding box coordinates for both the OD and OC, which
enabled the extraction of key features necessary for classifying
glaucoma. After this, the process moves on to isolating the
Region of Interest, allowing the model to focus on the specific
area for detailed analysis.

F. Extracting the Region of Interest (ROI)

In this research, the process of extracting the ROI begins
with a detection model that identifies and marks the OD and OC
in the input images. Once the detection phase is completed, the
labeled results are utilized to localize these regions, enabling
the extraction of the OD for further computation. The following
step focuses on obtaining the ROI, which removes any
extraneous areas and concentrates attention exclusively on the
regions essential for the next stages of analysis.

To enhance focus on these important areas, the output
image undergoes a process of ROI-based masking followed by
contour masking. This methodical approach guarantees that
only the pertinent features are retained for further processing,
thereby improving the accuracy of later classification and
analysis.

Figure 4 illustrates the entire procedure for ROI extraction,
emphasizing the crucial steps of detection, isolation, and
masking.

G. Feature Extraction

In the feature extraction stage, masks for the OD and OC
derived from the ROI extraction were utilized. These masks
made it easier to calculate several important features, such as
the Vertical Cup-to-Disc Ratio (VCDR), Horizontal
Cup-to-Disc Ratio (HCDR), Vertical Elongation, Neuroretinal
Rim (NRR) Thinning, and adherence to the ISNT Rule. The
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detailed calculations of these features are presented below,
emphasizing their importance in the overall analysis.
Additionally, the theoretical concepts underlying each feature
are examined to highlight their contributions to glaucoma
diagnosis.

»
S oo

Fig. 4. ROI extraction procedure.
1) Vertical Cup-to-Disc Ratio (VCDR)

The VCDR plays a key role in glaucoma diagnosis, as it
represents the proportion between the vertical diameter of
the OC and that of the OD. OC is usually smaller. However,
in glaucoma cases, it often expands vertically, resulting in an
elevated VCDR. An elevated VCDR may suggest the
presence of glaucomatous damage, as an increase in the
vertical size of the optic cup often signals deterioration of
the optic nerve. The VCDR can be calculated using the
formula mentioned in (1).

VCDR = Vertical Diameter of 0C @

Vertical Diameter of OD

2) Horizontal Cup-to-Disc Ratio (HCDR):

HCDR is determined by taking the horizontal diameter of
the OC and dividing it by the horizontal diameter of the OD.
In some cases, the OC tends to expand horizontally,
leading to a higher HCDR. An increased HCDR indicates a
thinning of the NRR, suggesting possible harm to the
retinal nerve fibers. The formula used to calculate the
HCDR mentioned in (2).

Horizontal Diameter of OC (2)
Horizontal Diameter of OD

HCDR =

3) Vertical Elongation

Vertical elongation describes the abnormal enlargement of
the OC in a vertical direction, resulting in a higher VCDR.
In normal eyes, the OC retains a circular shape, but in cases
of glaucoma, it appears more elongated. This vertical
elongation is crucial for identifying glaucoma and
evaluating its severity. It can be measured using a specific
formula in (3).

VCDR —HCDR + 1
2

Vertical Elongation =

3

4) Neuroretinal Rim (NRR) Thinning
NRR thinning is the decrease in thickness of the nerve
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fibers within the NRR surrounding the OC. This thinning is
a crucial sign of glaucoma, often beginning in the larger
regions of the OD, which are especially vulnerable to injury.
As glaucoma progresses, the thinning becomes increasingly
evident and extends across the OD. The assessment of NRR
thinning is expressed as follows in (4).

Disc Diameter — Cup Diameter

NRR Thinning = >

4

5) ISNT Rule Compliance

ISNT rule provides a framework for assessing the thickness
of the NRR around the optic disc. According to this guideline,
the expected thickness of the rim follows a specific sequence:
Inferior > Superior > Nasal > Temporal. This indicates that
the inferior segment of the optic nerve rim is usually the
thickest, while the temporal segment is generally the thinnest.
This pattern is typically seen in healthy individuals. However,
in cases of glaucoma, this order can change, often resulting in
greater thinning of the superior and inferior rims. The
evaluation of adherence to the ISNT rule is conducted as
follows in (5).

No. of ISNT checks passed

ISNT (%) = Total ISNT checks

x 100 ®)

H. Dataset for Classification Task

The extracted features were arranged in a table to facilitate
glaucoma classification. Key features include the VCDR,
HCDR, vertical elongation, thinning of the NRR, and
compliance with the ISNT rule. These metrics are crucial for
assessing the advancement of glaucoma. A snippet of the
tabular dataset is presented in Table 1.

Table 1.
Snippet of Tabular Dataset

Image VCDR HCDR  Vertical NRR Thinning ISNT Labels
Elongation
BEH-10.png 0.3905 0.3864 0.502 0.3026 1 0
BEH-109.png 0.466 0.4167  0.5247 0.2765 1 0
BEH-121.png 0.4111 0.4521 0.4795 0.2807 0.67 0
BEH-138.png 0.4471 0.7391 0.354 0.2009 1 0
BEH-149.png 0.4615 0.5303 0.4656 0.2486 0.33 1
BEH-156.png 0.5333 0.5506  0.4914 0.2265 0 1
BEH-158.png 0.5823 0.3763 0.603 0.2574 0.33 1
BEH-160.png 0.5289 0.5347  0.4971 0.232 1 0
BEH-165.png 0.5765 0.6265 0.475 0.1969 0 1
BEH-168.png 0.3176 0.2927  0.5124 0.3433 0.67 0
BEH-172.png 0.3468 0.3455 0.5006 0.3242 1 0
BEH-178.png 0.42 0.4845 0.4678 0.2711 1 0
BEH-183.png 0.7582 0.7473 0.5054 0.1223 0.67 1
BEH-189.png 0.5542 0.6081 0.473 0.2068 1 0
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Several preprocessing procedures were implemented to pre-
pare the dataset for -classification, ensuring both data
consistency and integrity.

I Data Preprocessing for Classification

During the preprocessing phase, we removed unnecessary
columns and addressed any missing values in the dataset. We
then split the data, allocating 70% for training and 30% for
validation purposes. SMOTE was utilized to help even out the
class distribution by generating artificial samples for the
smaller group.

J. Glaucoma Classification

To classify glaucoma, several algorithms from both
machine learning (ML) and deep learning (DL) domains were
applied. Additionally, CNN and VGG16 architectures were
utilized by converting tabular data into image grids, making
them suitable for convolutional models.

1) Machine learning classification models

Authors applied nine different machine learning

models—Random Forest (RF), Logistic Regression (LR),

Support Vector Machine (SVM), Decision Tree (DT),

K-Nearest Neighbors (KNN), Naive Bayes (NB), XGBoost,

LightGBM, and AdaBoost—to several tabular datasets.

Despite conducting hyperparameter tuning, we observed

only slight enhancements in the performance of the models.

In Table 2, we outline the essential hyperparameters

employed for training each model, which were

fine-tuned to optimize classification performance.

Table 2.
Hyperparameters of ML Models
Model Hyperparameters
LR Penalty = 12; Solver = ’Ibfgs’; Max iter = 500
SVM Kernel = ’linear’; C = 10; Gamma = 0.1
KNN N-Neighbors = 15; Metric = ’Manhattan’
RF Estimators = 150; Criterion = ’gini’

DecisionTree  Criterion = ’gini’; Splitter = ’best’

XGBoost Colsample bytree = 0.8; Gamma = 0.1; Lr = 0.05
AdaBoost Estimators = 200; Lr = 0.01; Max depth =3
LightGBM Lr = 0.01; Estimators = 500; Subsamples = 0.7

2) Deep learning classification models

To capture detailed patterns in the data, deep learning
architectures like MLP, TabNet, CNN and VGG16 were
utilized. Additionally, CNN and VGG16 architectures were
utilized by converting the tabular data into image grids to
make it compatible with these models. A comparison was
made between these DL approaches and traditional ML
methods, highlighting the benefits of using DL for detecting
glaucoma. CNN was chosen for its capability to effectively
learn complex patterns from structured tabular data by
capturing  local  feature  interactions, enhancing
classification performance.
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o Multi-layer perceptron (MLP)

The MLP architecture is designed for binary classification,

starting with an input layer and multiple Dense layers with

LeakyReLU activation.  Techniques like  Batch

Normalization, L2 regularization, and Dropout enhance

stability and reduce overfitting. The model ends with a

sigmoid output layer for binary classification. MLPs are

effective in capturing complex, nonlinear relationships,
making them ideal for glaucoma detection with structured
data.

o TabNet

The TabNet model used in this study combines decision and

attention networks to select important features and improve

classification accuracy. It processes data over seven

decision steps with an attention dimension of 128, using a

relaxation factor of 1.5. The model was trained for 50

epochs with a batch size of 256, for binary classification.
e CNN

The CNN model for glaucoma classification uses a Conv2D

layer for feature extraction, followed by Flatten and Dense

layers. A Dropout layer reduces overfitting, and a sigmoid
output layer handles binary classification. Training uses the

Adam optimizer and binary cross-entropy loss, with

performance assessed via K-fold cross-validation, ROC

curves, and confusion matrix.
e VGGI6

The VGG16 based model uses a pre-trained architecture for

feature extraction in glaucoma classification. Tabular data

is reshaped into 64x64x3 images to fit the model input.

Once the top layers of VGG16 are removed, the extracted

features are sent through a Flatten layer, then processed by a

Dense layer with 128 neurons using ReLU activation, and a

Dropout layer is applied to prevent overfitting. A

sigmoid-activated output layer provides the binary

classification. The model is trained using Adam and binary
cross-entropy, and evaluated with accuracy, AUC, ROC,
and confusion matrix.

While the method shows strong performance, it faces
limitations such as dataset diversity, potential labeling errors,
hardware constraints, and overfitting risks. Nonetheless, it
advances prior work by integrating key clinical rules,
combining image and clinical data features, and offering
computational efficiency for real-time use in resource-limited
settings.

IV. RESULTS AND DISCUSSION

A. Detection Model Performance

The YOLOv8 model demonstrated superior detection
performance compared to YOLOvV5 across all evaluated
metrics. As shown in Table 3, the detection performance of
YOLOv8 and YOLOvVS5 was evaluated using precision, recall,
and mean average precision (mAP) metrics. YOLOvS8
outperformed YOLOvVS5 across all metrics, achieving a
precision of 91.37% and a recall of 90.29%, indicating its
superior accuracy and consistency in detecting the OD and OC.
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Table 3.
YOLOv8 and YOLOVS5 Performance
Accuracy

Model YOLOVS YOLOVS
RF 80.61% 79.1%
LR 81.7% 80.91%
SVM 82.1% 78.14%

DT 79.3% 75%
KNN 78% 76.13%
NB 81.45% 78.54%
XGBoost 81.24% 79.53%
LightGBM 81.53% 77.32%
AdaBoost 83.22% 80.28%

Additionally, YOLOv8 attained a higher mAP@0.5 of
92.13% and mAP@0.5:0.95 of 59.57%, demonstrating better
localization performance across varying IoU thresholds
compared to YOLOVS. This validates the selection of YOLOv8
for precise and reliable detection in this study. Figure 5 shows
the confusion matrix for YOLOVS, highlighting its superior
performance in detecting the OD and OC.

Confusion Matrix Normalized

OpticCup OpticDisk background

Fig. 5. Confusion matrix of YOLOv8 model.

B. Classification Model Performance

1) Machine learning model performance

In Table 4, classifiers using YOLOvS8-extracted features
consistently outperformed those using YOLOVS. AdaBoost
achieved the highest accuracy (83.22%) with YOLOVS,
followed by SVM (82.1%) and LR (81.7%). In contrast,
YOLOvS features yielded lower accuracies, with LR
performing best at 80.91%. These results highlight
YOLOV8’s superior detection quality, leading to improved
classification performance.

Table 4.
Performance of ML Models

Models Precision Recall mAP@0.5 mAP@0.5:0.95
YOLOVS 0.91372 0.9029 0.9213 0.59573
YOLOVS 0.91274 0.88621 0.89343 0.54349

2) Deep learning model performance
Table 5 shows that, The CNN achieved the highest accuracy
(87.13%) with balanced precision (84.49%), recall
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(83.62%), and Fl-score (84.05%), making it the most
effective model. VGG16 also performed well with 85.79%
accuracy. MLP and TabNet showed slightly lower
accuracies (83.89% and 83.12%), with TabNet offering the
best precision among tabular models. Overall, CNN
provided the best classification performance.

Table 5.
Performance of DL Models
Model Accuracy Precision Recall Fl-score
MLP 83.89% 79.05% 81.05% 80.03%
TabNet 83.12% 80.52% 78.06% 79.24%
CNN 87.13% 84.49% 83.62% 84.05%
VGG16 85.79% 83.20% 81.41% 82.30%

Given that the CNN model demonstrated superior
performance, Fig. 6 illustrates the confusion matrix with the
CNN model.

Confusion Matrix

1400

179 1200

1000

- 800

- 600

. 191

- 400

-200

Non-Glaucomatic Glaucomatic
Predicted Label

True Label
Non-Glaucomatic

Glaucomatic

Fig. 6. Confusion matrix of CNN model.

C. Discussion

The superior performance of the YOLOv8 model in
detecting the OD and OC can be attributed to its advanced
architectural improvements over YOLOvVS. YOLOVS’s
anchor-free design simplifies the detection process by
removing the dependency on predefined anchor boxes,
allowing the model to better detect objects with varying shapes
and sizes—particularly useful for accurately localizing the OD

and OC, which can present with subtle variations across images.

Additionally, YOLOvVS leverages improved feature fusion
through its decoupled head, enabling more precise localization
and classification simultaneously. This enhancement
contributes to the higher precision, recall, and mAP scores
observed in our experiments, especially when compared to
YOLOVS.

In the classification stage, the CNN model achieved the
highest accuracy (87.13%), outperforming both traditional ML
and other DL models. This can be explained by CNN’s inherent
ability to capture complex spatial patterns and relationships
within the tabular feature space, particularly when these

http://journal.uinjkt.ac.id/index.php/aism

features are carefully structured to retain spatial dependencies
like asymmetry, ISNT rule, and neuroretinal rim (NRR)
thinning. CNN’s convolutional layers excel at automatically
learning  hierarchical feature representations, which
significantly boosts classification performance.

However, the CNN approach is not without limitations.
Deep models like CNNs typically require substantial amounts
of data to avoid overfitting, which can be a concern with
smaller medical datasets. Additionally, CNNs demand more
computational resources during training compared to simpler
models like AdaBoost. On the other hand, AdaBoost
demonstrated strong performance (83.22% accuracy) with
much lower computational cost, making it suitable for
deployment in resource-constrained settings.

The integration of ROI extraction also proved essential, as it
allowed the models to focus on clinically relevant areas while
reducing noise from irrelevant background regions. This
preprocessing step directly improved classification outcomes
by enhancing feature clarity.

D. Key Findings

YOLOVS significantly outperformed YOLOvS in OD and
OC detection, thanks to its anchor-free architecture and
superior feature fusion capabilities. CNN achieved the highest
classification accuracy (87.13%), demonstrating its
effectiveness in handling structured feature data extracted from
fundus images. ROI extraction was a critical step, improving
model efficiency and diagnostic accuracy, especially valuable
in low-resource clinical environments. AdaBoost offered a
computationally  efficient alternative, achieving solid
performance with lower resource demands. The proposed
system successfully meets the research objective of providing
an accurate, automated, and computationally practical solution
for glaucoma screening by combining precise detection,
clinically relevant feature extraction, and effective
classification. This work underscores the impact of Al-driven
pipelines in enhancing glaucoma diagnosis, offering a scalable,
time-efficient tool that could be highly beneficial in clinical
screening settings.

V. CONCLUSION

This study contributes to construct an automated framework
for early glaucoma detection by integrating YOLOv8 for OD
and OC localization with CNN for classification. Using a
large-scale retinal fundus image dataset, the proposed system
achieved a classification accuracy of 87.13%, demonstrating its
effectiveness. A key contribution of this work is the
incorporation of clinically relevant features, such as the ISNT
rule and neuroretinal rim thinning, which enhance the
diagnostic precision beyond standard image analysis. The
framework offers a scalable, cost-effective solution suited for
clinical environments, particularly benefiting low-resource
settings where expert ophthalmologists may be scarce.
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However, limitations include the dataset’s limited demographic
diversity and the reliance on bounding box annotations, which
may not capture subtle optic nerve changes fully. Future

research

should focus on expanding dataset diversity,

integrating multimodal clinical data, using polygon-based
segment methods, and validating the system in real-world
clinical settings. Developing a real-time deployment platform
could further facilitate early glaucoma screening and help
reduce the incidence of vision loss. Overall, this study
contributes a significant step toward accessible, accurate
automated glaucoma diagnosis.
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