
Applied Information System and Management (AISM)
Volume 7, (1) 2024, p. 29-36
P-ISSN: 2621-2536; E-ISSN: 2621-2544; DOI: 10.15408/aism.v7i1.34871
©2024. The Author(s). This is an open acces article under cc-by-sa

http://journal.uinjkt.ac.id/index.php/aism 29


Abstract—Moodle is a widely used Learning Management

System in various educational institutions worldwide. However,
frequent reports on internet forums indicate performance
degradation when massive simultaneous users access Moodle. One
of the most resource-intensive components supporting Moodle is
the database, as all user-accessed data is stored in it. This study
aims to optimize Moodle’s performance through distributed
databases. Distributing the database into multiple database
servers allows the database load to be distributed across all the
database servers, resulting in an overall improvement in Moodle
performance. This study compares the performance of Moodle
installed on a single server with that installed on multiple
database servers. Various testing parameters are employed to get
valid results. Namely, course read, course write, and database
performance, utilizing the server performance plugin available in
Moodle. This research reveals a performance improvement of
384% in course read, 193% in course write, and 260% in the
Moodle database in the multi-server scenario compared to the
single-server scenario. This result validates that the database is
the most crucial part of Moodle.

Index Terms— Distributed databases, HAProxy, MariaDB galera
cluster, moodle, optimization, performance.

I. INTRODUCTION
ith the shift toward online learning in response to the
COVID-19 epidemic, the Learning Management System
(LMS) has experienced substantial growth in use over

the past few years [1], [2]. A LMS is a sophisticated software
application meticulously designed to streamline and enhance
the distribution, administration, and monitoring of educational
resources and information. This comprehensive tool empowers
educators by allowing them to create and efficiently manage
online courses, engage in interactive sessions with their

______________________________________________________________
Received: 19 September 2023; Revised: 2 November 2023; Accepted: 27
November 2023
*Corresponding author

1J. E. W. Prakasa, Teknik Informatika Department, UIN Maulana Malik
Ibrahim Malang Indonesia (e-mail: johan@uin-malang.ac.id).

2A. Hanani, Teknik Informatika Department, UIN Maulana Malik Ibrahim
Malang Indonesia (e-mail: ajib@uin-malang.ac.id).

3F. R. Hariri, Teknik Informatika Department, UIN Maulana Malik Ibrahim
Malang Indonesia (e-mail: fajar@ti.uin-malang.ac.id).

4S. N. Utama, Teknik Informatika Department, UIN MaulanaMalik Ibrahim
Malang Indonesia (e-mail: shoffin@uin-malang.ac.id).

students, and closely monitor the progress and performance of
each student, all from the convenience of a centralized location.
The LMS acts as a dynamic hub that combines various
educational elements, including course materials, assessments,
and communication tools, offering a holistic platform for
educators to deliver impactful learning experiences.

The significance of LMS became even more apparent
during the unprecedented challenges posed by the COVID-19
pandemic. LMS emerged as a pivotal technology that played a
critical role in ensuring the uninterrupted continuity of learning.
Its adaptive features allowed educational institutions to
transition from traditional in-person teaching to effective online
delivery swiftly. In this context, the LMS served as a
technological solution and became a cornerstone in fostering
remote learning environments, enabling educators and students
to navigate the complexities of virtual education seamlessly.

The LMS landscape presents various platforms, each
characterized by different licensing models, from free and open
source to free-to-use and freemium structures, where advanced
features entail payment. Learning Management Systems with
free and open-source licenses necessitate users to provide their
server infrastructure and computer networks, commonly called
on-premise infrastructure. Installation and configuration are
undertaken independently, although there is support from the
LMS user community. Under this concept, user institutions
take full responsibility for the whole operational aspects of the
LMS, from IT infrastructures to LMS management. This
approach grants institutions greater autonomy and control over
the LMS, allowing them to tailor the system to their needs.
However, it also requires technical expertise and resources to
effectively manage and maintain the on-premise infrastructure.
Moodle, Canvas, and OpenEDX are LMS platforms operating
under open-source licenses, affording users the freedom to
utilize them without cost and adapt them further to suit the
specific requirements of their institutions.

Users who cannot provide the necessary supporting
infrastructure for a learning management system (LMS), such
as servers and adequate computer networks, can make use of
one of the many free learning management system (LMS)
providers, such as Google Classroom, Edmodo, or Schoology
[3]. These LMS systems run under a free license, enabling users
to access them without being charged a fee; however, users are
often prevented from modifying the main LMS functionality.
Users can leverage the LMS features without being required to

Improving Moodle Performance Using HAProxy
and MariaDB Galera Cluster

Johan Ericka Wahyu Prakasa1*, Ajib Hanani2, Fajar Rohman Hariri3, Shoffin Nahwa Utama4

W

mailto:johan@uin-malang.ac.id
mailto:ajib@uin-malang.ac.id
mailto:fajar@ti.uin-malang.ac.id
mailto:shoffin@uin-malang.ac.id


Improving Moodle Performance… J. E. W. Prakasa, A. Hannai, F. R. Hariri, S. N. Utama

http://journal.uinjkt.ac.id/index.php/aism 30

handle the underlying technical infrastructure when the service
model known as Software as a Service (SaaS) is utilized.

For more advanced users, there are several LMS platforms
with freemium licenses. LMS platforms with this license type
offer basic LMS functionalities for free, albeit with certain
limitations, and provide specific features under a paid model.
By utilizing this licensing model, users are relieved of the need
to manage LMS-supporting infrastructure and employ expert
staff for LMS configuration. Users can immediately leverage
the free basic LMS features and make payments only when they
require advanced features. In contrast, Blackboard and
Classe365 are LMS platforms that operate under a freemium
license. The variety of LMS licenses provides educators with
numerous options to optimize their teaching processes without
requiring intricate technical skills to manage the LMS.

Moodle is one of the LMS platforms utilized by educational
institutions worldwide [4]. This is because it is licensed under a
free and open-source model, enabling further development.
Moodle also has a robust community assistance system, making
it more straightforward for new users to learn their way around
the platform. Moodle is one of the most adaptable LMS
platforms because it has many community-created plugins.
These plugins make Moodle one of the few LMSs that can
accommodate nearly unlimited development options. Moodle
provides tools for tracking student progress, providing
feedback, and integrating multimedia resources such as videos,
audio, and interactive content [5].

According to findings from the earlier study, the database’s
performance considerably impacts Moodle’s overall
performance [6]. The Moodle database is where the settings for
the system, as well as the user information and course materials,
are stored. Consequently, the Moodle platform’s performance
and speed might be substantially hindered by any lags in the
database or other problems that arise with it. The performance
of the database is susceptible to being influenced by some
factors, such as the size and complexity of the Moodle site, the
number of users who access the site, and the amount and
complexity of the queries made on the database. When Moodle
is visited simultaneously by many users, it will send many data
queries to the database. The processing capability of the
database server determines where these queries will be placed
in the queue to be processed. The amount of time needed to
complete each query differs based on the data the user is
looking for. When a query takes a considerable amount of time
to execute, the total time the other inquiries in the queue must
wait increases. If the amount of time spent in the queue exceeds
the maximum amount of time the server is allowed to execute
queries, the query will be terminated. If there are numerous
aborted queries, it will lead to a situation where no data is
presented on the user’s screen (the white screen of death),
substantially decreasing the quality of the user experience
provided by Moodle.

In the Moodle online forums, people frequently complain
that the performance of Moodle suffers when it is
simultaneously accessible by many users. The performance of
the database is essential to overall Moodle performance since
Moodle stores activity generated by users within the database.
When database optimization is accomplished but the
performance issue continues, upgrading the Moodle server is

the only method to overcome performance degradation and
restore optimal functionality. There are two different models
for scaling or upgrading a server: horizontal and vertical
scaling.

The process of increasing the capacity of a server by adding
more resources to the server is known as vertical scaling.
Vertical scaling, often called “scaling up,” involves increasing
the power of a single server. This can include adding more
processing power, memory, or storage to accommodate
growing demands. While vertical scaling is a straightforward
approach, it has limitations. There’s only so much you can
upgrade a single server before encountering hardware
restrictions.

Additionally, if the server fails, it can result in significant
downtime, making it a less resilient option. On the other hand,
horizontal scaling, or “scaling out,” distributes the load across
multiple servers [7]. When compared to vertical scaling,
horizontal scaling offers a more significant number of
advantages, some of which include load balance and failover
protection. In addition, automatic server cloning and load
balancing configuration are available by default with cloud
computing services.

Load balancing is a critical aspect of horizontal scaling. It
involves the efficient distribution of incoming network traffic
or workload across multiple servers. This prevents any server
from becoming overwhelmed and ensures that resources are
utilized optimally. Various algorithms, such as Round Robin,
Least Connection, or IP Hash, are used in load balancing to
determine how to distribute incoming requests. Failover
protection is another significant advantage of horizontal scaling.
In a multi-server environment, the others can still handle the
load if one server fails. This enhances the system’s overall
reliability and minimizes downtime.

By utilizing these characteristics, the server can
automatically clone itself and configure load balance to
distribute traffic when required. Moodle’s learning
management system (LMS) can retain its performance even
when subjected to tremendous demand because of its automatic
scaling features [8].

In addition to enhancing server performance, horizontal
scaling ensures high server availability, meaning an application
will continue functioning on other servers if one server goes
down [9]. Utilizing a load balancer server is a must to distribute
query requests across multiple database servers. A load
balancer server distributes the workload evenly among multiple
servers. Numerous server load-balancing software solutions are
widely utilized, including NginX, HAProxy, and Zevenet [10],
[11]. Various dynamic techniques are available for distributing
server loads to distribute the workload effectively. These
techniques are Round Robin, Least Connection, IP Hash,
Generic Hash, Least Time, and random methods. The
round-robin algorithm is designed to evenly distribute the
server workload among all cluster members evenly, ensuring an
equal share of the workload for each server. However, this
algorithm may be less than optimal when the servers have
varying specifications, as it can lead to some servers becoming
overloaded due to the cyclic load distribution. In the
Least-connection Algorithm, server selection is determined by
the server with the fewest active connections [12]. The



Applied Information System and Management (AISM)
Volume 7, (1) 2024, p. 29-36
P-ISSN: 2621-2536; E-ISSN: 2621-2544; DOI: 10.15408/aism.v7i1.34871
©2024. The Author(s). This is an open acces article under cc-by-sa

http://journal.uinjkt.ac.id/index.php/aism 31

rationale behind this approach is to maintain optimal server
performance for serving new users. However, this algorithm is
limited, as it solely considers the number of user connections to
the server and does not consider the server’s workload. It is
conceivable that even with a small number of users, a server
may be engaged in resource-intensive tasks, such as
simultaneously generating randomized quizzes, which can
impact its performance.

The Moodle database maintains all of the data, such as
course materials, data on assignments along with grades, data
on exams along with grades, and so on. As a result, the database
that is included with Moodle is a crucial component. Every
action that Moodle users take is connected in some way to the
database since that is where all of the data is stored. This is true
whether they are retrieving data from the database or adding
data to it. These user operations are executed using a language
specific to databases and known as a query. When compared to
information systems that are not LMSs, Moodle’s queries are
more complex since they require data from many different
tables. As a result, they take a more extended amount of time to
process [13].

In practical applications, using Moodle to facilitate the
learning process often leads to numerous users accessing the
system concurrently. This influx of users generates a queue of
queries awaiting processing in the database. The processing
time duration depends on the complexity of the data requested
by users; more complex queries will need extended processing
periods. As the queue of processes is unstoppable, there’s a
critical need to prevent system overload. The database server
has an automatic termination mechanism to address system
overload, designed explicitly for queries characterized by
extended processing durations or prolonged wait times in the
queue.

When seen from the perspective of the end-user, this
operating method has a significant impact on the experience
they have. The user interface might not work as well as it
should, the responsiveness of the Moodle system might
deteriorate, and there might be more errors in the system. For
instance, when an instructor requests information about student
grades or a student submits an assignment, Moodle executes
queries to retrieve or modify the corresponding data in the
database. However, when the queries involve multiple tables, it
can lead to delays during periods of high user engagement.
Because of the large number of concurrent user requests, the
system might have trouble executing queries in a timely manner,
which could delay the process of either retrieving or storing
data. This delay in responding can significantly damage the
overall user experience, causing dissatisfaction and preventing
smooth learning.

Enhancing the performance of Moodle goes beyond
optimizing the web server, particularly considering the critical
role of the database, which stands as one of the most frequently
accessed components. Recognizing this, some databases come
equipped with advanced features like replication or
multi-server capabilities to address the demands of

high-concurrency environments. The MySQL database, for
instance, provides a robust replication feature. This
functionality allows for installing the MySQL database across
multiple servers, offering various configuration options such as
master-master or master-slave setups. In a master-master
configuration, each server can function as both a master and a
slave, facilitating bidirectional data replication. On the other
hand, the master-slave configuration designates one server as
the master, handling write operations, while others act as slaves,
replicating data from the master. These configurations
contribute to improved performance by distributing the
database workload, ensuring redundancy, and enhancing fault
tolerance [14].

Galera Cluster is a feature of MariaDB that allows users to
establish a distributed database across multiple machines. Data
will be synced between database servers using the Galera
Cluster function in MariaDB, similar to MySQL’s
master-master feature. By utilizing this method, a highly
available server environment will be produced. This indicates
that the given services will be accessible at all times, even if
there are issues with the server [15]. The previous database
technology used Master-slave database techniques to handle
large database transactions. This technique makes database
replication to multiple servers where the slave database will get
updates from the master database but not vice versa [16]. The
program is set to read data from the slave database while
writing/updating data to the master database to reduce database
load. However, Galera Cluster can make database replication
with master-master status. With this technique, data can be
written to any database server; then the database server will
synchronize. Thus, a high-availability environment will be
created where, when a database server experiences problems,
the system will continue running using another server [17].

II. RELATEDWORK

While research on utilizing Moodle as a Learning
Management System is standard, relatively limited research is
available on optimizing Moodle’s performance when accessed
by many concurrent users.

Efforts to reduce the load on Moodle when accessed by
many concurrent users have previously been made through
rule-based approaches [18]. This study proposes implementing
several rules to mitigate the workload on Moodle. These rules
include introducing time intervals between the start of lectures
for different faculties, avoiding the simultaneous use of
examination features by numerous users, and implementing
other regulations to prevent concurrent access to Moodle
during the same time. Furthermore, this research recommends
several strategies to alleviate the burden on Moodle, such as
implementing flexible exam scheduling to allow students to
take exams asynchronously, pre-generating randomized
questions to reduce Moodle’s need for real-time question
randomization, transitioning to asynchronous learning modes,
and conducting classroom management activities like class
backups, enrollment of students, and various management tasks



Improving Moodle Performance… J. E. W. Prakasa, A. Hannai, F. R. Hariri, S. N. Utama

http://journal.uinjkt.ac.id/index.php/aism 32

during semester breaks when there is no Moodle-based learning
activity. The implementation of these recommendations has
resulted in a reduction in the Moodle workload of up to 20%.
Removing the old Moodle system after upgrading to a newer
version has led to approximately 10% to 15% storage space
savings. It is also essential to monitor the plugins used in the
learning process, allowing for the removal of unused plugins.

The load distribution technique among multiple servers to
enhance Moodle performance has been previously
implemented [19]. In this research, Moodle utilizes three
separate servers: the web server, the application server, and the
database server. Performance measurement is conducted by
comparing the server performance across various scenarios.
The scenarios used include (1s, 1s, 1s), (1s, 1s, 2s), (1s, 1s, 1h),
and (2s, 2s, 2s). Each parameter represents the specifications
for the web server, application server, and database server. “s”
signifies the standard server specifications (2-core vCPU, 2GB
RAM, 20GB storage), while “h” represents the high server
specifications (4-core vCPU, 4GB RAM, 40GB storage). The
testing used the Apache Bench and Sysbench tools to measure
server performance in each scenario. This research indicates
that the best performance was achieved in the scenario (1s, 1s,
1h), where the database server had higher specifications than
the web server and application server. This research shows that
the database server is the component that handles the majority
of the workload in the Moodle system. Enhancing the hardware
specifications of the database server has a positive impact on
the overall Moodle performance.

Efforts to enhance Moodle’s performance using cloud
computing technology have also been undertaken previously.
This research involved migrating Moodle from the university’s
local server to the Microsoft Azure cloud computing platform
[20] . The study utilized a Virtual Machine Scale Set (VMSS)
with automatic scaling features. The specifications for the
VMSS included two vCPU cores, 7GB RAM, and 128GB SSD
storage with the Ubuntu 18.04 LTS operating system. The
researcher set up a load balancer to distribute traffic evenly
across all servers. For the database server, AzureDB for
MySQL was used with server specifications of 4 CPU cores
and 20GB of RAM. All servers were placed in the same West
Europe Azure Region to minimize data transfer between distant
servers, which could result in high latency. The testing was
conducted using a quiz feature with 20 multiple-choice
questions, displayed with five questions per page. The quiz
duration was set to 20 minutes and was simultaneously taken by
300 users. This research indicates that cloud computing
technology can significantly improve Moodle’s performance
compared to on-premise server hosting. No issues were
encountered in the cloud computing testing, which contrasts
with the on-premise server testing, where problems were
consistently experienced. From the server specifications used
in cloud computing, it is evident that the database server had
higher specifications than the web server. This design choice is
made to efficiently handle requests from the web server, which
can be replicated based on the number of users accessing the
system.

Quality of Service is one of the most crucial factors in
information systems. There is research on Moodle’s Quality of
Service area from the network point of view [21]. This research

focuses on improving Moodle’s Quality of Service from a
network perspective using Software Defined Network (SDN).
SDN is a relatively new technology in networks used by cloud
computing. Using SDN, networks on cloud computing can be
managed virtually using a programming language. This
research tries to prioritize network traffic for Moodle over
another type of traffic in the network. Network prioritization is
done by creating a special plugin called SDN4Moodle. This
plugin will communicate with SDN to prioritize traffic for
Moodle based on Moodle’s response to user activity. The result
shows that SDN4Moodle can prioritize network traffic for
Moodle and increase Moodle’s Quality of Service.

Moodle was essential in academic activities as a Learning
Management System, especially during the COVID-19
pandemic. That is why Moodle needs high availability and
performance [22]. This research focuses on making Moodle
accessible most of the time by using clustering technology.
This research uses redundant servers for the web server,
database server, and file server under the coordination of a load
balancer. The load balancer will distribute traffic to the web,
database, and file servers. Since the hardware specification of
the servers is identical, the load balancer uses a round-robin
algorithm to distribute traffic evenly to all the servers. To keep
data synchronized among database servers, GaleraDB was
employed. File replications are done by rsync To keep files
synchronized among file servers. This setup will distribute the
load to servers, resulting in a performance boost since server
load is distributed to many servers. This setup also provide
High Availability to the Moodle server in case some server is
down due to technical issue; user request will served by another
server in the pool. Users will not suffer system errors even if
there is any technical issue in server infrastructure, and increase
user experience.

Effort to improve Moodle’s performance has been
elaborated using various technique. Using many servers to
distribute user loads is a proven method, but this will increase
IT budgeting, mainly to upgrade the server’s infrastructure. It’s
known from previous research that Moodle’s performance
relies on the database the most. So, this research will focus on
improving Moodle’s performance by distributing the database
server alone rather than all the servers needed by Moodle
(including web servers and file servers). This technique will
prevent an explosion of budgeting on IT infrastructure but still
can increase Moodle’s performance.

This research aims to improve the performance of Moodle
in an on-premises environment by distributing the database
workload across multiple servers. Database load is distributed
using HAProxy, a load balancer that can distribute the
workload across several servers. HAProxy is a popular
open-source load balancer that distributes incoming traffic
across multiple servers to improve application performance,
scalability, and reliability. There are several load-balancing
methods that HAProxy uses to distribute traffic, and each has
its advantages and use cases [23].This research uses the least
connection method as the HAProxy load balance method.

This research utilizes the Galera Cluster feature in MariaDB
to maintain data consistency among database servers. Galera
Cluster is a database management system ensuring that all
servers’ data remains consistent [24]. Galera Cluster supports



Applied Information System and Management (AISM)
Volume 7, (1) 2024, p. 29-36
P-ISSN: 2621-2536; E-ISSN: 2621-2544; DOI: 10.15408/aism.v7i1.34871
©2024. The Author(s). This is an open acces article under cc-by-sa

http://journal.uinjkt.ac.id/index.php/aism 33

multi-master replication, meaning all the database servers can
serve all users’ requestsInsert, Update & Delete) [25]. Galera
Cluster will automatically synchronize data updates among
database servers.

By using HAProxy and Galera Cluster in MariaDB, this
research is expected to improve Moodle’s performance by
speeding up access to the database and minimizing the time
required to send data between servers. Additionally, by
distributing the database workload across multiple servers, this
research can also improve the scalability of Moodle, allowing
the platform to handle a more significant number of users.

III. RESEARCHMETHOD

This study employs a comparative research design to
evaluate the performance of the Moodle learning management
system in two distinct server configurations: a single server
environment and a multiple servers (cluster) environment. Data
collection involves the deployment of multiple Moodle
instances, each configured to simulate real-world usage
scenarios. Database-related performance metrics are
systematically measured, including reading course
performance, writing course performance, and database
performance. Simulated usage scenarios representing various
levels of user activity are created to assess the impact of server
configuration on Moodle’s performance.

Data is collected using Moodle’s performance measurement
plugins. Writing course performance is measured to understand
Moodle’s performance upon creating new courses and their
content. Reading course performance is measured to
understand Moodle’s performance upon presenting the course
and its content to the user. Database performance is measured
to understand the overall database performance used by
Moodle in the response to user requests.

In the single-server scenario, Moodle is installed on a server
that supports web, database, and file servers, with all the
supporting services installed on the same server, enabling
server resource sharing between the services. Figure 1 provides
a visual representation of the topology of the single-server
scenario.

Fig. 1. Moodle LMS on a single server.

On the other hand, the multi-server scenario involves
installing Moodle LMS on one server providing web server and
file server services. In contrast, the database server is installed
on a separate server using MariaDB’s Galera Cluster feature. A
load balancer is installed on the webserver to evenly distribute
the load of accessing the database server. This approach
ensures that all database servers receive an equal workload,

preventing the overloading of any single server. Figure 2
provides a visual representation of the topology of this
scenario.

Fig. 2. Moodle LMS on multi-database server.

IV. RESULT
We conducted 300 tests for each scenario to explore

different server loads, yielding average outcomes summarized
in Tables 1 and 2. Our examination focused on the performance
of reading courses, writing courses, and the database,
employing the Moodle LMS server performance function. The
testing criteria comprehensively addressed these three
dimensions. The values presented in the tables depict the
duration of each process in seconds. This meticulous testing
approach allows us to scrutinize and compare the efficiency of
the Moodle system under various conditions, providing
valuable insights into its responsiveness and robustness in
handling distinct workloads. The outcomes in the tables
encapsulate the quantitative representation of these evaluations,
offering a comprehensive view of the system’s temporal
dynamics during diverse operations.

Table 1.
Performance Test Results for The Single-Server Scenario

Exp. Read Write DB Exp. Read Write DB
1 0.415 0.162 0.212 16 0.414 0.147 0.147
2 0.411 0.165 0.236 17 0.412 0.152 0.212
3 0.418 0.136 0.202 18 0.438 0.150 0.213
4 0.452 0.172 0.212 19 0.424 0.222 0.276
5 0.426 0.137 0.211 20 0.411 0.411 0.219
6 0.407 0.149 0.217 21 0.416 0.140 0.204

Exp. Read Write DB Exp. Read Write DB
7 0.425 0.160 0.425 22 0.403 0.125 0.212
8 0.413 0.141 0.212 23 0.501 0.181 0.229
9 0.403 0.152 0.213 24 0.431 0.431 0.215
10 0.469 0.157 0.225 25 0.400 0.159 0.208
11 0.420 0.157 0.212 26 0.407 0.140 0.208
12 0.425 0.154 0.221 27 0.421 0.136 0.212
13 0.532 0.144 0.228 28 0.404 0.404 0.210
14 0.416 0.130 0.212 29 0.426 0.153 0.211
15 0.428 0.134 0.220 30 0.425 0.150 0.211

From Table 1, it can be observed that the average time to
display the requested course content is approximately 0.4
seconds. Although this appears relatively fast in terms of time,
a processing queue can form when numerous users request the
display of course content simultaneously (for instance, during a
class schedule). If this queue becomes excessively long, it can
result in the occurrence of the “white screen of death.” The



Improving Moodle Performance… J. E. W. Prakasa, A. Hannai, F. R. Hariri, S. N. Utama

http://journal.uinjkt.ac.id/index.php/aism 34

“write” parameter in the table represents the time it takes for
Moodle to save data when there is input from users. For
example, when users submit assignments or complete quizzes,
the results must be saved. The duration of the writing process
varies between 0.1 to 0.4 seconds, as shown in Table 1. This
variation is influenced by various factors, such as the length of
the processing queue that Moodle needs to handle and the
simultaneous data writing by multiple users, especially during
activities like quiz submissions that conclude simultaneously.
These factors contribute to queuing of written commands,
which, in turn, results in longer writing times. Meanwhile, the
“database” parameter in Table 1 represents the time needed by
the database to handle user requests, both for reading (read) and
writing (write) data. In a single-server scenario with only one
database server, all activities are serviced by a single database,
potentially leading to a processing queue with an average
processing time of 0.2 seconds.

In the multi-server scenario, there was an improvement in
performance across all parameters (course read, course write,
and database) compared to the single-server scenario. The
average test results for the multi-server scenario are presented
in Table 2. For the “course read” parameter, the average testing
result yielded a value of 0.1 seconds. Similarly, the average
value obtained for the “course write” parameter was 0.09
seconds, and for the “database” parameter, the average value
was also 0.09 seconds.

Table 2.
Performance Test Results for The Multiple-Server Scenario

Exp. Read Write DB Exp. Read Write DB
1 0.119 0.071 0.105 16 0.109 0.073 0.097
2 0.108 0.086 0.095 17 0.110 0.068 0.101
3 0.108 0.081 0.097 18 0.108 0.087 0.104
4 0.110 0.073 0.096 19 0.108 0.081 0.097
5 0.119 0.074 0.098 20 0.110 0.075 0.098
6 0.108 0.082 0.097 21 0.106 0.086 0.097
7 0.109 0.072 0.096 22 0.109 0.088 0.100
8 0.109 0.073 0.098 23 0.109 0.090 0.097
9 0.115 0.082 0.096 24 0.116 0.075 0.098
10 0.107 0.072 0.096 25 0.117 0.071 0.105
11 0.111 0.075 0.097 26 0.117 0.071 0.105
12 0.111 0.080 0.099 27 0.111 0.076 0.097
13 0.108 0.081 0.098 28 0.109 0.086 0.096
14 0.111 0.080 0.104 29 0.115 0.081 0.113
15 0.110 0.082 0.102 30 0.115 0.081 0.113

The results indicated that using multiple servers for
databases can improve the performance of Moodle LMS
compared to a single-server configuration. When you average
the values from Table 1 and Table 2 and compare each
parameter, the results can be visualized in the graph below.
Figure 3 illustrates a graph of the average times generated by
the “course read” parameter. On average, the “course read”
time in the single-server scenario is 0.42 seconds, while in the
multi-server scenario, it’s 0.11 seconds. This results in a
performance improvement of 384% in Moodle’s multi-server
scenario compared to the single-server scenario.

The average value for the “course write” parameter in the
single-server scenario is 0.15 seconds, while in the multi-server
scenario, it averages 0.07 seconds, as depicted in Fig. 4. In this
scenario, multi-servers can improve course write performance
by 193%.

Fig. 3. Reading course performance comparison.

Fig. 4. Writing course performance comparison.

The last parameter being compared is database performance. In
the single-server scenario, the average database performance is
0.25 seconds, whereas in the multi-server scenario, it averages
0.09 seconds, as shown in Fig. 5. Database performance
improvement up to 260% in the multi-server scenario
compared to the single-server scenario. Therefore, when these
parameters are combined, the Moodle performance in the
single-server scenario results in a time of 0.27 seconds, while in
the multi-server scenario, it’s 0.09 seconds. This demonstrates
an improvement in performance in Moodle of 279% when
compared to the single-server scenario, as shown in Fig. 6.

V. CONCLUSION
The study aimed to optimize Moodle performance by

distributing the database into multiple servers. HAProxy
handled load distribution with the least-connection algorithm,
and the Galera Cluster feature on MariaDB does data
synchronization. The Moodle performance plugin used course
reading, course writing, and database performance to compare
results.



Applied Information System and Management (AISM)
Volume 7, (1) 2024, p. 29-36
P-ISSN: 2621-2536; E-ISSN: 2621-2544; DOI: 10.15408/aism.v7i1.34871
©2024. The Author(s). This is an open acces article under cc-by-sa

http://journal.uinjkt.ac.id/index.php/aism 35

Fig. 5. Database performance comparison.

Fig. 6. Overall Moodle performance comparison.

The result shows that distributing the database into multiple
servers gives an advantage over single-server, especially in
peak access time where Moodle is accessed by massive users
simultaneously. Reading course performance is increased by
384% faster in multiple-server scenarios compared to
single-server scenarios. Writing course performance is
increased by 193% faster in multiple-server scenarios
compared to single-server scenarios. The essential thing in this
research is performance improvement on the database up to
260% faster than single-server scenarios. Moodle performance
is better in multiple-server scenarios, up to 297% faster than in
single-server scenarios. This research proves that the database
is the most critical part of Moodle. Distributing databases into
multi-servers will improve overall Moodle performance
drastically.

ACKNOWLEDGMENT

This research was supported by LITAPDIMAS grant
number 1466A/LP2M/PPK/OT.01.3/04/2022 under LP2M
UIN Maulana Malik Ibrahim Malang.

REFERENCES
[1] S. B. Dias, S. J. Hadjileontiadou, J. Diniz, and L. J. Hadjileontiadis,

“DeepLMS: a deep learning predictive model for supporting online
learning in the Covid-19 era,” Sci Rep, vol. 10, no. 1, Dec. 2020, doi:
10.1038/s41598-020-76740-9.

[2] S. A. Raza, W. Qazi, K. A. Khan, and J. Salam, “Social isolation and
acceptance of the learning management system (LMS) in the time of
COVID-19 pandemic: An Expansion of the UTAUT Model,” Journal of

Educational Computing Research, vol. 59, no. 2, pp. 183–208, Apr. 2021,
doi: 10.1177/0735633120960421.

[3] A. H. Mujianto, C.Mashuri, G. S. Permadi, and R.Wiratsongko, “Analisa
pemanfaatan learningmanagement system schoology menggunakan HOT
fit model terhadap pembelajaran di masa pandemi covid 19,” Applied
Information System and Management (AISM), vol. 5, no. 1, pp. 45–52,
Apr. 2022, doi: 10.15408/aism.v5i1.24767.

[4] T. Y. Aikina and L. M. Bolsunovskaya, “Moodle-based learning:
motivating and demotivating factors,” International Journal of Emerging
Technologies in Learning, vol. 15, no. 2, pp. 239–248, 2020, doi:
10.3991/ijet.v15i02.11297.

[5] A. S. Mustafa and N. Ali, “The adoption and use of moodle in online
learning: a systematic review,” Information Sciences Letters, vol. 12, no.
1, pp. 341–351, Jan. 2023, doi: 10.18576/isl/120129.

[6] K. Wiechork and A. S. Charão, “Investigating the performance of moodle
database queries in cloud environments,” in ICEIS 2020 - Proceedings of
the 22nd International Conference on Enterprise Information Systems,
SciTePress, 2020, pp. 269–275, doi: 10.5220/0009792202690275.

[7] A. H. Ali and M. Z. Abdullah, “A survey on vertical and horizontal
scaling platforms for big data analytics,” International Journal of
Integrated Engineering, vol. 11, no. 6, pp. 138–150, 2019, doi:
10.30880/ijie.2019.11.06.015.

[8] P. Singh, P. Gupta, K. Jyoti, and A. Nayyar, “Research on auto-scaling of
web applications in cloud: Survey, trends and future directions,” Scalable
Computing, vol. 20, no. 2, pp. 399–432, Jun. 2019, doi:
10.12694/scpe.v20i2.1537.

[9] A. Zaini, H. Santoso, andM. P. T. Sulistyanto, “Fault tolerance strategy to
increase moodle service reliability,” in Journal of Physics: Conference
Series, IOP Publishing Ltd, Apr. 2021. doi:
10.1088/1742-6596/1869/1/012095.

[10] M. Sadikin, R. Yusuf, and D. Arif Rifai, “Load balancing clustering on
moodle LMS to overcome performance issue of e-learning system,”
Telkomnika (Telecommunication Computing Electronics and Control),
vol. 17, no. 1, pp. 131–138, 2019, doi:
10.12928/TELKOMNIKA.v17i1.10284.

[11] S. Rajagopalan, “An overview of layer 4 and layer 7 load balancing,”
Lecture Notes on Data Engineering and Communications Technologies,
vol. 66, 2021, doi: 10.1007/978-981-16-0965-7_51.

[12] S. Ebneyousef and A. Shirmarz, “A taxonomy of load balancing
algorithms and approaches in fog computing: a survey,” Cluster Comput,
vol. 26, no. 5, pp. 3187–3208, Oct. 2023, doi:
10.1007/s10586-023-03982-3.

[13] A. H. Fathulloh and H. I. Adauwiyah, “Perbandingan tingkat efisiensi
waktu query select pada database interface navicat dan SQLYog di
MySQL DBMS,” Applied Information System and Management (AISM),
vol. 4, no. 2, pp. 101–105, Oct. 2021, doi: 10.15408/aism.v4i2.18369.

[14] K. P. Bhattarai, K. Visai, R. Ito, K. Sato, and B. P. Gautam, “Monitoring
of e-learning system servers using the MariaDB galera cluster,” in
Proceedings - 2019 International Conference on Networking and
Network Applications, NaNA 2019, 2019. doi:
10.1109/NaNA.2019.00058.

[15] R. Shrestha, “High availability & performance of database in the cloud:
Traditional master-slave replication versus modern cluster-based
solutions,” in CLOSER 2017 - Proceedings of the 7th International
Conference on Cloud Computing and Services Science, 2017. doi:
10.5220/0006294604130420.

[16] T. Pohanka and V. Pechanec, “Evaluation of replication mechanisms on
selected database systems,” ISPRS Int J Geoinf, vol. 9, no. 4, Apr. 2020,
doi: 10.3390/ijgi9040249.

[17] S. Widiono, “Experiments and descriptive analysis in the mariadb
database cluster system to prepare data availability,” 2019. [Online].
Available: www.codepolitan.com.

[18] G. Slavko and S. Serhiienko, “Optimization of LMS moodle
configuration and education technologies on the example of electrical
engineering education,” in 2021 IEEE International Conference on
Modern Electrical and Energy Systems (MEES), IEEE, Sep. 2021, pp.
1–5. doi: 10.1109/MEES52427.2021.9598719.

[19] R. Yusuf and H. Kusniyati, “The analyst model performance multi-tier for
increase of efficiency virtual machine in moodle application,”



Improving Moodle Performance… J. E. W. Prakasa, A. Hannai, F. R. Hariri, S. N. Utama

http://journal.uinjkt.ac.id/index.php/aism 36

International Journal of Scientific Research in Computer Science,
Engineering and Information Technology, pp. 94–101, Sep. 2020, doi:
10.32628/CSEIT206473.

[20] Z. Zdravev, A. Velinov, and S. Spasov, “Migration of moodle instance to
the cloud – case study at Goce Delchev University,” in South East
European Journal of Sustainable Development, A. Pollozhani, Ed.,
Skopje: Mother Teresa University, Feb. 2021, pp. 99–106.

[21] A. H. da S. Marcondes, C. C. Miers, M. A. Pillon, and G. P. Koslovski,
“SDN4Moodle: an SDN-based toolset to enhance qos of moodle
platform,” in 2018 IEEE Symposium on Computers and Communications
(ISCC), IEEE, Jun. 2018, pp. 00627–00632. doi:
10.1109/ISCC.2018.8538523.

[22] F. Cardoso, A. Godinho, J. Rosado, F. Caldeira, and F. Sa, “Proposal of a
technological cluster to support eLearning platform,” in 2022 31st Annual
Conference of the European Association for Education in Electrical and
Information Engineering (EAEEIE), IEEE, Jun. 2022, pp. 1–5. doi:
10.1109/EAEEIE54893.2022.9820369.

[23] H. Triangga, I. Faisal, and I. Lubis, “Analisis perbandingan algoritma
static round-robin dengan least-connection terhadap efisiensi load
balancing pada load balancer haproxy,” InfoTekJar (Jurnal Nasional
Informatika dan Teknologi Jaringan), vol. 4, no. 1, 2019, doi:
10.30743/infotekjar.v4i1.1688.

[24] A. Setiawan and W. M. Kansha, “Pembuatan sistem database cluster
menggunakan aplikasi galera cluster di sekolah vokasi ipb university,”
Jurnal Sains Terapan, vol. 11, no. 2, 2021, doi:
10.29244/jstsv.11.2.49-59.

[25] M. Data, G. Ramadhan, and K. Amron, “Analisis availabilitas dan
reliabilitas multi-master database server dengan state snapshot transfers
(SST) Jenis Rsync Pada MariaDB Galera Cluster,” Jurnal Teknologi
Informasi dan Ilmu Komputer, vol. 4, no. 1, 2017, doi:
10.25126/jtiik.201741288.


	I.INTRODUCTION
	II.RELATED WORK
	III.RESEARCH METHOD
	IV.RESULT
	V.CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

