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Abstract—The fashion industry faces challenges in accurately

predicting demand due to inherent uncertainty, leading to
suboptimal inventory and financial losses. Machine learning (ML)
offers a robust solution by analyzing large and complex data,
identifying non-linear patterns, and providing more accurate
predictions than conventional methods that rely on limited
factors. This research aims to compare and evaluate the
performance of six different ML models—XGBoost, SVM, RF,
GBM, KNN, and NN, considering the influence of feature
engineering and various data split ratios on predicting fashion
product demand. KNN and NN were included due to distinct
modeling approaches and competitive capabilities in identifying
local and non-linear patterns across numerical, categorical, and
time series data. Techniques such as feature extraction and
selection and various data split ratios (70:30, 80:20, 90:10) were
used. Using Adidas sales data, the models were evaluated based
on Root Mean Squared Error (RMSE) and Mean Absolute Error
(MAE). The results indicate that the XGBoost-based model with
feature engineering consistently outperforms the other models
across all data split ratios. Particularly, XGBoost with feature
engineering at a data split ratio of 90:10 achieved the best
performance with an RMSE of 4.46 and an MAE of 1.51.
Analyzing model performance shows that the predictive ability of
ML models is influenced by the implementation of feature
engineering and the selection of the data split ratio. These results
demonstrate the potential of using feature-engineered XGBoost
models and optimized data ratios to mitigate the risk of stockouts
or overstocks, and reduce financial losses and environmental
waste.

Index Terms—Data splitting, demand prediction, fashion product,
feature engineering, machine learning.

______________________________________________________________
Received: 26 March 2025; Revised: 18 May 2025; Accepted: 30 May 2025.
*Corresponding author

1Reviana Siti Mardiah, Universitas Gunadarma Jakarta, Indonesia (e-mail:
revianasitimardiah@staff.gunadarma.ac.id).

2*Fitrianingsih, Universitas Gunadarma Jakarta, Indonesia (e-mail:
fitrianingsih@staff.gunadarma.ac.id).

I. INTRODUCTION
he fashion industry is a dynamic sector characterized by
short product life cycles and unpredictable demand,
primarily due to constantly changing customer preferences,

trends, and consumer behaviour. This unpredictability makes it
challenging to predict demand accurately [1], [2], leading to
potential stockouts or overstocks, which can negatively affect
the company [3]. Stockouts result in lost sales and decreased
customer satisfaction, while overstocks lead to deadstock [4],
which causes financial losses and environmental waste [3], [4],
[5]. Therefore, accurate demand prediction is crucial to
optimize inventory and minimize negative environmental
impacts [6].

Conventional demand prediction methods such as naíve,
moving average, trend, multiple linear regression, Holt-Winters,
exponential smoothing, and ARIMA have been employed in
fashion product demand prediction. However, these methods
often fail to capture market volatility and rapid trend changes
because it usually only consider one or a few simple factors
such as trends, seasonality, or cycles [7], [8]. Additionally,
conventional methods demand expertise and involve
time-consuming processes that are susceptible to human error
[9]. Furthermore, fashion data generally consists of a
combination of numerical, categorical, and time features,
necessitating a more flexible and adaptive approach [8].

To address these shortcomings, the use of AI-based
methods, particularly Machine Learning (ML), can be a robust
solution. ML can process diverse datasets and uncover hidden
patterns within the data [7], [8]. This research aims to evaluate
and compare the performance of six current machine learning
algorithms, namely XGBoost, SVM, GBM, RF, KNN, and NN
to predict the demand for fashion products. In addition, this
research also considers the influence of feature engineering as
well as data split ratio variation on the performance of the
prediction model.

Research shows that ML has been widely applied in
demand prediction and consistently outperforms conventional
prediction methods by analyzing more influencing factors. ML
can identify key underlying demand factors and uncover new
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insights by processing a large number of predictor variables and
determining which ones are most significant. ML can also
handle different types of data (numerical, categorical, nominal),
identify non-linear patterns and demand predictors, and provide
more accurate and adaptive predictions [8].

Several research studies have proposed machine learning
algorithms to address the demand prediction problem. Recent
research from [10] introduced a demand prediction model for
fashion products using diverse retail data. The results showed
that RF outperformed KNN, with an average Root Mean
Square Error (RMSE) value of 209 for RF and 457 for KNN.
This advantage is due to RF's ability to handle non-linear data,
outliers, and multiple predictors, while KNN struggles with
large, variable datasets.

In other research, [11] proposed a prediction model for cell
phone products. This research analyzed twelve recent machine
learning algorithms, namely LightGBM, XGBoost, Ridge,
Recurrent Neural Network (RNN), Lasso, CatBoost, Deep
Neural Network (DNN), SVM, RF, Gradient Boosting
Machine (GBM), AdaBoost, and LSTM, and found that the RF
algorithm has the best performance with MAPE 42.6258,
RMSE 8443.3328, and correlation coefficient 0.8629. This
shows that RF consistently produces higher prediction accuracy
than other models on complex data.

Similarly, [12] proposed a demand prediction model for
medicinal products in the pharmaceutical industry. This
research analyzed six machine learning models, namely Simple
Tree (ST), Gradient-Boosted Trees (GBT), LR, RF, Polynomial
Regression (PR), and Tree Ensemble (TE). This research shows
that RF and ST algorithms have the best performance and can
improve prediction accuracy by 10%–40% by effectively
managing varied data and highlighting important features.

Reference [13] compared five methods for predicting retail
sales at Walmart, including RF, XGBoost, gradient boosting,
AdaBoost, ANN and RF-XGBoost-LR. The combined model
outperforms the others based on data of weekly sales, achieving
MAE of 0.0024 and MSE of 4.7932e-05. However, both
standalone RF and XGBoost showed strong performance in
datasets with multiple factors.

In the energy sector, [14] proposed a demand prediction
model by analyzing three machine learning algorithms:
Medium-size Neural Networks (MNN), SVM, and Whale
Optimization Algorithms (WOA). It was found that MNN has
the best performance, proving its strength in modeling
non-linear and handling fluctuating time-series data.

Although various machine learning algorithms such as RF
and XGBoost, as well as neural networks have been often
reported to perform well in terms of prediction accuracy, most
previous research has generally been limited to specific sectors
or datasets. There is an obvious gap in applying these models to
demand prediction of complex fashion products, with
numerical features, categorical variables, and time-series data.
In particular, there is a lack of research that evaluates model
performance by considering a combination of factors during the
model development stage. These factors include the selection
of ML algorithms, the implementation of feature engineering,
and the selection of the data split ratio used. This research fills
this gap by evaluating and comparing six recent machine
learning models by considering the influence of feature

engineering and different splitting ratios of training and testing
data.

The results of this research are expected to provide
recommendations for a more accurate demand prediction
model for the fashion industry, which would support better
decision-making in the industry's supply chain management.

The paper is structured as follows: Section 2 reviews related
work, Section 3 outlines the research methods, Section 4
presents the results, discusses the findings, and provides future
research suggestions, and Section 5 concludes with the main
contributions of this research.

II. RELATEDWORK

Demand prediction plays a crucial role in optimizing
business and manufacturing processes, significantly affecting a
company's success [15]. This requires predicting future demand
based on historical data, a task that becomes complicated in
scenarios with incomplete or unpredictable information [16].
The nonstationarity and complexity of influencing factors
further challenge accurate demand prediction.

Enhancing the accuracy of demand prediction can be
effectively achieved through advanced methodologies,
especially Machine Learning (ML). Various research has
explored different ML algorithms designed to address demand
prediction in various fields. For example, [17] proposed a
Gated Recurrent Unit (GRU)-based approach that can manage
large-scale, high-dimensional datasets and discern complex
patterns better than traditional statistical methods. However,
these models are prone to overfitting, thus requiring
sophisticated regularization strategies.

Meanwhile [18] proposed four models specifically used to
predict demand in catering services, aiming to mitigate the
problem of over- and underproduction. This research includes
various ML models, such as LightGBM, Long Short-Term
Memory (LSTM), Random Forest (RF), and transformers, with
LSTM achieving the most reliable predictions, with RMSE
values between 60.9 and 173.36, reducing food wastage by
52%. However, this model lacks adaptability.

Other study [19] proposed a hybrid model that integrates
ElasticNet, Gaussian Process Regression (GPR), and K-means
clustering for demand prediction. This approach shows
excellent prediction accuracy, reflected by the mean absolute
error (MAE) of 5.57. However, its generalizability is still
limited. In a similar research, [20] combined the GRU and
Prophet to predict electricity demand, reducing the prediction
error and revealing consumption patterns. However, the model
had difficulty in dealing with data anomalies related to
holidays.

Moreover [10] proposed a demand prediction model that
utilizes RF and K-Nearest Neighbors (KNN). The results
showed that the average RMSE of RF was 209, while KNN
reached 457. Although the model successfully predicted the
sales period, the findings faced challenges related to complex
variable selection. In the fashion retail industry, [21] examined
various analysis approaches, including Extreme Learning
Machine (ELM), Support Vector Regression (SVR), and
k-Means clustering. The results showed that the KM-ELM
model was highly effective, exhibiting high accuracy even
amidst demand uncertainty, an inherent characteristic of retail



Applied Information System and Management (AISM)
Volume 8, (1) 2025, p. 141–150
P-ISSN: 2621-2536; E-ISSN: 2621-2544; DOI: 10.15408/aism.v8i1.45600
©2025. The Author(s). This is an open acces article under cc-by-sa

http://journal.uinjkt.ac.id/index.php/aism 143

dynamics. However, it ignored important variables such as
fashion trends, economic conditions, and the impact of weather.

In other research, [11] proposed a prediction model for cell
phone products. This research analyzed twelve recent machine
learning algorithms, namely LightGBM, XGBoost, Ridge,
Recurrent Neural Network (RNN), Lasso, CatBoost, Deep
Neural Network (DNN), SVM, RF, Gradient Boosting
Machine (GBM), AdaBoost, and LSTM, and found that the RF
algorithm has the best performance with MAPE 42.6258,
RMSE 8443.3328, and correlation coefficient 0.8629. Similarly,
Also [12] proposed a demand prediction model for medicinal
products with a case study in the pharmaceutical industry. This
research analyzed six machine learning models, namely Simple
Tree (ST), Gradient-Boosted Trees (GBT), LR, RF, Polynomial
Regression (PR), and Tree Ensemble (TE). This research shows
that RF and ST algorithms have the best performance and can
improve prediction accuracy by 10%-40%.

Another study [13] compared five methods for retail sales,
including RF, XGBoost, gradient boosting, AdaBoost, ANN,
and RF-XGBoost-LR. The combined model outperforms the
others based on weekly sales data from a retail company in the
US. In the energy sector, [14] proposed a demand prediction
model by analyzing three machine learning algorithms:
Medium-size Neural Networks (MNN), SVM, and Whale
Optimization Algorithms (WOA). It was found that MNN has
the best performance.

Previous research on demand prediction models utilizing
machine learning has revealed several significant shortcomings,
including issues with overfitting that necessitate more
sophisticated regularization techniques, as well as limitations in
model adaptation and generalization. Furthermore, some
research has struggled to effectively manage specific datasets
or to select complex features, often overlooking critical
variables such as fashion trends or economic conditions. These
weaknesses are exacerbated by inadequate performance
analysis and a lack of discussion surrounding data splitting
strategies, both of which are crucial for establishing model
validity. Addressing these shortcomings could enhance the
accuracy of prediction models under real-world conditions
across various industry scenarios [22].

There is considerable room for improvement, particularly in
the fashion industry, which experiences significant demand
uncertainty due to constantly changing customer preferences,
trends, and consumer behavior. While a range of algorithms has
been explored, the tendency to overlook essential aspects such
as feature engineering and data splitting frequently results in
suboptimal research outcomes when faced with realistic data
conditions.

Given these deficiencies, it becomes clear that there is an
urgent need for more comprehensive research that analyzes the
influence of feature engineering and data splitting strategies on
the performance of various machine learning algorithms.

Based on this urgency, this research not only explores
various algorithms but also examines how feature engineering
and data splitting strategies can significantly influence the
results. By exploring these factors, it is anticipated that this

research will yield deeper and more applicable insights into
predictive models tailored for the fashion industry, thereby
improving their effectiveness and reliability in practical
applications.

III. RESEARCHMETHOD

This research utilized a quantitative methodology using
supervised machine learning for regression to predict the
demand for Adidas products. This approach was chosen
because this research focuses on analyzing numerical sales data
from the Adidas Sales Dataset [23], which consists of
numerical feature (retailer ID, price per unit, units sold, total
sales, operating profit, operating margin), categorical feature
(retailer, region, state, city, product, sales method, day
classification, season, school vacation), and time feature
(invoice date).

Fig. 1. The model development stage.

The model development stage involves several steps,
starting with data collection of historical sales and explanatory
variables. Followed by preprocessing to prepare the dataset for
ML analysis. Further, feature engineering was performed to
improve the interpretability of the model by constructing
features that are easier to understand [24]. The dataset was then
split into training and testing sets. Furthermore, the modeling
process was carried out with hyperparameter optimization to
improve the performance of the model, thus ensuring the
development of a reliable prediction model. Then the model
was evaluated using RMSE and MAE values. The most
effective model can then be used for prediction and
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decision-making. Fig. 1 illustrates the sequential stages of the
research methodology used in this research.

A. Data Collection
This research analyzed Adidas product sales data from

Kaggle, consisting of 9,648 rows across six categories: men's
and women's apparel, street shoes, and athletic shoes. The
dataset covers sales from 2020 to 2021 and includes variables
such as city, invoice date, operating margin, price per unit,
product, retailer, region, units sold, total sales, sales method,
and school holidays. Table 1 explains each variable in this
research.

Table 1.
Variable Description

Variable Description Data Type
Retailer Name of the retailer that

sells the product
Categorical

Retailer ID Retail identification
number

Numerical

Invoice date Date of transaction Date
Region The retail geographical area

is located
Categorical

State Retail states located Categorical
City Retail city located Categorical
Price per unit Price per product unit Numerical
Product Product category Categorical
Units sold Number of products sold in

one transaction
Numerical

Total sales Total sales in one
transaction

Numerical

Operating profit Profit to be gained Numerical
Operating margin Percentage of revenue Numerical
Sales method Selling method Categorical
Day classification Day of the week

classification
Categorical

Season Season of the year Categorical
School vacation Indicators of whether or not

the school is on vacation
Categorical

B. Preprocessing Data
The preprocessing in this research involves handling

missing values, outlier detection, encoding categorical features,
and normalization. Since the dataset had no missing values, no
replacement of missing values was necessary. Outliers were
addressed using the nearest neighbor approach, which can
provide valuable insights [25]. This research used one-hot
encoding to convert categorical variables into binary vectors
for analysis [26]. Lastly, the Interquartile Range (IQR) method
was used for data normalization to ensure uniform feature
scaling [27].

C. Features Engineering
This research applied two conditions: one with feature

engineering and one without. This approach was taken to
validate the findings from the research of Swaminathan and
Venkitasubramony [2], which emphasizes that feature
engineering is essential for predictive modeling in the fashion
industry to achieve more accurate and reliable predictions.
Additionally, it aimed to explore the influence of various
variables and feature engineering on algorithm performance.
This research would only involve feature extraction and
selection, as shown in Fig. 2. Feature extraction was performed

on the date attribute, which was further divided into six
sub-features: date, day of week, day of year, month, week of
year, and year.

Fig. 2. Feature engineering stage.

D. Split Data
When developing a ML model, data is divided into training

and testing sets. The model was trained with training data and
tested with testing data to evaluate its performance in achieving
the research objectives. To determine the optimal data division
ratio, this research used three commonly adopted ratios, which
were 70:30, 80:20, and 90:10, for training and testing data [28],
[29].

E. Modeling with GridSearchCV
The modeling stage in this research was conducted for six

machine learning algorithms: XGBoost, SVM, GBM, RF,
KNN, and neural network, along with the implementation of
hyperparameter tuning using GridSearchCV. GridSearchCV is
a popular hyperparameter tuning method for machine learning
[30], [31], [32]. Hyperparameters are key parameters that
control model performance and can be tuned to optimize the
results. GridSearchCV helps determine the best
hyperparameter combination by implementing cross-validation
and returning the combination with the best performance on the
data [9]. Through the implementation of GridSearchCV, this
research successfully identified configurations that
significantly enhance the prediction accuracy of the model.

F. Model Evaluation
After training the model, the error rate was evaluated using

RMSE and MAE. This was performed to measure each model's
predictive accuracy, thus allowing an objective comparison of
model performance. A lower RMSE indicates a more accurate
prediction, while a lower MAE indicates a better match
between demand results and actual data [33]. RMSE and MAE
were determined using equations (1) and (2), where the number
of data points (m), predicted value (xi), and actual value (yi).

���� = 1
� �=1

� �� − ��
2� (1)

��� = 1
� �=1

� |�� − ��|� (2)

IV. RESULT
This section presents a model performance comparison, an

overall discussion, and suggestions for future research.

A. Comparison of the Performance of Machine Learning
Models
To identify the best-performing fashion product demand

prediction model, this research conducted a comparative study
involving various machine learning algorithms (XGBoost,
SVM, GBM, RF, KNN, NN). In addition, to evaluate the
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influence of feature engineering on model performance, two
research scenarios were examined: with and without feature
engineering. Furthermore, the influence of data splitting was
also evaluated by experimenting with various ratios of training
and testing data. The approach was applied to a sales dataset
from six US retailers from 2020 to 2021.

Performance evaluation was performed using two key
metrics, namely RMSE and MAE, as detailed in (1) and (2). To
demonstrate its applicability, Table 2 presents an overview of
data from a scenario without feature engineering using
XGBoost, along with a 70:30 data split.

Table 2.
The First Three Actual and Predicted Data
No. Unit Sold (Actual ) Predicted
1 75 77.83
2 200 200.06
… … …
2894 56 57.42

According to the data presented in Table 2, the RMSE
(equation 1) and MAE (equation 2) can be calculated using the
Unit sold as variable x and the predicted as variable y, as
follows:

���� =
75 − 77.83 2 + 200 − 200.06 2 + … + 56 − 57.42 2

2894
= 10.56

��� =
75 − 77.83 + 200 − 200.06 + . . + 56 − 57.42

2894
= 4.15

The calculation outlines the manual descent of the two
matrices for the scenario without feature engineering, with a
70:30 data split using XGBoost. The manual and computational
results exhibit similarities that align with the values presented
in the first row of Table 3. In addition, Table 3 also presents the
computational results for the scenario without feature
engineering with variations in data split and other machine
learning models, while Table 4 contains the results after the
application of feature engineering. Furthermore, Fig. 3 offers a
graphical representation comparing the results in the two
conditions that enables a comprehensive understanding of the
predictive ability of each model under various training and
testing ratios.

Table 3 shows that in the scenario without feature
engineering and using a 70:30 data split, the XGBoost model
outperforms the other models with an RMSE of 10.56 and
MAE of 4.15  9.71. In contrast, the Support Vector Machine
(SVM) performs poorly, with high RMSE and MAE values of
88.22 and 72.5 ± 50.25, respectively. Similar to XGBoost,
gradient boosting also performs well, with an RMSE of 11.18
and MAE of 4.76  10.12. In contrast, RF performs very poorly,
with an RMSE of 150.42 and an MAE of 123.04  86.53.
K-nearest Neighbors (KNN) and neural networks have
moderately good performance, with RMSE of 79.88 and 73.53,
along with MAE of 62.04  50.32 and 59.28  43.51.

Table 3.
Performance Results Without Feature Engineering

Data Splitting Model RMSE MAE

70:30

XGBoost 10.56 4.15  9.71
SVM 88.22 72.5  50.25
GBM 11.18 4.76  10.12
RF 150.42 123.04  86.53
KNN 79.88 62.04  50.32
NN 73.53 59.28  43.51

80:20

XGBoost 8.8 2.74  8.37
SVM 70.78 56.14  43.1
GBM 10.23 3.49  9.62
RF 143.1 118.74  79.87
KNN 63.68 49.62  39.91
NN 41.34 33.75  23.88

90:10

XGBoost 5.65 2.28  5.17
SVM 64.57 50.01  40.85
GBM 5.61 2.85  4.83
RF 142.69 113.51  86.47
KNN 58.96 44.82  38.31
NN 38.86 31.02  23.41

In the 80:20 data split scenario, XGBoost continues to
outperform, recording an RMSE of 8.8 and an MAE of 2.74 
8.37. SVM and RF still show the worst performance, with
RMSE values of 70.78 and 143.1, and MAE values of 56.14 
43.1 and 118.74  79.87. Gradient boosting remains
competitive, with an RMSE value of 10.23 and an MAE value
of 3.49  9.62. KNN and neural networks also perform
moderately well, with an RMSE of 63.68 and 41.34, along with
an MAE of 49.62  39.91 and 33.75  23.88.

In the 90:10 data split scenario, XGBoost once again shows
the best performance, with an RMSE value of 5.65 and MAE
2.28  5.17. In contrast, SVM and RF continue to show the
worst performance, with RMSE values of 64.57 and 142.69,
and MAE values of 50.01  40.85 and 113.51  86.47. Gradient
boosting and neural networks show significant improvement,
with RMSE values of 5.61 and 38.86, and MAE values of 2.85
 4.83 and 31.02  23.41. KNN records an RMSE of 58.96 and
an MAE of 44.82  38.31.

In Table 4, the results show that with feature engineering
and a data split of 70:30, XGBoost markedly outperforms the
other models, with an RMSE of 8.86 and an MAE of 2.87 
8.38. SVM shows improved performance, resulting in an
RMSE of 78.02 and MAE of 59.6  50.34. However, it still
performs poorly compared to other models. Both gradient
boosting and RF show significant improvement, achieving
RMSE values of 10.06 and 39.72, along with MAE values of
3.41  9.47 and 29.7  26.37. KNN and neural networks also
show improvement, with RMSE values of 47.83 and 46.54,
along with MAE values of 34.87  32.75 and 34.97  30.71.

In the 80:20 data split scenario, XGBoost continues its
excellent performance, with a significant decrease in RMSE to
7.51 and MAE to 1.65  7.33. SVM improves but lags with an
RMSE of 66.4 and an MAE of 53.63  39.16. Gradient boosting
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and RF show more improvement, with RMSE values of 9.5 and
32.08, along with MAE values of 2.47  9.18 and 25.09  19.99.
KNN also shows an improvement with an RMSE of 34.36 and
an MAE of 24.03  24.55, while the neural network shows a
decrease in performance with an RMSE of 51.97 and an MSE
value of 39.51  33.76.

Table 4.
Performance Results With Feature Engineering

Data Splitting Model RMSE MAE

70:30

XGBoost 8.86 2.87  8.38
SVM 78.02 59.6  50.34
GBM 10.06 3.41  9.47
RF 39.72 29.7  26.37
KNN 47.83 34.87  32.75
NN 46.54 34.97  30.71

80:20

XGBoost 7.51 1.65  7.33
SVM 66.4 53.63  39.16
GBM 9.5 2.47  9.18
RF 32.08 25.09  19.99
KNN 34.36 24.03  24.55
NN 51.97 39.51  33.76

90:10

XGBoost 4.46 1.51  4.2
SVM 61.61 49.13  37.17
GBM 3.75 1.99  3.18
RF 28.93 23.16  17.33
KNN 28.36 20.4  19.7
NN 41.16 30.25  27.91

In the 90:10 data split, XGBoost and gradient boosting
excelled with an RMSE of 4.46 and 3.75, along with an MAE
of 1.51  4,2 and 1.99  3.18. SVM remains the most
underperforming model with an RMSE of 61.61 and MAE of
49.13  37.17. RF has an RMSE of 28.93 and an MAE of 23.16
 17.33. KNN and neural networks show RMSE of 28.36 and
41.16, with MAE of 20.4  19.7 and 30.25  27.91.

Overall, the XGBoost model consistently outperforms the
other models in all scenarios, especially with
feature-engineering scenarios. This implies that non-linear
relationships and interactions between features play an
important role in fashion product prediction [34], which
XGBoost can effectively capture. On the other hand, SVM has
a higher error rate, which indicates that the SVM model cannot
capture demand patterns well or is less suitable for this type of
time series prediction. GBM performs equally well with
XGBoost, as both ensemble methods use decision trees [35].
However, XGBoost has a slight advantage over GBM, as it has
more sophisticated regularisation techniques that prevent
overfitting [36], [37].

On the other hand, RF shows high variability and generally
higher errors, which can be caused by overfitting or not having
the right ensemble size [38]. Meanwhile, KNN does not
perform as well as tree-based models, which suggests that
nearness-based methods are less able to capture patterns in
demand forecasting effectively, and NN also shows moderate
performance. However, the results could potentially be
improved with a more complex architecture, more data, or
further hyperparameter tuning.

Fig. 3. Comparison of RMSE and MAE for six ML models.

The results also highlight that increasing the training data
size can enhance most of the model's performance, as more data
can help the model to learn better. This suggests that there is an
influence of the data split ratio on model performance. Feature
engineering, which involves feature extraction and selection,
also significantly enhanced performance across all models.
This suggests that feature engineering is influential and plays a
crucial role in developing prediction models, especially in the
context of fashion production demand prediction, where
seasonality, trends, and other factors can affect demand [39].

This result indicates that engineered features in
feature-engineered datasets are more predictive for fashion
product demand prediction compared to non-engineered
features. As a result, the research found that XGBoost with
feature engineering is the most suitable choice for fashion
product demand prediction, followed by GBM. Moreover, the
analysis shows that the strategy to split the dataset and the
implementation of feature engineering are important factors
that influence the performance of the model. Therefore,
practitioners must consider these strategies during the
prediction modeling process to achieve optimal results.

B. Discussion
This section presents a detailed discussion of several

aspects that influence the model's performance in predicting
fashion product demand, ranging from the characteristics of the
data explored through Exploratory Data Analysis (EDA), the
influence of preprocessing and feature engineering techniques,
the role of data split ratios, and the insights gained from the
modeling results.

EDA was conducted to understand the data distribution
patterns and relationships between variables. The pairplot of
numerical features in Fig. 4 shows a strong non-linear
relationship between units sold, total sales, and operating profit,
highlighted in navy. This result is reinforced by the correlation
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heatmap in Fig. 5, which shows high correlation coefficients
between these features (highlighted in black), suggesting that
the modeling process needs to be aware of potential data
leakage, especially when total sales is used as a predictor of
units sold.

Fig. 4. Pairplot of numeric variables.

Fig. 5. Heatmap.

The histogram presented in Fig. 6 shows that the numerical
features exhibit a right-skewed distribution, and outliers are
present in almost all features, with total sales and operating
profit being the most affected.

At the same time, the barplot illustrating the categorical
features in Figure 7 shows the dominance of certain categories,
such as Foot Locker among retailers and Portland among cities,
which may cause model bias if not addressed with proper
preprocessing.

Upon entering the preprocessing stage, it was discovered
that there were no missing values, thus no replacement of
missing values was necessary.

Fig. 6. Histogram of numeric features.

Fig. 7. Barplot of categorical features.

The boxplot of numerical features in Fig. 8 confirms the
existence of outliers in nearly all features. However, all data
was still used because outliers can provide valuable
information, and distance-based detection methods are
commonly used to handle them. As a result, normalization was
applied to the numerical features to lessen the impact of outliers,
except the targeted sold units, to ensure the model remains
stable and accurate.

Fig. 8. Boxplots of numerical features show outliers in almost all features.

Feature selection produced a list of key features presented
in Fig. 9, highlighting total sales, operating profit, and price per
unit as the most significant, along with categories such as
City_New York and Product_Men's Street Footwear. The
prominence of these features suggests that the prediction model
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will rely heavily on transaction data associated with substantial
sales in a particular category.

Fig. 9. The top ten features identified as important.

This analysis demonstrated the significance of feature
selection and validation when creating an effective demand
prediction model. Using features that are systematically
connected to the target (units sold), such as total sales, should
be avoided. Therefore, this feature was excluded as an input to
ensure predictions rely solely on other variables, preventing
data leakage.

Based on the research results presented in Table 4, two
models demonstrate the best performance, namely the
XGBoost and gradient boosting-based models. Both models
show high prediction accuracy, with the main difference in the
MAE and RMSE values. XGBoost has a lower MAE of 1.51
compared to gradient boosting's MAE of 1.99. In contrast,
gradient boosting has a lower RMSE of 3.75 compared to
XGBoost's RMSE of 4.46.

According to research by [40], MAE is easier to interpret
because it directly measures the average error in the same units
as the original data and in many cases. MAE is considered more
reliable because it does not over-penalize large errors like
RMSE. Thus, although the RMSE of XGBoost is higher, this is
not necessarily an indicator of model weakness. The RMSE is
more sensitive to outliers and can magnify the influence of
some extreme errors, which may not be very relevant in certain
contexts [41]. Therefore, MAE can be considered a more
representative metric in assessing overall model performance,
leading to the conclusion that the XGBoost-based model is
more advantageous.

Furthermore, the results of this research demonstrate that
XGBoost, when combined with feature engineering, has the
potential to enhance the accuracy of fashion product demand
prediction significantly. This enhancement is attributed to
XGBoost's ability to handle complex data and mitigate
overfitting through its built-in regularisation, such as L1 (Lasso)
and L2 (Ridge) regularization, which helps the model adapt to
large and dynamic datasets [36], [37], [42]. Given its
effectiveness in demand prediction, particularly within the
retail sector, integrating this model into enterprise analytics
tools could lead to more precise demand predictions and
improved inventory management. However, these results are
not in line with previous research by [11], which indicated that
RF was more advantageous than XGBoost. This difference may
stem from product type, data, or methodology differences.

In this research, the XGBoost model used parameters such
as n_estimators, max_depth, and learning_rate, which were

adopted from the research of [43]. The range of parameters
considered in this research can be seen in Table 5, and the result
of hyperparameter optimization used GridSearchCV obtained
the optimal combination of n_estimators set to 250,
learning_rate at 0.1, and max_depth of 6 and 8.

Table 5.
Selected Parameters and The Values [43]

Hyperparameter Value Range
Learning_rate 0,1-1
n_estimator 100-250
max_depth 1- 14

In addition, this research also highlights the importance of
feature engineering in enhancing the performance of prediction
models. Proper feature extraction and selection processes are
crucial for allowing the model to capture more relevant patterns
in the data, thereby improving prediction accuracy. This aligns
with the research of Swaminathan and Venkitasubramony [2],
which states that feature engineering is essential for fashion
industry prediction models to produce more accurate and
reliable predictions. Therefore, it is recommended that fashion
retailers conduct a comprehensive analysis of the importance of
features to identify and integrate the most predictive variables
into their demand prediction models.

Differences in data-split ratios also influence the
performance of the algorithms. For example, in some
algorithms, the performance improvement was more
pronounced at a 90:10 split ratio with feature engineering.
XGBoost also showed greater robustness to changes in the
data-split ratio and the utilization of feature engineering.

In general, this research confirms that XGBoost can be a
robust model for the demand prediction of fashion products if
supported with proper feature engineering and a data split ratio.
While gradient boosting shows an advantage in reducing the
impact of extreme errors, XGBoost is more flexible in handling
complex data sets, making it an excellent choice for
applications in the retail and inventory management sectors.
This research illustrates the significant influence that feature
engineering and data splitting have on model performance.

C. Future Research Area
This research comprehensively evaluates the effectiveness

of tree-based machine learning (XGBoost, GBM, RF) and
non-tree-based (SVM, KNN, and NN) across various
dimensions. This includes not only investigating the influence
of different data split ratios (70:30, 80:20, 90:10), but also the
influence of feature engineering. By evaluating the model
across various data splitting scenarios, this research seeks to
determine model stability in response to changes in data
proportions and ensure that the evaluation results are not biased
towards any particular configuration. This approach is crucial
to confirming that the model works effectively, not only under
specific conditions but also maintains consistency across
various data distributions.

Future research will delve into advanced feature
engineering techniques, additional data variables, and more
data split ratios to further optimize model performance. The
effectiveness of the XGBoost algorithm in demand prediction
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presents further research opportunities to integrate it into other
advanced technologies. For this reason, future research also
plans to incorporate the demand prediction model with
cloud-based IoT technology and Linear Programming
optimization methods. IoT will be integrated for real-time
inventory data collection, then feed data into the system that
sends it to a database via the internet. Separately, historical
sales and explanatory variable data will enter the demand
prediction model. Finally, the data from the database and the
prediction results will be integrated into the inventory
optimization model to be analyzed to obtain the best decision
regarding inventory purchases [6].

V. CONCLUSION
The findings of this research indicate that the XGBoost

model demonstrates the best prediction performance for
fashion product sales data from Adidas across all conditions
and data split ratios. This model outperforms other models,
namely KNN, GBM, RF, SVM, and NN. The optimal results
were achieved under a scenario that employed feature
engineering and a data split of 90:10. This scenario yielded an
RMSE of 4.46 and MAE of 1.51, compared to the next best
model (GBM), which had an RMSE of 3.75 and MAE of 1.99.
This shows that XGBoost can produce more accurate and
consistent predictions for this dataset.

This research also highlights the significant influence of
feature engineering and data split ratio on model performance.
The superior performance in the 90:10 scenario shows that a
larger proportion of training data contributes to the model's
improved capability in learning data patterns. Despite
variations between tests, the average performance of the model
remains consistent.

This research emphasizes the potential to integrate
XGBoost into enterprise analytics for improved demand
prediction, thereby improving inventory planning, stock
reordering, and promotion scheduling based on demand
patterns related to time, location, and sales channels. Therefore,
this demand model can serve as a decision-making tool within
the fashion industry.

While the application of the XGBoost algorithm has shown
strong predictive capabilities, this research acknowledges
limitations concerning the exploration of feature engineering
techniques and the relatively conventional approach to data
splitting. Consequently, future research is encouraged to
explore more advanced feature engineering techniques and
examine data split strategies. Additionally, future studies
should consider the integration of multiple models to further
refine prediction accuracy. This research also recommends the
incorporation of the XGBoost algorithm with cloud-based IoT
technology and optimization methods to streamline inventory
management, effectively balancing demand with stock levels
and mitigating the risks associated with excess or insufficient
inventory, which can lead to revenue losses, competitive

disadvantages, and adverse environmental effects.
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