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Abstracts. Accurate characterization of subsurface petrophysical properties is a critical 

prerequisite for evaluating the suitability of geological formations for carbon capture and 

storage (CCS), particularly in identifying high-capacity reservoirs and effective sealing intervals. 

This study explores the use of a machine learning approach, Random Forest (RF) regression, 

for multi-attribute seismic inversion to predict porosity and acoustic impedance in the F3 

Block, offshore Netherlands. The integration of ten seismic attributes with two well log datasets 

enables the construction of predictive models capable of resolving complex lithological 

variations within deltaic settings. The RF algorithm’s robustness against geological noise and 

its ability to model nonlinear relationships offer significant advantages over conventional 

inversion workflows, especially in heterogeneous and interbedded formations. The results 

demonstrate that RF-based inversion produces petrophysical volumes with improved spatial 

continuity and alignment with depositional patterns, offering a promising avenue for CCS site 

screening and reservoir-seal evaluation. The method’s ability to capture subtle textural and 

facies changes also enhances understanding of potential CO₂ migration pathways and trap 

integrity. This research underscores the potential of data-driven inversion frameworks in 

supporting geoscientific decision-making for CCS development, particularly in data-limited or 

geologically complex offshore regions. 
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INTRODUCTION 

The accurate prediction of subsurface petrophysical properties, particularly porosity and 

acoustic impedance (AI), serves as a fundamental pillar in evaluating the feasibility of 

geological formations for carbon storage. In the context of Carbon Capture and Storage (CCS), 

where the safe and permanent sequestration of CO₂ is paramount, these properties govern 

not only the storage capacity and injectivity of the reservoir but also the sealing effectiveness 

of overlying caprocks. Porosity dictates the available pore volume that can host injected CO₂, 

while AI provides critical insights into lithology, fluid content, and mechanical continuity. These 

parameters are essential in assessing both the suitability of the reservoir and the integrity of 

the caprock system, which must remain impermeable to ensure containment over geologic 

timescales. Traditionally, seismic inversion techniques—such as deterministic, stochastic, or 

geostatistical approaches—have been widely applied to convert seismic reflection data into 

quantitative models of the subsurface. However, these conventional approaches often rely on 

simplifying assumptions, such as linearity and stationarity, which may be invalid in the 

presence of heterogeneous sedimentary sequences or structurally deformed caprocks. The 

effectiveness of such methods is further constrained by their strong dependence on a priori 

models and well log data, which are frequently sparse or spatially limited in CCS candidate 

sites. As a result, the inversion outputs can become biased or unstable, particularly in areas 

where seismic amplitudes are influenced by overlapping effects of stratigraphy, diagenesis, 

and fluid variability. These limitations pose significant challenges in CCS-focused settings, 

where accurate delineation of both storage and seal units is critical to risk mitigation and long-

term performance assessment. In light of these challenges, data-driven methods have 

emerged as transformative alternatives that offer improved flexibility and adaptability. In 

particular, machine learning (ML) approaches provide a framework capable of capturing 

nonlinear relationships and high-dimensional patterns embedded in seismic datasets without 

requiring explicit physical assumptions [1]. 

Within the growing suite of machine learning (ML) tools, Random Forest (RF) has gained 

considerable traction as a robust, interpretable, and practically efficient algorithm, particularly 

under the geophysical and geological uncertainties typical of Carbon Capture and Storage 

(CCS) reservoirs. As an ensemble learning method, RF aggregates the outcomes of multiple 

decision trees trained on diverse data subsets and feature combinations, thereby reducing 

prediction variance and guarding against overfitting, which is an essential advantage when 

working with seismic data that are often noisy, spatially incomplete, or affected by acquisition 

footprint. In CCS-specific contexts, including caprock characterization, this robustness 

becomes critical for detecting subtle variations in acoustic impedance or lateral seal continuity 

that may influence long-term containment integrity. A further strength of RF lies in its ability 

to rank feature importance, allowing geoscientists to identify which seismic attributes most 

influence inversion outcomes, thus enhancing trust in model transparency. Zou et al. [1] 

demonstrated the efficacy of RF in predicting porosity from multiple seismic attributes, 

reporting strong predictive performance and the ability to quantify uncertainty through 

ensemble dispersion metrics. Such capabilities are especially valuable in CCS site screening 

and development phases, where uncertainty analysis informs risk-based decision making for 

storage integrity and monitoring strategy design. Compared to more complex ML models such 

as deep neural networks, RF offers a more interpretable yet competitive alternative, although 
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it may be less effective in capturing deep hierarchical or temporal patterns. More broadly, ML 

methods, including RF, remain dependent on representative training datasets and may 

struggle when extrapolated to geologies outside their training domain. Despite these 

limitations, RF provides a compelling balance between accuracy, explainability, and resilience 

to noisy input, making it a strong candidate for practical deployment in CCS inversion 

workflows, particularly in challenging environments where traditional physics-based methods 

fall short. 

One of the most significant advantages of RF in this context lies in its integration with multi-

attribute inversion techniques. By incorporating multiple seismic-derived attributes—each 

with distinct physical sensitivity to lithological and fluid variations—into a supervised learning 

model, RF can offer enhanced predictions that reflect the complex realities of subsurface 

systems. For instance, attributes such as instantaneous amplitude, Hilbert envelope, and RMS 

amplitude may each respond differently to porosity variations, fluid substitution effects, or 

thin-bed stratigraphy. When used collectively, these attributes allow for a richer and more 

discriminative inversion process, improving the delineation of CO₂ reservoir zones, internal 

heterogeneities, and potential migration pathways. Topór and Sowiżdżał [2] applied RF in 

conjunction with other ML tools to estimate porosity and saturation types in Miocene 

sandstone formations, finding that ensemble methods could successfully resolve lithofacies 

variability and fluid distribution that conventional inversion often overlooks. Their work 

highlights how ML-based multi-attribute inversion facilitates a more spatially continuous, 

geologically coherent, and physically plausible prediction of reservoir properties—critical traits 

for CCS site characterization, where decisions must balance subsurface uncertainty with 

operational feasibility. In addition, this approach allows researchers to iteratively refine 

attribute selection and model architecture based on feedback from uncertainty maps and 

validation data, further boosting confidence in the interpreted results. 

The Dutch sector of the North Sea—specifically the F3 Block—presents an ideal natural 

laboratory to test and deploy RF-based seismic inversion workflows under CCS-relevant 

conditions. The F3 Block hosts a publicly available, high-resolution seismic dataset alongside 

two key well logs, enabling method development and benchmarking in a geologically diverse 

environment. The block’s subsurface is typified by deltaic siliciclastic systems, comprising 

interbedded sandstone–shale units, sinuous channel deposits, and locally deformed caprock 

analogs. Such features are representative of many storage complexes currently under 

consideration in Europe’s North Sea and other continental shelf basins, making the site a 

meaningful proxy for broader CCS applications. Safari et al. [3] previously emphasized how 

attribute continuity and structural smoothing significantly improved seismic interpretation in 

this area, aiding fault detection and stratigraphic delineation. Nevertheless, accurately 

predicting porosity and AI remains challenging due to overlapping seismic signatures, weak 

reflectors in low-contrast zones, and the fine layering of deltaic facies. By applying a Random 

Forest-based multi-attribute inversion strategy to the F3 Block, this study aims to bridge these 

interpretational gaps, delivering spatially refined maps of porosity and impedance that honor 

well log constraints and reveal internal heterogeneities of potential CO₂ storage intervals. In 

so doing, the method demonstrates how machine learning can enhance our ability to screen, 

characterize, and monitor CCS sites using conventional seismic datasets—thus offering a 

scalable and data-efficient pathway for subsurface decarbonization planning. 
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RESEARCH METHODS 

Machine Learning 

Machine learning (ML) refers to a suite of data-driven algorithms that enable computational 

models to identify patterns and make data-based predictions without being explicitly 

programmed. In the context of Carbon Capture and Storage (CCS), where accurate estimation 

of porosity, acoustic impedance, and seal integrity is crucial for injectivity and containment 

assessment, ML provides a flexible framework for seismic inversion and petrophysical property 

prediction. Unlike traditional deterministic inversion methods, which often rely on linear 

assumptions and prior model constraints, ML can model nonlinear, high-dimensional 

relationships between seismic attributes and rock properties, making it particularly 

advantageous in thinly bedded, heterogeneous, or poorly constrained formations. As 

highlighted by Bishop, ML is grounded in probabilistic modeling and statistical inference, with 

learning defined as the ability to generalize from past observations [4]. This foundation has 

enabled ML models to surpass traditional methods in resolution and adaptability, particularly 

in complex geologies common to CCS sites. The rapid growth in geophysical data availability, 

combined with increased computational capacity, has catalyzed the use of ML across Earth 

science domains, including CCS reservoir monitoring and seal characterization [5]. 

Recent applications underscore ML’s capacity to enhance seismic inversion outcomes. For 

instance, Anjom et al. applied a data-driven AVO inversion using ML to resolve subtle gas-

bearing sand signatures, a task where conventional inversion often fails due to thin-bed 

interference and amplitude attenuation [6]. Although their study focused on offshore Egypt, 

the challenges addressed mirror those found in depleted gas fields considered for CO₂ 

injection. Similarly, Wu et al. employed Random Forest and other ensemble models to fuse 

seismic velocities, resistivity, and borehole data for lithological classification, demonstrating 

improved delineation of reservoir facies and internal baffles [7]. These examples show that ML 

models, and RF in particular, can integrate disparate geophysical inputs to resolve 

petrophysical targets with higher sensitivity and spatial continuity than deterministic methods. 

In CCS workflows, this enables more accurate identification of injectivity zones, barriers to flow, 

and potential leakage pathways—insights that are critical for site feasibility and risk mitigation. 

Moreover, the evolution of physics-guided machine learning frameworks has further improved 

model reliability and physical consistency. By incorporating geophysical constraints such as 

conservation laws and domain-specific knowledge, these hybrid approaches reduce overfitting 

and enhance generalization—key benefits in CCS where well control is often sparse. Karpatne 

et al. argued for embedding physical principles into ML architectures to ensure geoscientific 

validity, laying the foundation for physics-informed learning [8]. This paradigm has been 

successfully applied in CCS-relevant tasks, including the hybrid CNN framework proposed by 

Hu et al. to predict porosity and sandbody thickness in the Bohai Bay Basin, which 

outperformed conventional inversion techniques [9]. In addition, ML is gaining ground in 

microseismic monitoring for CO₂ injection, where real-time classification and spatial 

localization of induced events play a crucial role in operational safety [10]. Collectively, these 

advances underscore the growing importance of ML as not merely a computational add-on, 

but as a core inversion strategy capable of resolving the nonlinear, uncertain, and 

stratigraphically complex nature of CO₂ storage formations. 
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Random Forest in Seismic Inversion 

Random Forest (RF) is a tree-based ensemble algorithm that relies on stochastic sampling to 

construct multiple decision trees, each trained on different bootstrapped subsets of the data 

and a random selection of features [11]. While the ensemble framework inherently improves 

model generalization, its performance remains sensitive to key hyperparameters, particularly 

in high-dimensional geophysical applications such as seismic inversion for CO₂ storage 

assessment. In this study, the RF model was carefully tuned to balance predictive accuracy, 

computational efficiency, and resistance to overfitting factors especially critical in 

heterogeneous and data-limited CCS reservoirs. The number of trees (n_estimators) was set to 

100 to ensure sufficient diversity across the ensemble while maintaining tractable runtime 

during full-section inference. The maximum depth (max_depth) was limited to 12, a value 

selected based on iterative testing to allow each tree to learn meaningful nonlinear 

interactions between multi-attribute inputs and petrophysical outputs, without fragmenting 

the feature space excessively or responding to spurious variations in seismic amplitude. 

Shallower depths led to underfitting of log–seismic relationships, while deeper trees increased 

variance without improving correlation at the well locations. 

Although the parameters controlling node purity such as min_samples_split and 

min_samples_leaf were kept at their default values, their regularizing effects were enhanced 

by the use of a ±3 sample windowing scheme during training data generation. This windowed 

approach increased the density of training examples derived from each log curve, while 

embedding local temporal context that helps the model learn transitions in seismic response 

across thin-bed and vertically heterogeneous facies. Each training instance comprised a 10-

dimensional feature vector built from seismic-derived attributes, including amplitude, 

gradient, Hilbert envelope, RMS, relative acoustic impedance, low-pass and curvature 

components. These features were selected for their sensitivity to lithological contrasts, fluid-

related effects, and stratigraphic geometry, all of which govern CO₂ injectivity and caprock 

integrity in CCS systems. The input attributes were standardized prior to training using z-score 

normalization to ensure fair contribution across features and reduce model sensitivity to scale 

disparities. 

Independent RF models were trained for porosity and acoustic impedance using calibration 

data from two wells (Well 34 and Well 61) strategically positioned within the F3 Block. Once 

trained, the models were deployed across the full seismic section to predict spatial 

distributions of AI and porosity, producing continuous property volumes that were evaluated 

against well log measurements. The resulting correlation coefficients ranged from 0.90 to 0.94 

at the calibration wells, indicating strong alignment between predicted and actual log values. 

These results suggest that the selected RF configuration offers an effective balance between 

model complexity and stability, capturing the nonlinear seismic–log relationships required for 

reliable petrophysical inversion in CCS reservoir settings. As emphasized by Breiman [11], the 

strength of the Random Forest algorithm lies in its ability to reduce variance through ensemble 

averaging, which in this case proved essential for maintaining prediction consistency across a 

geologically variable and stratigraphically complex setting. 

 

Multi-attribute 
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Multi-attribute seismic inversion offers significant value in Carbon Capture and Storage (CCS) 

site evaluation by integrating multiple seismic-derived attributes to refine the prediction of 

key subsurface properties critical to CO₂ storage feasibility. Each attribute carries unique 

geological sensitivities: amplitude aids in identifying impedance contrasts associated with 

reservoir-caprock interfaces; phase reveals reflector continuity relevant for trap integrity; 

frequency attributes relate to bed thickness crucial for vertical sealing; and similarity enhances 

the delineation of structural boundaries, which can influence potential leakage pathways [18]. 

In the F3 Block of the Dutch North Sea, a well-documented CCS analogue, seismic attributes 

such as similarity, dip, and curvature have shown effectiveness in highlighting buried fluvial 

channels and deltaic stratigraphy—features that critically impact both injectivity and 

containment reliability [19]. 

Kabaca emphasized that attributes like instantaneous phase, raw amplitude, and RMS 

amplitude were instrumental in delineating stratigraphic layering and depositional trends 

across the F3 Block [20]. These characteristics are not only relevant for hydrocarbon systems 

but are equally essential in evaluating the continuity of potential storage zones and the lateral 

extent of sealing facies in CCS settings. Additionally, the utility of these attributes in horizon 

flattening and channel boundary mapping supports the interpretation of baffle geometries 

and sedimentary heterogeneities, which may act as either migration barriers or vertical leakage 

conduits within storage formations [21]. 

In CCS-focused inversion workflows, multi-attribute inputs are often integrated with machine 

learning algorithms like Random Forest to enhance the prediction of porosity and acoustic 

impedance—both of which are foundational to assessing reservoir capacity and seal integrity. 

Zou et al. applied a multi-attribute Random Forest framework and successfully improved 

porosity prediction accuracy while providing ensemble-based uncertainty metrics, which are 

essential in risk-informed CCS site screening [22]. In a parallel study within the same F3 Block, 

the inclusion of attributes such as seismic energy and envelope amplitude within inversion 

modeling enabled better lithological differentiation, helping to distinguish porous injection 

zones from low-permeability barriers [23]. Furthermore, advanced attribute integration 

techniques like 3D Wheeler transformation, when combined with curvature and dip, allowed 

for the reconstruction of paleo-geomorphological trends and stratigraphic architecture—

information pivotal in identifying compartmentalization risks and migration pathways in a CCS 

scenario [24]. 

Collectively, these studies underscore that multi-attribute seismic inversion, originally 

developed for hydrocarbon exploration, holds substantial potential for CCS site assessment. 

By capturing geological complexity and enhancing interpretability, this method supports a 

more informed evaluation of both storage capacity and containment security—two pillars of 

any viable CCS operation.. 

 

Seismic Inversion 

Seismic inversion remains a cornerstone in geophysical reservoir characterization, providing a 

structured methodology for transforming reflection-based seismic amplitudes into spatially 

resolved subsurface property volumes. Among its outputs, acoustic impedance (AI) stands as 

a fundamental parameter due to its sensitivity to lithological contrasts and fluid content, 
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offering a critical linkage between seismic response and petrophysical interpretation [25]. In 

clastic-dominated settings such as deltaic or fluvial reservoirs, AI serves not only as a lithology 

proxy but also as a first-order predictor for properties like porosity and permeability. In the F3 

Block of the Dutch North Sea well-documented CCS analogue characterized by interbedded 

sandstone–shale sequences model-based post-stack inversion has been successfully applied 

to derive AI volumes that illuminate sedimentary architectures, enabling the identification of 

reservoir-prone intervals and internal facies transitions [25]. However, traditional inversion 

approaches remain bounded by intrinsic limitations, including reliance on low-frequency initial 

models, assumption of linear relationships between reflectivity and impedance, and sensitivity 

to seismic noise and vertical resolution loss due to wavelet bandwidth constraints. These 

challenges are especially pronounced in CCS projects, where subtle contrasts between seal 

and reservoir units and thin-bed heterogeneity can govern the long-term containment of 

injected CO₂. 

To address these constraints, recent developments have introduced data-driven 

methodologies that augment or replace conventional workflows with machine learning (ML)-

based models trained on seismic-derived attributes. As discussed in the previous section, 

multi-attribute seismic analysis allows for the extraction of amplitude, phase, curvature, and 

frequency-domain information each with specific geological sensitivities that together provide 

a richer input set for supervised inversion. These attributes are subsequently fed into inversion 

frameworks such as Random Forest or deep neural networks, which can capture nonlinear 

relationships between seismic patterns and rock properties with greater flexibility than 

physics-based transforms alone. For instance, Jo et al. [26] presented a deep learning 

framework that integrates prestack seismic data to predict porosity directly, showing improved 

adaptability to heterogeneous lithologies where conventional AI-to-porosity transformations 

falter. Similarly, Mojeddifar et al. [27] proposed a pseudo-forward modeling strategy that 

employs similarity-based attributes to estimate porosity without relying on a fixed physical 

kernel, thus mitigating the rigidity of traditional inversion algorithms. 

Despite these advancements, ML-based inversion remains susceptible to challenges such as 

data quality dependence, overfitting in sparse training conditions, and limited generalizability 

beyond the training domain. Moreover, while these methods can reproduce high-frequency 

variations in predicted properties, their effective vertical resolution remains fundamentally 

limited by the seismic wavelet’s bandwidth and signal-to-noise ratio factors that must be 

carefully considered in any CCS feasibility study. To enhance reliability, hybrid strategies that 

embed physical constraints into ML architectures are increasingly being explored, allowing 

geoscientists to harness the pattern recognition capabilities of data-driven models while 

maintaining consistency with geophysical principles. Collectively, these trends suggest a 

paradigm shift where multi-attribute inversion evolves from a deterministic signal-matching 

process into a probabilistic learning framework, offering improved robustness, better handling 

of uncertainty, and a deeper integration of geological complexity all of which are essential for 

risk-informed decision-making in CO₂ storage site evaluation. 

 

Methodology 

Following the upsampling of the seismic data to a 2 ms sampling interval, a diverse set of ten 

seismic attributes was extracted from each trace to enhance subsurface interpretability. These 
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attributes were selected for their capacity to highlight various aspects of geological variability, 

ranging from amplitude-based contrasts to frequency and geometry-related patterns. The 

attribute set included raw amplitude, RMS amplitude, Hilbert envelope, instantaneous phase, 

amplitude gradient, curvature, relative acoustic impedance, the derivative of the envelope, and 

two Gaussian-filtered amplitude components. The rationale behind this selection was 

grounded in both geophysical theory and geological applicability. Attributes such as RMS and 

envelope are known to respond to energy concentrations that often correlate with porous or 

gas-charged zones. Curvature and gradient tend to accentuate subtle structural features like 

channel flanks or compaction-related flexures that could compromise seal integrity. The 

inclusion of smoothed and derivative forms was intended to capture multi-scale signal 

variations, providing sensitivity to both fine layering and broader stratigraphic architecture. 

Post-model analysis confirmed that envelope, curvature, and RMS amplitude were consistently 

the most influential attributes for both porosity and acoustic impedance prediction, aligning 

with their expected geological importance and reinforcing the reliability of the attribute 

framework. 

Rather than relying on a conventional model-based inversion that begins with an assumed 

starting model and forward modeling, this study adopted a data-guided approach in which 

the relationships between seismic attributes and petrophysical properties were learned from 

the available well control. Once trained using the calibration from Well 34 and Well 61, the 

method was applied trace by trace across the entire seismic section to produce continuous 

volumes of predicted porosity and acoustic impedance. These volumes revealed features 

consistent with known deltaic stratigraphy in the F3 Block, including lateral facies transitions, 

multi-story channel fills, and vertically persistent sealing units. The impedance volumes 

captured the broad internal architecture of the reservoir system, while the porosity predictions 

helped distinguish between cleaner sand bodies and heterolithic intervals with limited 

injectivity. This mapping was especially useful in identifying potential injection zones and the 

continuity of caprock analogs, both of which are essential for evaluating containment integrity 

in CO₂ storage scenarios. The results not only aligned well with the interpreted geological 

framework but also extended the predictive capacity into areas lacking direct borehole data, 

offering a practical tool for reservoir screening and early-phase CCS planning. 

To address the need for confidence in the predictions, the inversion outputs were accompanied 

by a basic uncertainty evaluation. This was achieved by quantifying the variability among 

individual predictions within the model ensemble for each sample location. The resulting 

ensemble spread served as a proxy for uncertainty, highlighting intervals where the model 

exhibited low internal agreement. As expected, higher uncertainty tended to cluster near facies 

transitions, thinly bedded sequences, and low-reflectivity zones where seismic signals are 

inherently ambiguous. Conversely, thick, well-bounded units such as clean sand packages and 

continuous shales showed relatively low prediction spread. These spatial patterns were further 

validated against well log comparisons, where residual analysis confirmed that the largest 

deviations between predicted and observed values occurred near lithological boundaries or in 

zones of acoustic impedance overlap. Although overall model performance remained strong—

with correlation coefficients between 0.90 and 0.94 across both wells—the inclusion of 

uncertainty diagnostics added another layer of interpretive value. This information is 

particularly relevant for CCS feasibility studies, where understanding the degree of confidence 

in reservoir and seal predictions can inform both risk management and monitoring strategy 

design. 
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Together, the integration of carefully selected seismic attributes, data-driven property 

prediction, and ensemble-based uncertainty screening provides a robust and transferable 

framework for subsurface evaluation. The method is well suited to clastic environments with 

limited well control and strong lateral variability, such as the F3 Block and other deltaic 

reservoirs under consideration for carbon storage. By moving beyond deterministic workflows 

and embracing a probabilistic understanding of geophysical response, this approach supports 

more informed decisions about injectivity, seal reliability, and long-term containment 

performance in CO₂ storage projects. 

  

 

 
Figure 1. Random Forest Workflow 
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RESULTS AND DISCUSSION 

 
Figure 2. 2-D Inversion AI and Porosity Section 

Figure 2 provides insight into the subsurface geological architecture of the F3 Block, as 

revealed by the spatial distribution of porosity and acoustic impedance. The alignment of high-

porosity zones with low acoustic impedance values suggests the presence of sand-rich 

depositional environments, likely distributary channels or mouth bars, which are characteristic 

of deltaic systems [20]. These sand-dominated facies are not only relevant in hydrocarbon 

plays, but also critically important as potential CO₂ injection intervals in a CCS framework, due 

to their higher storage capacity and injectivity. The curvilinear geometry of these features, 

along with abrupt changes in impedance boundaries, further supports the interpretation of 

channel complexes bordered by shale-rich levees or floodplain deposits [18]. Such geometries 

often define natural flow baffles or barriers, which may enhance long-term CO₂ containment 
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by restricting lateral plume migration. These lateral facies variations are typical in delta lobe 

switching and multi-phase progradation observed in the F3 setting [3]. 

The seismic expression of possible minor faulting or compactional deformation can also be 

inferred from the discontinuities and impedance breaks across the map. These features, while 

subtle, may play an important role in compartmentalizing the reservoir and controlling lateral 

fluid flow. In CCS contexts, even minor structural discontinuities can influence pressure build-

up or act as potential leak pathways, making their identification essential for long-term risk 

mitigation. The clarity of such features in the AI map demonstrates the effectiveness of multi-

attribute modeling in enhancing subsurface interpretation [25]. Additionally, the coherence 

between predicted petrophysical properties and geological structures illustrates the 

advantage of using ensemble learning techniques for complex stratigraphic frameworks [1]. 

 

Another important geological interpretation from Figure 2 involves the identification of 

channel stacking and possible stratigraphic traps. The vertical and lateral continuity of low-

impedance, high-porosity bodies suggests multi-generational channel systems, indicating 

phases of deposition followed by abandonment and avulsion, typical in wave- and tide-

influenced deltaic environments [18]. These repeated depositional events can lead to vertically 

stacked reservoir units that are favorable not only for hydrocarbon accumulation but also for 

CO₂ storage layering, offering potential for plume stratification and enhanced storage security. 

The spatial separation of impedance lows, juxtaposed with sealing facies, may indicate 

locations with high reservoir potential that warrant further evaluation. This ability to delineate 

reservoir geometry and potential flow barriers from seismic-derived attributes is crucial in early 

exploration and development planning [3], and particularly essential when evaluating a 

formation's capacity to act as a secure CO₂ sink. 

In addition to these observations, the consistent alignment between the geometry of 

impedance anomalies and expected depositional patterns in deltaic regimes highlights the 

model's capability in preserving geological realism. Subtle textural differences, which may 

correspond to grain-size variations or diagenetic overprints, appear to be captured in the AI 

and porosity maps—an encouraging outcome given the limitations of post-stack data. From 

a CCS perspective, such fidelity is critical for modeling CO₂ injectivity and assessing the extent 

of heterogeneities that could influence plume dynamics. Moreover, these attribute-based 

predictions complement structural interpretation by revealing gentle deformation zones or 

paleotopographic lows where sediments preferentially accumulated, possibly forming natural 

traps for injected CO₂. This comprehensive view reinforces the value of multi-attribute and 

machine learning workflows in reducing interpretational ambiguity and providing a data-

driven lens into the depositional history of complex clastic systems such as the F3 Block—while 

also informing key risk and capacity metrics relevant to carbon storage. 

 

Porosity Correlation 
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Figure 3. Porosity Correlation Well 34 

Figure 3 shows the correlation between predicted and log-derived porosity values at Well 34, 

demonstrating a strong linear agreement throughout the interval. This high correlation is 

attributed to the presence of thick, clean sandstones that dominate the lithology around this 

well location, which typically show strong and predictable relationships with seismic attributes 

[2]. From a CCS standpoint, such clean and laterally continuous sandstone bodies are highly 

desirable injection targets, as they offer high porosity, permeability, and volume capacity 

needed for efficient and secure CO₂ sequestration. The accuracy of the Random Forest model 

in capturing these variations validates the suitability of machine learning for porosity inversion 

in well-calibrated and geologically homogeneous settings [1]. This performance is further 

enhanced by the use of carefully selected seismic attributes, such as RMS amplitude and 

envelope, which are sensitive to lithological and fluid contrasts [18]—making them particularly 

effective in delineating high-capacity reservoir zones for potential CO₂ storage. 

The reliable prediction at Well 34 also highlights the benefits of having high-quality training 

data and minimal geological noise. These conditions mirror ideal CCS injection scenarios, 

where reservoir predictability directly correlates with long-term storage integrity and plume 

migration control. The clean signal and simple facies distribution allow the Random Forest 

algorithm to effectively generalize and extrapolate porosity patterns across the seismic section 

[25]. In deltaic environments like F3, such conditions are often encountered within distributary 

channels that are laterally extensive and have minimal shale intercalations, reducing potential 

barriers to injectivity and improving storage uniformity. Therefore, the results at Well 34 serve 

not only as a reference case for evaluating inversion performance across the field, but also as 

a conceptual model for identifying prime CO₂ injection candidates in similar clastic reservoirs. 
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Figure 4. Porosity Correlation Well 61 

In contrast to Well 34, the porosity correlation at Well 61 exhibits greater scatter, particularly 

at shallower and deeper depths. This increased dispersion is likely caused by complex 

interbedding of sand and shale layers, which introduce seismic interference and reduce the 

fidelity of attribute-based predictions [20]. The facies at this location may include more 

heterolithic or distal deposits, such as levee or overbank sands, which complicate the 

relationship between porosity and seismic response [18]. From a CCS perspective, such 

variability introduces greater uncertainty in assessing both reservoir capacity and injectivity, as 

the presence of interbedded shale may hinder vertical plume migration and affect long-term 

storage behavior. Nevertheless, the overall trend of the predicted values still aligns with the 

general porosity profile, indicating the model's resilience [1]. 

The Random Forest model, despite encountering more complex geological variability, was able 

to maintain a reasonable prediction across the well interval. This highlights the importance of 

ensemble methods in handling non-linear and noisy data environments [25], particularly when 

evaluating candidate storage sites where heterogeneity may obscure capacity estimation. The 

performance at Well 61 emphasizes the need for improved attribute selection or local model 

tuning when applying machine learning in geologically heterogeneous zones. Nonetheless, 

the result remains within acceptable limits and offers a useful approximation for initial reservoir 

characterization, especially in early-stage screening of CCS storage intervals where rapid 

assessments are required. 

AI Correlation 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1523512026&1&&


Al-Fiziya: Journal of Materials Science, Geophysics,               Vol.8 No. I 2025, 27-44 

Instrumentation and Theoretical Physics                                                      P-ISSN: 2621-0215, E-ISSN: 2621-489X 

 

40 
 

 

Figure 5. AI Correlation Well 34 

The acoustic impedance (AI) correlation at Well 34 presents a nearly linear relationship 

between predicted and actual log values, especially in intervals dominated by clean sandstone. 

These sandstones exhibit low density and velocity, resulting in low AI values that are easier to 

capture using seismic attributes such as amplitude and frequency-derived measures [1]. The 

high correlation reflects the Random Forest model’s strong capacity to learn attribute–

impedance relationships in geologically straightforward contexts [25]. In deltaic deposits, such 

homogeneity is often encountered in the axis of distributary channels [20]. For the purpose of 

CCS, this level of predictability becomes vital, as such sand-prone units can act as effective CO₂ 

storage reservoirs due to their high injectivity and predictable sealing boundaries. 

Moreover, the absence of structural complexities and thin layering at this well location 

minimizes distortion of the seismic signal, leading to high-quality input features (Mazloum, 

2020). These favorable geological conditions enable accurate prediction and demonstrate the 

strength of machine learning approaches in enhancing post-stack impedance inversion. From 

a carbon storage standpoint, such well-behaved reservoir units offer a baseline for evaluating 

seal–reservoir pairs, enabling early-stage estimation of storage volume and injectivity. The 

consistent results at Well 34 reinforce the reliability of the model in well-characterized zones 

and provide a benchmark for validation in assessing storage site quality across the broader 

CCS field deployment area. 
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Figure 6.  AI Correlation Well 61 

Figure 6 reveals that the AI prediction at Well 61 is moderately correlated with the actual log 

values but shows a broader spread than that observed at Well 34. This deviation suggests that 

Well 61 is located in a more geologically complex setting, possibly near facies transitions or 

thin interbedded sequences [18]. In such environments, the seismic response becomes less 

distinct, and the attributes carry mixed signals that obscure true impedance contrasts [20]. 

Despite these complications, the overall AI trend remains intact and within an acceptable error 

range (Zou et al., 2021). These conditions—marked by heterogeneity and subtle stratigraphic 

mixing—are often found in the marginal or distal portions of potential CO₂ storage reservoirs, 

where injectivity and seal effectiveness must be assessed with higher scrutiny. 

The capability of the Random Forest algorithm to capture impedance variations even in noisy 

zones speaks to its robustness and adaptability. However, this figure also illustrates the 

limitations of applying a uniform model across varied facies without localized adjustments [25]. 

For CCS site characterization, this underscores the necessity of tailoring inversion workflows 

based on depositional environment and seal–reservoir architecture to improve predictions of 

caprock integrity and injection capacity. The moderate correlation at Well 61 suggests that 

future models may benefit from stratified training or facies-dependent attribute weighting to 

refine impedance estimation in more variable lithologies. Still, the results demonstrate the 

potential of data-driven inversion techniques in extracting valuable impedance information 

from post-stack seismic data, especially in support of CCS screening where accurate property 

distribution is crucial for risk reduction. 

 

CONCLUSION AND RECOMMENDATION 

Conclusion 

This study underscores the value of Random Forest (RF)-based multi-attribute seismic 

inversion as a powerful and interpretable machine learning approach for predicting key 

petrophysical properties—specifically porosity and acoustic impedance (AI)—with direct 

relevance to CCS site evaluation. By leveraging ten seismic attributes that capture a broad 

range of structural and stratigraphic information, the RF model was able to generate high-

resolution 3D property volumes across the F3 Block. These outputs are not only consistent 
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with well-log data but also preserve geological continuity, such as channel geometries and 

lithological transitions, that are critical in determining both reservoir capacity and seal 

performance for CO₂ storage. 

The accuracy observed at Well 34 reflects the model’s strong generalization in clean 

sandstone-dominated settings with minimal heterogeneity—indicating high confidence for 

predicting reservoir quality in primary injection targets. Meanwhile, the model’s resilience at 

Well 61, despite lithological noise and facies complexity, highlights its adaptability across less 

favorable CCS contexts, where uncertainties often impede decision-making. Importantly, the 

AI results also delineate potential caprock intervals and baffle zones that could restrict vertical 

migration, thereby informing both reservoir storage efficiency and containment integrity 

assessments. 

Furthermore, the use of ensemble learning allows for both prediction and uncertainty 

estimation, making RF particularly advantageous for pre-injection risk analysis and regulatory 

reporting. When integrated with conventional static modeling, RF-based inversion offers a 

scalable and transferable method to screen large datasets for CO₂ storage suitability. As the 

global energy transition increasingly prioritizes decarbonization, such tools will be essential 

for accelerating the safe, effective, and scientifically credible deployment of CCS technologies. 

 

Recommendation 

Drawing upon the results obtained and the constraints identified throughout this investigation, 

several forward-looking suggestions are put forth to inform both subsequent academic 

inquiries and prospective practical implementations: 

a. Incorporate additional borehole data, core measurements, and reservoir pressure 

information to enhance validation accuracy and extend model generalizability across 

the entire storage formation. 

b. Couple the inverted porosity and impedance outputs with stress modeling and 

mineralogical sensitivity analyses to assess caprock sealing behavior under CO₂ plume 

migration and storage conditions. 

c. Divide training data based on stratigraphic or depositional facies to improve model 

resolution in heterogeneous or thinly interbedded zones often present in CO₂ storage 

complexes. 
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