

Research Artikel

GLOBAL TREND OF SCIENCE AND RELIGION IN EDUCATIONAL RESEARCH FROM 2015 TO 2024: A SCOPING REVIEW

Zulfah¹, Edy Cahyono^{2*}, Sutikno Madnasri³, Dyah Rini Indriyanti⁴, Saiful Ridlo⁵, Effendi⁶

^{1,2,3,4,5} Univeristas Negeri Semarang, Central Java, Indonesia

⁶Universitas Sriwijaya, South Sumatra, Indonesia

edkim@mail.unnes.ac.id^{2*}

Abstract

The history of the relationship between science and religion in education provides diverse dynamics; in recent years, the two have begun to be integrated constructively, including in the field of education, especially in natural sciences learning. This scoping review aims to identify the research trends in the natural sciences related to religion, including the contributions of the author's country, the topic of science learning, the area of religion, and the teaching methods used. Teaching methods are essential to present science and religion in the classroom. Documents were taken from data bases indexed by Scopus, ERIC, and WOS, with a total of 1844 from 2015 to 2024, which were then filtered into 55 documents by adapting the PRISMA method. The scoping review method is carried out by analyzing the content of each article. The analysis results show that the author's contributions to science and religion research in education are most significant in the UK, the US, and Indonesia. At the same time, this topic talks a lot about biology topics, especially evolutionary material in the area of Christianity. A method that is often used in teaching is discussion. Discussions are usually presented to share the arguments and views of students on religion and science. The presence of religion and science in learning also helps educators add value to the learning process.

Keywords: Education, science, religion, review

Permalink/DOI: <https://doi.org/10.15408/es.v17i2.48637>

How To Cite: Zulfah, Z., Cahyono, E., Madnasri, S., Indriyanti, D. R., Ridlo, S., Effendi, E. (2025). Global Trend of Science and Religion in Educational Research From 2015 To 2024: A Scoping Review. *EDUSAINS*, 17 (2): 104-119.

*Corresponding author

Received: 17 November 2025; Revised: 22-25 December 2025; Accepted: 28 December 2025

EDUSAINS, p-ISSN 1979-7281 e-ISSN 2443-1281

This is an open access article under CC-BY-SA license (<https://creativecommons.org/licenses/by-sa/4.0/>)

INTRODUCTION

Countries often face dilemmas when they need to make decisions that impact their lives and are related to science and religion (Guilfoyle et al., 2021a). As modern society becomes increasingly secularized, religion is often seen as an obstacle to science-based policymaking, while science is increasingly associated with atheism (Simpson & Rios, 2019).

In the realm of education, particularly in the 21st century, global challenges such as Disinformation, digital technology disruption, moral crisis, environmental crisis, and social transformations demand an interdisciplinary approach that reconciles science and religion. Traditionally, science and religion have been perceived as existing at opposing ends of a spectrum, with science emphasizing rational and empirical explanations while religion offers moral and spiritual guidance. However, this dichotomy may hinder the potential of education to cultivate a generation that is not only intellectually adept but also morally and ethically grounded. As a fundamental pillar of education, science plays a crucial role in elucidating natural phenomena and advancing technology. Science is morally neutral and requires a robust ethical framework to prevent misuse, as without it, science can become a neutral instrument devoid of inherent goodness or badness (Weiss, 1989).

The fields of religious and cultural sciences often set themselves apart from science (Sumarni et al., 2020). Traditionally, science is viewed as an empirical and logical discipline, while religion is associated solely with beliefs and spirituality. However, integrating these two domains can positively influence the character and insight of students. It is essential to present teachers with various approaches to understanding the relationship between evolution (science) and religion (Stahi-Hitin & Yarden, 2022a). This relationship provides valuable insight into how scientific and religious cognition can coexist

(Davoodi & Lombrozo, 2022). In an educational environment marked by spiritual and cultural diversity, an interdisciplinary approach that bridges science and religion is crucial for reinforcing the foundation of our nation's character. By integrating religious values into science education, we can foster a balance between knowledge acquisition and moral development. This equilibrium is increasingly vital in today's era of disruption and social complexity.

In light of escalating global challenges, including environmental crises, climate change, and moral decay, incorporating religious values into science education is becoming increasingly important. An educational framework that merges scientific principles with religious teachings can help students grasp the connections between scientific knowledge and spiritual beliefs, particularly concerning environmental sustainability, social welfare, and sustainable development. As a result, education can cultivate a generation that is not only well-versed in scientific concepts but also possesses spiritual awareness and a moral commitment to both the environment and society. Research has shown that the values emphasized in science education, especially those related to scientific attitudes, are closely associated with attitudes of religious moderation(Umar et al., 2024).

The integration of religious science and secular science can enhance all scientific endeavors, while also deepening religious understanding for the betterment of humanity (Qolbiyah et al., 2023). Conversely, religion offers moral guidance that helps maintain a balance in the application of scientific knowledge. For instance, religious teachings regarding human responsibility towards nature align with scientific perspectives on environmental sustainability. In an educational context, blending science with religion can help students recognize that science and faith need not be in opposition, but can instead complement one another as we confront the

challenges of the modern world. Religion plays a role in the development of science, and science has a role in the continuity of life (Suciati et al., 2022). NOMA Stephen J. Gould, generally among academic theologians (and some atheists), argues that religion and science are not mutually exclusive (Slade, 2020).

Natural Science education is crucial for equipping students with a solid understanding of the natural world and scientific principles, and it develops analytical thinking, experimentation, and logical decision making (Lamanauskas, 2025; Lega, 2021). However, the integration of morals, values, ethics, and character education into science curriculum is crucial to address the disconnection between technical knowledge and deeper significance in science education (Munn et al., 2018). This separation can result in pragmatic and materialistic attitudes, as well as a diminished holistic awareness of the environment among students. Conversely, religion significantly influences one's ethics, morals, and overall worldview. Several religious traditions, including Islam, Christianity, Hinduism, and others, emphasize the importance of maintaining a harmonious relationship between humans and nature, as well as the responsibility to care for the environment as a divine mandate. Integrating scientific education with religious values is anticipated to foster a more meaningful learning experience that not only imparts scientific knowledge but also nurtures a strong sense of spiritual and moral awareness.

The objective of science education is to foster an understanding of the natural world, encompassing biological processes, physics, chemistry, and environmental phenomena (Lega, 2021). In contrast, religion, which encompasses a diverse range of beliefs, offers moral values that can provide an ethical framework for the study and application of science. For instance, the notion of human responsibility as stewards of the Earth can enhance the comprehension of ecology,

sustainability, and natural resource management. Research indicates that integrating religious perspectives into science education can improve students' attitudes towards the subject, cultivate an appreciation and respect for nature as part of God's creation, and motivate them to act as responsible "caliphs" or leaders on Earth. An example of this integration is an ecotheology-based learning approach, which fosters environmental awareness through a spiritual lens, emphasizing not only scientific understanding but also the moral obligation to protect the environment. There remains much to learn about the interplay between teaching and learning in relation to the broader issues surrounding religion and science (Pearce et al., 2021a).

This research aims to investigate the trend of integrating religious perspectives into Natural Science education and identify the methods employed to harmonize science and religion within the learning process. The findings will involve an analysis of relevant articles with a focus on the following areas:

1. How did authors from different countries contribute to the publications of the science and religious articles from 2015 to 2024? The globalization of science promotes collaboration between countries. Understanding each country's contributions is essential for mapping the dissemination of ideas and recognizing the global relevance of science and religion topics.
2. How did the science topic of the published articles of papers in science and religious research from 2015 to 2024? This scoping enhances understanding of trends and themes in science, particularly regarding curriculum development, research directions, and academic policies that foster integration between science and religion.
3. How did the religious area of the published articles of papers in science and religious

research from 2015 to 2024? This overview examines how various religions connect science and spiritual values.

4. What teaching methods of science and religion integration can be observed in articles published between 2015 and 2024? This analysis identifies educational trends that integrate scientific and religious elements within a single science learning framework.

METHOD

This review research involved content analysis of documents. It was conducted using a qualitative approach through a scoping

review. This review is considered appropriate for identifying types of evidence in fields related to science and religion in education. This is because it maps the evidence in a paper about conducting preliminary research in a broad topic area (Mongeon & Paul-Hus, 2016; Munn et al., 2018). The current study employs a scoping review approach to gather both quantitative and qualitative data, addressing the issues mentioned above (Han & Røkenes, 2020). The research selection process consists of stages adopted from the PRISMA method: data extraction and data analysis, which are illustrated in detail in Figure 1:

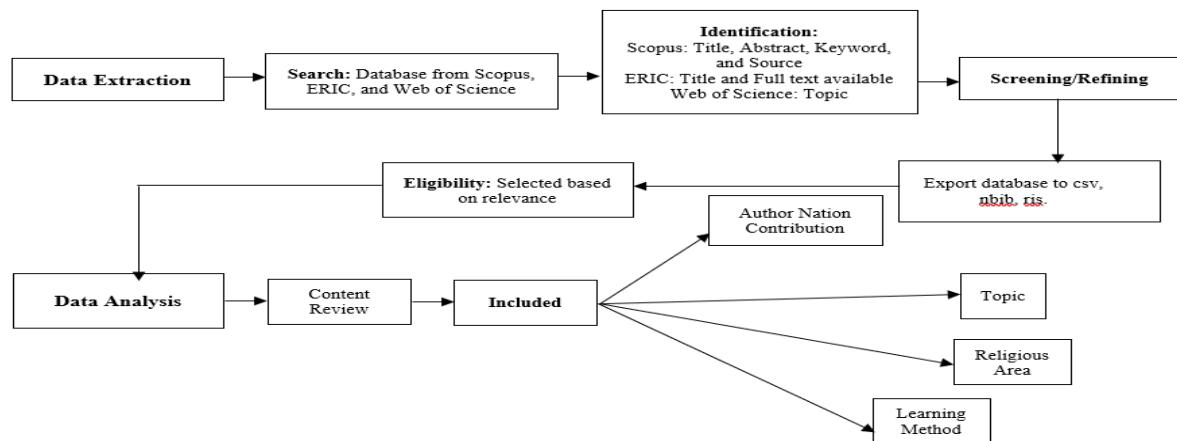


Figure 1. Research Flow Diagram Adapted from PRISMA Method

The three sources were refined to yield more specific document results. In the Scopus database, the search began by entering "Science and Religion" in the Title, Abstract, and Keywords sections, while also incorporating "education" into the search criteria. Subsequently, filters were applied to restrict the results to the period from 2015 to 2024, limiting the document types to articles and conference papers in English, and ensuring they were open-access. For the ERIC database, the search was conducted similarly using the terms "science and religion," with the results narrowed to full-text documents available on ERIC within the last decade (2015-2024). In the Web of Science, the search was performed using "science and religion" along with "education" as topic keywords, followed by filters for the years 2015-2024, open access availability, English

language, and document types limited to articles and proceedings papers. Web of Science broadly covers the natural sciences and engineering, whereas Scopus provides relatively more comprehensive coverage of the social sciences (Mongeon & Paul-Hus, 2016). Since religion is categorized as a social science, it falls within Scopus's focus. The ERIC database, on the other hand, emphasizes education at all levels with a global perspective (Gusenbauer & Haddaway, 2020). The selection of article sources is also based on the work of Imaduddin & Eilks (2024). The selection of publication years from 2015 to 2024 in order to see research trends in the last decade. Following the searches in each database, a review of the content was conducted to select the most relevant documents. A

summary of the queries and the number of documents obtained is presented in Table 2.

Table 1. Topics and Scope of Science

Type of Data Base	Search Query	Number of Hits	Number of Content Review
Scopus	(TITLE-ABS-KEY (science AND religious) AND SRCTITLE (education)) AND PUBYEAR > 2015 AND PUBYEAR < 2024 AND (LIMIT-TO (DOCTYPE , "ar") OR LIMIT-TO (DOCTYPE , "cp")) AND (LIMIT-TO (LANGUAGE , "English")) AND (LIMIT-TO (OA , "all"))	113	34
ERIC	title:"Science" AND "Religious" Full text available on ERIC, Since 2015 (last 10 years)	84	8
Web of Science	science AND religious AND education (Topic) and 2024 or 2023 or 2022 or 2021 or 2020 or 2019 or 2018 or 2017 or 2016 or 2015 (Publication Years) and Open Access and English (Languages) and Proceeding Paper or Article (Document Types)	1647	13

Total Number of Content Review: 55

Data Search Methods for Addressing Each Research Question

To effectively answer each research question in this study, a systematic identification method is required. One approach to simplify the identification process is to abstract each article. Furthermore, research questions can be answered using a method guided by the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) checklist (Tricco et al., 2018), which ensures methodological rigor, transparency, and consistency throughout the review process. Additionally, the research questions can be addressed through the following methods:

1. For the first research question, which pertains to the contribution of different countries, this study initially examines the research affiliates of the authors in each article. Often, an article features multiple authors associated with various institutions, allowing for the identification of their respective countries. Each country's contribution is assessed based on the authors' order in the article. The method for calculating the contribution of each author's

country follows a specific formula:(Chang et al., 2010)

$$\text{Score} = \frac{(1.5^{n-i})}{\sum_{i=1}^n 1.5^{n-i}}.$$

To ensure that the scoring for each author's country in a single article varies, a specific scoring system is applied based on the number of authors. For instance, an article with one author will have a score of 1. For two authors, the first author's country will receive a score of 0.6, while the second author's country will receive a score of 0.4. In the case of three authors, the distribution will be 0.47 for the first author's country, 0.32 for the second, and 0.21 for the third. It is important to note that each article will always maintain a total value of 1. This scoring methodology will remain in effect until the number of authors in a single journal reaches ten within these literature studies.

2. To answer questions related to the topic of science that is integrated with religion, it will be divided into the scope of Biology, Chemistry, Physics, General Science, and Interdisciplinary Science in the Table 2:

Table 2. Topics and Scope of Science

Topic	Coverage
Biology	Evolution, biotechnology ethics, biological principles in Health, ecology and the environment
Chemistry	Origins of the universe, life chemistry, environmental chemistry, chemical engineering and nanotechnology, food and beverage chemistry
Physics	The origins of the universe and cosmology, the laws of nature, the relativity of time and space, light, and energy.
General Science	This topic is more general or in other words, the article does not mention the specifics of the material discussed but only conveys it in class or science material
Interdisciplinary Science	This topic covers the integration of science with other disciplines such as STEM

3. To answer the third question related to the area of religion that discusses science and religion in this educational article by identifying religion and referring to the most religions in the world based on *The Future of World Religious* 2010-2050 in the Table 3: (Hackett et al., 2015).

Table 3. Most Religious Areas in the World

Ranking of Population	Religious Area
1	Islam
2	Christian
3	Hindu
4	Jewish
5	Folk Religious
6.	Other Religious
7.	Buddha

4. This study aims to identify the teaching methods employed in integrating science and religion within the educational context by emphasizing the implementation of research. Specifically, it will examine how learning is conducted, making it easier to

categorize the applied methods. To address the fourth research question concerning the most-cited articles globally, this study will provide an overview of each article indexed in the Scopus database. Scopus offers citation metrics for every published article, and the study will compile a list of those with the highest citation counts.

RESULTS AND DISCUSSION

Research that bridges the gap between religion and science in education has seen notable advancements over the past few decades. This trend can be examined through four key aspects: the country of origin of the research, the particular religion under focus, the topics addressed in the research, and the teaching methods employed. A table detailing the list of documents analyzed in this study is provided in table 4:

Table 4. List of Reviewed Documents

No. Document	Source	Author, Year
1-34	Scopus	(Aini et al., 2024; Alkaher et al., 2020; Ardi et al., 2024; Barnes et al., 2017, 2020; Billingsley et al., 2016; Black, 2017; Brás et al., 2018; Chan & Erduran, 2023; Edwards et al., 2022; Elizabeth Barnes et al., 2021; Elkalmi et al., 2021; Erduran, 2020; Erduran et al., 2019, 2022; Ferguson et al., 2024; Francis et al., 2019; Guilfoyle et al., 2023; Kidwell, 2024; Mansour, 2024; Manwaring et al., 2018; McLaren, 2020; Mujtaba & Reiss, 2022; Park et al., 2022; Scaramanga & Reiss, 2023; Stahi-Hitin & Yarden, 2022c, 2022b; Stones et al., 2020; Sumarni, Faizah, Subali, Wiyanto, et al., 2020; Szopiak & Kloser, 2024; Tolman et al., 2020; M. Umar & Sukarno, 2022; Wilson, 2018; Woodford, 2020)
35-42	ERIC	(Demelash, 2021; Eminoglu et al., 2020; Fahmi Lathif et al., 2024; Morgan, 2021; Rahardjanto et al., 2024; Saddam Hameed & Salih Salih, 2016; Torkar & Sorgo, 2020; Torres et al., 2021)
43-55	Web of Science	(Barnes et al., 2020; Billingsley et al., 2020, 2021; Davison, 2022; Fancourt & Guilfoyle, 2022; Guilfoyle et al., 2021b; Jan et al., 2023; Leicht et al., 2022; Masigol et al., 2022; Pearce et al., 2021b; Rohmatulloh et al., 2023; Tiaynen-Qadir et al., 2021; Woolley et al., 2024; Zarman, 2016)

*Corresponding author

To address the research question, "How did authors from different countries contribute to the publication of science and religious articles from 2015 to 2024?", we categorized article data according to the authors' countries of origin during the specified period. We determined the contributions of each country by tracing the authors' affiliations for each article and calculating the percentage of each country's

contribution to the total publications. This approach enables a systematic and quantifiable mapping of authors' contributions across various countries, providing a clear overview of academic participation in science and religious studies. A summary of the calculated contributions by country of origin can be found in Table 5 and 6.

Table 5. Author's Country Contributions Based on Each Source of Journals

SCOPUS			ERIC			WOS		
Country	Score	Percentage (%)	Country	Score	Percentage (%)	Country	Score	Percentage (%)
UK	14	41.18	Indonesia	2	25	UK	6.72	48.00
U.S.	10.6	31.18	Turkiye	1	12.5	Indonesia	2	14.29
Indonesia	3	8.82	Iraq	1	12.5	U.S.	1.17	8.36
Israel	3	8.82	Indonesia	1	12.5	Norway	1	7.14
Qatar	1	2.94	Slovenia	1	12.5	China	0.82	5.86
Portugal	0.60	1.76	Portugal	1	12.5	Iran	0.68	4.86
Libya	0.57	1.68	U.S.	1	12.5	Finland	0.58	4.14
France	0.40	1.18	Total	8	100	Canada	0.42	3.00
China	0.40	1.18				Russia	0.32	2.29
Malaysia	0.34	1.00				Netherlands	0.11	0.79
Iraq	0.07	0.21				Portugal	0.18	1.29
Hungary	0.02	0.06				Total	14	100
Total	34	100						

Table 6. Author's Country Contributions from Three Sources of Journals

Country	Score	Percentage (%)
UK	20.7	36.40
U.S.	12.8	22.40
Indonesia	7.00	12.30
Israel	3.00	5.30
Portugal	1.60	2.80

Countries characterized by high cultural and religious diversity, such as the United States, the United Kingdom, Indonesia, and India, serve as significant centers for research at the intersection of religion and science in education. In Western nations, research often focuses on the relationship between Christianity and science, particularly within formal educational settings. Conversely, in Muslim-majority countries like Indonesia and Malaysia, there is a greater emphasis on the integration of Islamic teachings with modern scientific curricula. This trend underscores the profound impact of social and cultural contexts on shaping research directions.

To explore the research question, "What science topics have been addressed in published articles on science and religious research from 2015 to 2024?", we categorized the articles based on the scientific themes discussed within this timeframe. This process involved a thorough manual review of the article contents, followed by calculating the frequency of occurrence for each topic. We employed straightforward quantitative methods to derive the proportional distribution of each scientific field. The findings from this analysis are visually represented in Figure 2.

*Corresponding author

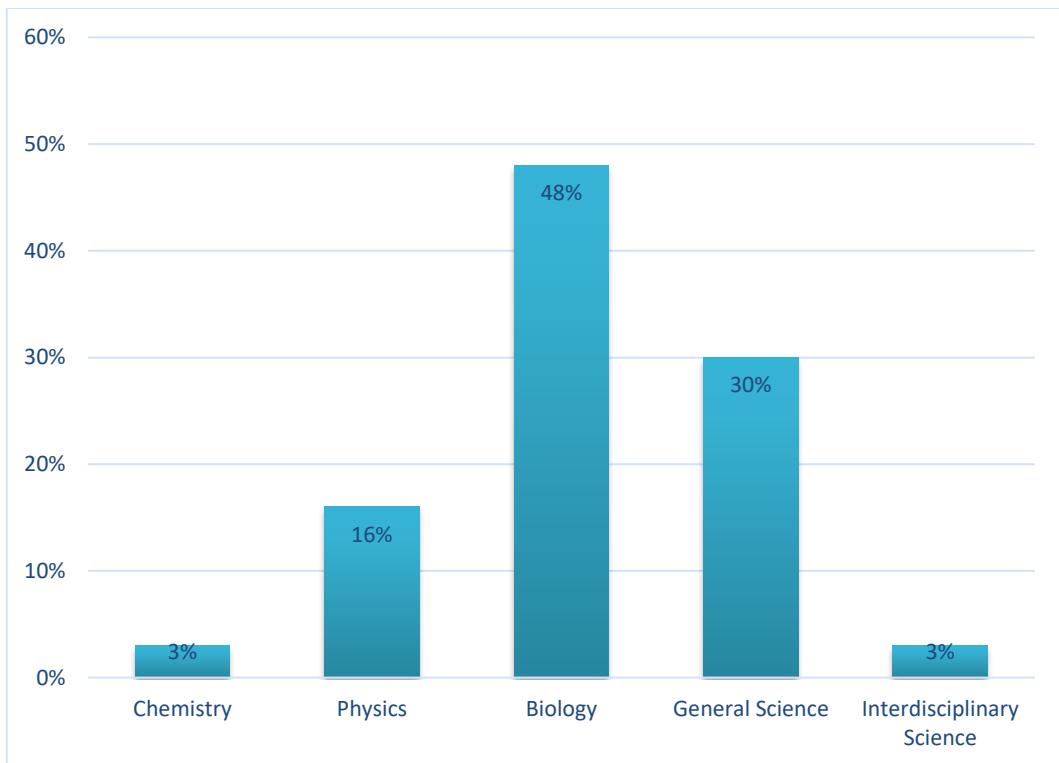


Figure 2. Diagram of Science Topics Aligned with Religious Understanding

Topics frequently explored in religious and scientific research include the interplay between religious beliefs and the acceptance of scientific concepts such as evolution and cosmology. Environmental and ecotheological issues are also prominent, particularly as global sustainability awareness continues to grow. Numerous studies emphasize the benefits of an integrative approach in shaping students' character, enhancing cultural identity, and improving comprehension of scientific topics related to everyday life.

To investigate the research question, “What are the religious areas emphasized in the

published articles on science and religious research from 2015 to 2024?”, we categorized the articles released during this timeframe based on the specific religious themes addressed in each study. This categorization involved a thorough manual review of the article contents, followed by a quantitative analysis to determine the frequency of occurrences for each religious theme. This approach enabled us to identify the most prominent religious areas. A visual summary of the distribution of these religious themes is presented in Figure 3.

*Corresponding author

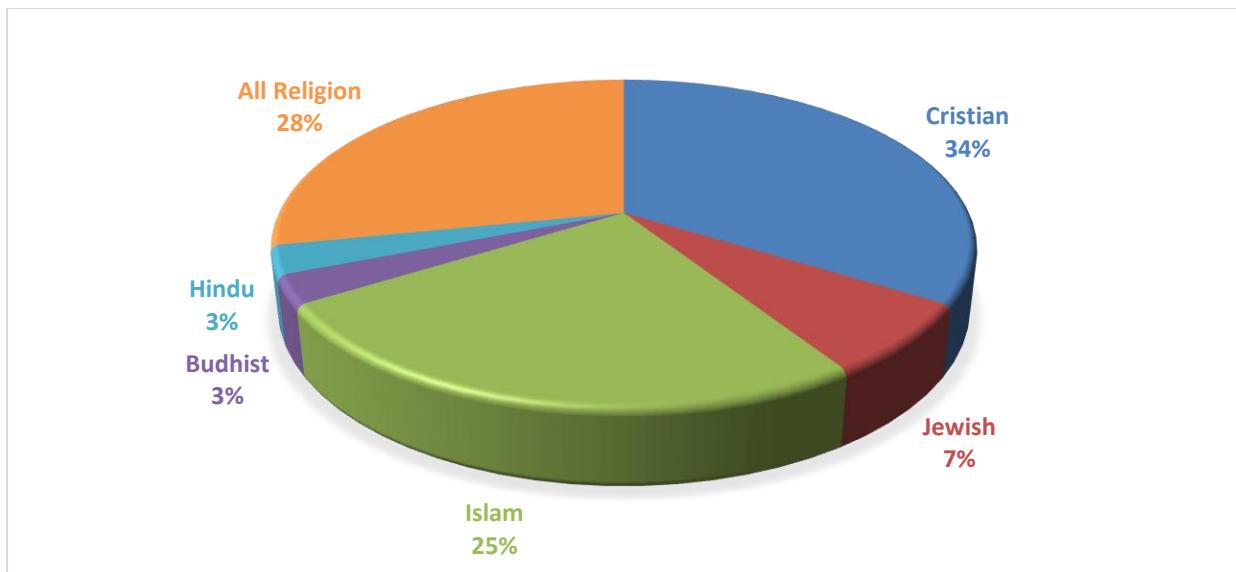


Figure 3. Diagram of Religious Areas in Science and Religion Learning.

Christianity and Islam are the predominant religions studied in the context of science education. However, research on Hinduism and Buddhism has significantly increased, particularly in South and Southeast Asia. This focus often aims to connect religious teachings with scientific concepts such as creation, evolution, and environmental sustainability. This trend reflects a global movement toward promoting holistic education that integrates spiritual and rational values.

To answer the research question "What teaching methods of science and religion

integration can be observed in articles published between 2015 and 2024?", we identified and categorized the learning methods used or recommended in articles on science and religion integration between 2015 and 2024. This process involved manually reviewing the articles' contents to extract information related to the methods using simple quantitative calculations to obtain an overview of the distribution of method use. This analysis thus revealed the most frequently occurring learning methods. A summary of the results of the grouping of these learning methods is presented in Table 7.

Table 7. Teaching methods for understanding science and religion

Method	Freq
Discussion	16
Lecture	7
Questions and Answer	5
Experiment	2
Drill	2
Demonstration	0
Others	23
Total	55

Various teaching methods are employed to integrate religion and science within educational contexts. Among these, the discussion method stands out as the most widely used approach, wherein educators

encourage students to express their viewpoints regarding the harmony between science and religion. This method can inspire educators, motivating students to explore the relationship between these two fields. The trend of

researching the intersection of religion and science in education reflects global efforts to develop culturally and spiritually relevant curricula, while simultaneously promoting scientific literacy. With diverse approaches and emphases across different countries, this research holds significant potential for fostering a more inclusive, adaptive, and sustainable educational model. The integration of religion and science not only helps narrow the gaps between differing perspectives and nurtures a generation equipped with critical thinking skills and an appreciation for diversity. Numerous studies indicate that integrating science and religion into science education can enhance student engagement. Learners often find themselves more personally connected to the material, which imbues their learning with greater significance. Additionally, this approach can help address cognitive conflicts that may arise between religious beliefs and scientific understanding.

CONCLUSION

In conclusion, the analysis of global trends in science and religion research in education reveals several key findings. In particular, the countries that have contributed the most to this body of literature include the UK, the US, and Indonesia. Biology is the most frequently discussed topic, particularly the theory of evolution and cosmology. In contrast, the most frequently involved religious field in scientific discourse is Christianity, particularly in Western countries. Furthermore, the discussion method remains the preferred approach to addressing both subjects in the classroom.

REFERENCES

Aini, R. Q., Stewart, M., Brownell, S. E., & Barnes, M. E. (2024). Exploring patterns of evolution acceptance, evolution understanding, and religiosity among college biology students in the United States. *Evolution: Education and Outreach*, 17(1).

<https://doi.org/10.1186/s12052-024-00207-y>

Alkaher, I., Shmueli, M., & Dreyfus, A. (2020). “Let’s talk about it”—explicit discussions as away to reduce the resistance of religious jewish science teachers to learning and teaching about evolution: A case study. *Education Sciences*, 10(11): 1–24.
<https://doi.org/10.3390/educsci1011029>

8
Ardi, A., Lufri, L., Amran, A., Kosasih, A., & Hervi, F. (2024). The effect of Islam and science integration implementing on science learning in Indonesia: a meta-analysis. *International Journal of Evaluation and Research in Education*, 13(4): 2594–2602.
<https://doi.org/10.11591/ijere.v13i4.27632>

Barnes, M. E., Supriya, K., Dunlop, H. M., Hendrix, T. M., Sinatra, G. M., & Brownell, S. E. (2020). Relationships between the religious backgrounds and evolution acceptance of black and hispanic biology students. *CBE Life Sciences Education*, 19(4): 1–14.
<https://doi.org/10.1187/cbe.19-10-0197>

Barnes, M. E., Truong, J. M., & Brownell, S. E. (2017). Experiences of judeo-christian students in undergraduate biology. *CBE Life Sciences Education*, 16(1).
<https://doi.org/10.1187/cbe.16-04-0153>

Billingsley, B., Abedin, M., & Nassaji, M. (2020). Primary school students’ perspectives on questions that bridge science and religion: Findings from a survey study in England. *British Educational Research Journal*, 46(1): 177–204.
<https://doi.org/10.1002/berj.3574>

Billingsley, B., Brock, R., Taber, K. S., & Riga, F. (2016). How Students View the Boundaries Between Their Science and Religious Education Concerning the Origins of Life and the Universe. *Science Education*, 100(3): 459–482.
<https://doi.org/10.1002/sce.21213>

Billingsley, B., Taber, K., & Nassaji, M. (2021). Scientism, creationism or category error? A cross-age survey of

secondary school students' perceptions of the relationships between science and religion. *Curriculum Journal*, 32(2): 334–358. <https://doi.org/10.1002/curj.83>

Black, P. (2017). Christian beliefs and values in science and religious education: an essay to assist the work of teachers of both subjects. *International Studies in Catholic Education*, 9(2): 206–222. <https://doi.org/10.1080/19422539.2017.1360612>

Brás, J. G., Gonçalves, M. N., & Robert, A. (2018). The Jesuits in Portugal: The communion of science and religion. *HSE Social and Education History*, 7(1): 1–25. <https://doi.org/10.17583/hse.2018.2910>

Chan, J., & Erduran, S. (2023). The Impact of Collaboration Between Science and Religious Education Teachers on Their Understanding and Views of Argumentation. *Research in Science Education*, 53(1): 121–137. <https://doi.org/10.1007/s11165-022-10041-1>

Chang, C. Y., Yeh, T. K., & Barufaldi, J. P. (2010). The positive and negative effects of science concept tests on student conceptual understanding. *International Journal of Science Education*, 32(2): 265–282. <https://doi.org/10.1080/09500690802650055>

Darren M Slade. (2020). *Socio-Historical Examination of Religion and Ministry, Volume 2, Issue 1: A ... - Google Buku*. https://books.google.co.id/books?hl=id&lr=&id=xwLtDwAAQBAJ&oi=fnd&pg=PA122&dq=Identifying+the+Conflict+between+Religion+and+Science&ots=7o4Hm8FlqB&sig=lw6VIZW3itYOoyvRUuZDRLLbDOE&redir_esc=y#v=onepage&q=Identifying%20the%20Conflict%20between%20Religion%20and%20Science&f=false

Davison, A. (2022). SCIENCE AND SPECIFICITY: INTERDISCIPLINARY TEACHING BETWEEN THEOLOGY, RELIGION, AND THE NATURAL SCIENCES. *Zygon®*, 57(1): 233–243. <https://doi.org/10.1111/zygo.12784>

Davoodi, T., & Lombrozo, T. (2022). Explaining the Existential: Scientific and Religious Explanations Play Different Functional Roles. *Journal of Experimental Psychology: General*, 151(5): 1199–1218. <https://doi.org/10.1037/xge0001129.sup>

Demelash, M. (2021, May). The Ethiopian Orthodox Church Education and Important Practices to the Modern Science and Mathematics Education. : : *International Conference on Arts, Education, and Business (ICAEB-21)*.

Edwards, B. A., Roberts, J. A., Bowen, C., Brownell, S. E., & Barnes, M. E. (2022). An exploration of how gender, political affiliation, or religious identity is associated with comfort and perceptions of controversial topics in bioethics. *Advances in Physiology Education*, 46(2): 268–278. <https://doi.org/10.1152/advan.00008.2022>

Elizabeth Barnes, M., Supriya, K., Zheng, Y., Roberts, J. A., & Brownell, S. E. (2021). A new measure of students' perceived conflict between evolution and religion (PCoRE) is a stronger predictor of evolution acceptance than understanding or religiosity. *CBE Life Sciences Education*, 20(3). <https://doi.org/10.1187/cbe.21-02-0024>

Elkalmi, R. M., Dyab, E., Suhaimi, A. M., Blebil, A. Q., Elnaem, M. H., Jamshed, S., & Gajdács, M. (2021). Attitude, familiarity and religious beliefs about vaccination among health science and non-health science students in a malaysian public university. *European Journal of Investigation in Health, Psychology and Education*, 11(4): 1462–1473. <https://doi.org/10.3390/ejihpe11040104>

Eminoğlu, S., Haşıloğlu, M. A., & Keskin, B. (2020). A Qualitative Study on the Use of the Concepts and Subjects of Life Sciences in Religion Courses. *Mimbar Sekolah Dasar*, 7(3): 327–347. <https://doi.org/10.17509/mimbar-sd.v7i3.29183>

Erduran, S. (2020). Argumentation in science and religion: match and/or mismatch when applied in teaching and learning? *Journal of Education for Teaching*, 46(1): 129–131. <https://doi.org/10.1080/02607476.2019.1708624>

Erduran, S., Guilfoyle, L., & Park, W. (2022). Science and Religious Education Teachers' Views of Argumentation and Its Teaching. *Research in Science Education*, 52(2): 655–673. <https://doi.org/10.1007/s11165-020-09966-2>

Erduran, S., Guilfoyle, L., Park, W., Chan, J., & Fancourt, N. (2019). Argumentation and interdisciplinarity: reflections from the Oxford Argumentation in Religion and Science Project. *Disciplinary and Interdisciplinary Science Education Research*, 1(1). <https://doi.org/10.1186/s43031-019-0006-9>

Fahmi Lathif, Y., Marwoto, P., & Susilaningsih, E. (2024). Student Perceptions of Science Learning at Tahfidz Boarding School. In *Pegem Journal of Education and Instruction* (Vol. 14, Issue 1).

Fancourt, N., & Guilfoyle, L. (2022). Interdisciplinary perspective-taking within argumentation: students' strategies across science and religious education. *Journal of Religious Education*, 70(1): 1–23. <https://doi.org/10.1007/s40839-021-00143-9>

Ferguson, D. G., Larsen, R. A., Bailey, E. G., & Jensen, J. L. (2024). Predicting evolution acceptance among religious students using the predictive factors of evolution acceptance and reconciliation (pFEAR) instrument. *Evolution: Education and Outreach*, 17(1). <https://doi.org/10.1186/s12052-024-00201-4>

Francis, L. J., Astley, J., & McKenna, U. (2019). 'Science disproves the biblical account of creation': exploring the predictors of perceived conflict between science and religion among 13- to 15-year-old students in the UK. *British Journal of Religious Education*, 41(2): 188–201. <https://doi.org/10.1080/01416200.2018.1540399>

Guilfoyle, L., Erduran, S., & Park, W. (2021a). An investigation into secondary teachers' views of argumentation in science and religious education. *Journal of Beliefs and Values*, 42(2): 190–204. <https://doi.org/10.1080/13617672.2020.1805925>

Guilfoyle, L., Erduran, S., & Park, W. (2021b). An investigation into secondary teachers' views of argumentation in science and religious education. *Journal of Beliefs and Values*, 42(2): 190–204. <https://doi.org/10.1080/13617672.2020.1805925>

Guilfoyle, L., Hillier, J., & Fancourt, N. (2023). Students' argumentation in the contexts of science, religious education, and interdisciplinary science-religious education scenarios. *Research in Science and Technological Education*, 41(2): 759–776. <https://doi.org/10.1080/02635143.2021.1947223>

Gusenbauer, M., & Haddaway, N. R. (2020). Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. *Research Synthesis Methods*, 11(2): 181–217. <https://doi.org/10.1002/jrsm.1378>

Hackett, C., Cooperman, A., & Ritchey, K. 419. (2015). *The Future of World Religions: Population Growth Projections*. www.pewresearch.org

Han, H., & Røkenes, F. M. (2020). Flipped Classroom in Teacher Education: A Scoping Review. In *Frontiers in Education* (Vol. 5). Frontiers Media S.A. <https://doi.org/10.3389/feduc.2020.601593>

Hanley, P., Bennett, J., & Ratcliffe, M. (2014). The Inter-relationship of Science and Religion: A typology of engagement. *International Journal of Science Education*, 36(7): 1210–1229.

https://doi.org/10.1080/09500693.2013.853897

Imaduddin, M., & Eilks, I. (2024). A scoping review and bibliometric analysis of educational research on water literacy and water education. *Sustainable Chemistry and Pharmacy*, 42. https://doi.org/10.1016/j.scp.2024.101833

Jan, Q., Ullah, S., Haq, U. B., & Xie, Y. (2023). Religion, Politics and Science Education in Pakistan: Analysis of Islamisation of Science Textbooks in Tribal Districts. *HTS Teologiese Studies/Theological Studies*, 79(1). https://doi.org/https://doi.org/10.4102/hts.v79i1.8151

Kidwell, J. H. (2024). Personal knowledge: Teaching place-based religious ethics for a climate emergency. *Journal of Moral Education*. https://doi.org/10.1080/03057240.2024.2362996

Lamanauskas, V. (2025). *Science and Technology Education: Expectation and Experiences. Proceedings of the 6th International Baltic Symposium on Science and Technology Education*, Šiauliai, 16–19 June, 2025. Scientia Socialis, Ltd. https://doi.org/10.33225/balticste/2025.07

Lega, S. (2021). Fostering Environmental Awareness in Science Education: Challenges and Opportunities. *International Journal of Scientific Development and Research*, 6. www.ijscr.org

Leicht, C., Sharp, C. A., LaBouff, J. P., Zarzeczna, N., & Esldon-Baker, F. (2022). Content Matters: Perceptions of the Science-Religion Relationship. *International Journal for the Psychology of Religion*, 32(3): 232–255. https://doi.org/10.1080/10508619.2021.2003111

Mansour, N. (2024). Exploring the Impact of Social, Cultural, and Science Factors on Students' STEM Career Preferences. *Research in Science Education*. https://doi.org/10.1007/s11165-024-10210-4

Manwaring, K. F., Jensen, J. L., Gill, R. A., Sudweeks, R. R., Davies, R. S., & Bybee, S. M. (2018). Scientific reasoning ability does not predict scientific views on evolution among religious individuals. *Evolution: Education and Outreach*, 11(1): https://doi.org/10.1186/s12052-018-0076-8

Masigol, H., Tumanian, T. G., & Azadegan, E. (2022). Modern sciences in religious Iran: An assessment of the educated Iranians' attitude toward biological evolution. *Vestnik Sankt-Peterburgskogo Universiteta, Filosofiya i Konfliktologiya*, 38(1): 110–121. https://doi.org/10.21638/SPBU17.2022.109

McLaren, P. (2020). Religious Nationalism and the Coronavirus Pandemic: Soul-Sucking Evangelicals and Branch Covidians Make America Sick Again. *Postdigital Science and Education*, 2(3): 700–721. https://doi.org/10.1007/s42438-020-00122-7

Mongeon, P., & Paul-Hus, A. (2016). The journal coverage of Web of Science and Scopus: a comparative analysis. *Scientometrics*, 106(1): 213–228. https://doi.org/10.1007/s11192-015-1765-5

Morgan, J. (2021). Overlapping Magisteria: Motivated Cognition and the Places Where Science and Religion Mingle. In *ELECTRONIC JOURNAL FOR RESEARCH IN SCIENCE & MATHEMATICS EDUCATION* (Vol. 25, Issue 3).

Mujtaba, T., & Reiss, M. (2022). The Development of an 'Attitudes to Science and Religion' Instrument for Secondary School Students: How Are the Attitudes of Students to Science and Religion Associated with Student Religion and Other Characteristics? *Education Sciences*, 12(12). https://doi.org/10.3390/educsci12120937

Munn, Z., Peters, M. D. J., Stern, C., Tufanaru, C., McArthur, A., & Aromataris, E.

(2018). Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. *BMC Medical Research Methodology*, 18(1). <https://doi.org/10.1186/s12874-018-0611-x>

Park, W., Erduran, S., & Guilfoyle, L. (2022). Secondary teachers' instructional practices on argumentation in the context of science and religious education. *International Journal of Science Education*, 44(8): 1251–1276. <https://doi.org/10.1080/09500693.2022.2074565>

Pearce, J., Stones, A., Reiss, M. J., & Mujtaba, T. (2021a). 'Science is purely about the truth so I don't think you could compare it to non-truth versus the truth.' Students' perceptions of religion and science, and the relationship(s) between them: religious education and the need for epistemic literacy. *British Journal of Religious Education*, 43(2): 174–189. <https://doi.org/10.1080/01416200.2019.1635434>

Pearce, J., Stones, A., Reiss, M. J., & Mujtaba, T. (2021b). 'Science is purely about the truth so I don't think you could compare it to non-truth versus the truth.' Students' perceptions of religion and science, and the relationship(s) between them: religious education and the need for epistemic literacy. *British Journal of Religious Education*, 43(2): 174–189. <https://doi.org/10.1080/01416200.2019.1635434>

Qolbiyah, A., M, A., & Zulhendri, Z. (2023). Konsep Integrasi Agama dan Sains Makna dan Sasarannya. *Jurnal Basicedu*. <https://jbasic.org/index.php/basicedu/article/view/5711>

Rahardjanto, A., Husamah, H., Hadi, S., & Lestari, N. (2024). Spirituality-based action competence for sustainability among prospective biology teacher in Indonesia. *JPBI (Jurnal Pendidikan Biologi Indonesia)*, 10(1): 70–84. <https://doi.org/10.22219/jpbi.v10i1.31621>

Rohmatulloh, R., Hasanah, A., Sahlani, L., & Zuhri, M. T. (2023). Energy-Saving Triangle: Internalizing Islamic Ethical Values on Energy Saving in Integrative Learning. *Religions*, 14(10). <https://doi.org/10.3390/rel14101284>

Saddam Hameed, A. M., & Salih Salih, L. I. (2016). *Journal of Education and Practice* www.iiste.org ISSN (Vol. 7, Issue 22). Online. www.elaph.com/Web/opinion

Scaramanga, J., & Reiss, M. J. (2023). Evolutionary stasis: creationism, evolution and climate change in the Accelerated Christian Education curriculum. *Cultural Studies of Science Education*, 18(3): 809–827. <https://doi.org/10.1007/s11422-023-10187-y>

Simpson, A., & Rios, K. (2019). Is science for atheists? Perceived threat to religious cultural authority explains U.S. Christians' distrust in secularized science. *Public Understanding of Science*, 28(7): 740–758. <https://doi.org/10.1177/0963662519871881>

Stahi-Hitin, R., & Yarden, A. (2022a). Evolution education in light of religious science teachers' and scientists' conceptions of evolution and religion. *Evolution: Education and Outreach*, 15(1). <https://doi.org/10.1186/s12052-022-00167-1>

Stahi-Hitin, R., & Yarden, A. (2022b). Evolution education in light of religious science teachers' and scientists' conceptions of evolution and religion. *Evolution: Education and Outreach*, 15(1). <https://doi.org/10.1186/s12052-022-00167-1>

Stahi-Hitin, R., & Yarden, A. (2022c). Scientists' and teachers' attitudes toward relating to religion when teaching evolution. *Evolution: Education and Outreach*, 15(1). <https://doi.org/10.1186/s12052-022-00176-0>

Stones, A., Pearce, J., Reiss, M. J., & Mujtaba, T. (2020). Students' Perceptions of Religion and Science, and How They

Relate: the Effects of a Classroom Intervention. *Religious Education*, 115(3): 349–363. <https://doi.org/10.1080/00344087.2020.1769537>

Suciati, R., Susilo, H., Gofur, A., Lestari, U., & Rohman, I. (2022). Millennial students' perception on the integration of Islam and science in Islamic universities. *Indonesian Journal of Islam and Muslim Societies*, 12(1): 31–57. <https://doi.org/10.18326/ijims.v12i1.31-57>

Sumarni, W., Faizah, Z., Subali, B., Wiyanto, W., & Ellianawati. (2020). The urgency of religious and cultural science in STEM education: A meta-data analysis. *International Journal of Evaluation and Research in Education*, 9(4): 1045–1054. <https://doi.org/10.11591/ijere.v9i4.20462>

Szopiak, M., & Kloser, M. (2024). Faith and STEM Education: A Path to Mutual Elevation in Catholic Schools. *Journal of Catholic Education*, 27(1): 70–80. <https://doi.org/10.15365/joce.2701042024>

Tiaynen-Qadir, T., Qadir, A., Vuolanto, P., & Hansen, P. (2021). Negotiations of science and religion in nordic institutions: An ethnographic approach. *Religions*, 12(1): 1–20. <https://doi.org/10.3390/rel12010045>

Tolman, E. R., Ferguson, D. G., Mann, M., Cordero, A. M., & Jensen, J. L. (2020). Reconciling evolution: Evidence from a biology and theology course. *Evolution: Education and Outreach*, 13(1). <https://doi.org/10.1186/s12052-020-00133-9>

Torkar, G., & Šorgo, A. (2020). Evolutionary content knowledge, religiosity and educational background of slovene preschool and primary school pre-service teachers. *Eurasia Journal of Mathematics, Science and Technology Education*, 16(7). <https://doi.org/10.29333/EJMSTE/7991>

Torres, A. C., Paiva, J., & Mouraz, A. (2021). High School Students' Questions About Science and Religion in School Debates with Scientists. *Eurasia Journal of Mathematics, Science and Technology Education*, 17(6): 1–12. <https://doi.org/10.29333/ejmste/10864>

Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garrity, C., ... Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. In *Annals of Internal Medicine* (Vol. 169, Issue 7, pp. 467–473). American College of Physicians. <https://doi.org/10.7326/M18-0850>

Umar, H. M., Hasan, H., & Sukarno. (2024). The Values and Role of Natural Science Education in Religious Moderation. *Asian Journal of Education and Social Studies*, 50(2): 121–131. <https://doi.org/10.9734/ajess/2024/v50i21264>

Umar, M., & Sukarno, S. (2022). The influence of fiqh insights and science literacy on student ability in developing Quran-based science. *International Journal of Evaluation and Research in Education*, 11(2): 954–962. <https://doi.org/10.11591/ijere.v11i2.22012>

Weiss, D. W. (1989). Science and Values. *Tradition: A Journal of Orthodox Jewish Thought*, 24(2): 150–160.

Wilson, J. A. (2018). Reducing Pseudoscientific and Paranormal Beliefs in University Students Through a Course in Science and Critical Thinking. *Science and Education*, 27(1–2): 183–210. <https://doi.org/10.1007/s11191-018-9956-0>

Woodford, P. J. (2020). Philosophy in the science classroom: How should biology teachers explain the relationship between science and religion to students? *Cultural Studies of Science Education*, 15(4): 937–950. <https://doi.org/10.1007/s11422-020-09997-1>

Woolley, M., Bowie, R. A., Hulbert, S., Thomas, C., Riordan, J. P., & Revell, L. (2024). Teachers' perspectives on the relationship between secondary school departments of science and religious education: Independence or mutual enrichment? *Curriculum Journal*, 35(3): 378–395.
<https://doi.org/10.1002/curj.233>

Zarman, W. (2016). The concept of nature in Islamic science teaching. *AIP Conference Proceedings*, 1708.
<https://doi.org/10.1063/1.4941196>