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Abstracts. Accurate characterization of subsurface petrophysical properties is a critical
prerequisite for evaluating the suitability of geological formations for carbon capture and
storage (CCS), particularly in identifying high-capacity reservoirs and effective sealing intervals.
This study explores the use of a machine learning approach, Random Forest (RF) regression,
for multi-attribute seismic inversion to predict porosity and acoustic impedance in the F3
Block, offshore Netherlands. The integration of ten seismic attributes with two well log datasets
enables the construction of predictive models capable of resolving complex lithological
variations within deltaic settings. The RF algorithm’s robustness against geological noise and
its ability to model nonlinear relationships offer significant advantages over conventional
inversion workflows, especially in heterogeneous and interbedded formations. The results
demonstrate that RF-based inversion produces petrophysical volumes with improved spatial
continuity and alignment with depositional patterns, offering a promising avenue for CCS site
screening and reservoir-seal evaluation. The method'’s ability to capture subtle textural and
facies changes also enhances understanding of potential CO, migration pathways and trap
integrity. This research underscores the potential of data-driven inversion frameworks in
supporting geoscientific decision-making for CCS development, particularly in data-limited or
geologically complex offshore regions.
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INTRODUCTION

The accurate prediction of subsurface petrophysical properties, particularly porosity and
acoustic impedance (Al), serves as a fundamental pillar in evaluating the feasibility of
geological formations for carbon storage. In the context of Carbon Capture and Storage (CCS),
where the safe and permanent sequestration of CO, is paramount, these properties govern
not only the storage capacity and injectivity of the reservoir but also the sealing effectiveness
of overlying caprocks. Porosity dictates the available pore volume that can host injected CO,,
while Al provides critical insights into lithology, fluid content, and mechanical continuity. These
parameters are essential in assessing both the suitability of the reservoir and the integrity of
the caprock system, which must remain impermeable to ensure containment over geologic
timescales. Traditionally, seismic inversion techniques—such as deterministic, stochastic, or
geostatistical approaches—have been widely applied to convert seismic reflection data into
quantitative models of the subsurface. However, these conventional approaches often rely on
simplifying assumptions, such as linearity and stationarity, which may be invalid in the
presence of heterogeneous sedimentary sequences or structurally deformed caprocks. The
effectiveness of such methods is further constrained by their strong dependence on a priori
models and well log data, which are frequently sparse or spatially limited in CCS candidate
sites. As a result, the inversion outputs can become biased or unstable, particularly in areas
where seismic amplitudes are influenced by overlapping effects of stratigraphy, diagenesis,
and fluid variability. These limitations pose significant challenges in CCS-focused settings,
where accurate delineation of both storage and seal units is critical to risk mitigation and long-
term performance assessment. In light of these challenges, data-driven methods have
emerged as transformative alternatives that offer improved flexibility and adaptability. In
particular, machine learning (ML) approaches provide a framework capable of capturing
nonlinear relationships and high-dimensional patterns embedded in seismic datasets without
requiring explicit physical assumptions [1].

Within the growing suite of machine learning (ML) tools, Random Forest (RF) has gained
considerable traction as a robust, interpretable, and practically efficient algorithm, particularly
under the geophysical and geological uncertainties typical of Carbon Capture and Storage
(CCS) reservoirs. As an ensemble learning method, RF aggregates the outcomes of multiple
decision trees trained on diverse data subsets and feature combinations, thereby reducing
prediction variance and guarding against overfitting, which is an essential advantage when
working with seismic data that are often noisy, spatially incomplete, or affected by acquisition
footprint. In CCS-specific contexts, including caprock characterization, this robustness
becomes critical for detecting subtle variations in acoustic impedance or lateral seal continuity
that may influence long-term containment integrity. A further strength of RF lies in its ability
to rank feature importance, allowing geoscientists to identify which seismic attributes most
influence inversion outcomes, thus enhancing trust in model transparency. Zou et al. [1]
demonstrated the efficacy of RF in predicting porosity from multiple seismic attributes,
reporting strong predictive performance and the ability to quantify uncertainty through
ensemble dispersion metrics. Such capabilities are especially valuable in CCS site screening
and development phases, where uncertainty analysis informs risk-based decision making for
storage integrity and monitoring strategy design. Compared to more complex ML models such
as deep neural networks, RF offers a more interpretable yet competitive alternative, although
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it may be less effective in capturing deep hierarchical or temporal patterns. More broadly, ML
methods, including RF, remain dependent on representative training datasets and may
struggle when extrapolated to geologies outside their training domain. Despite these
limitations, RF provides a compelling balance between accuracy, explainability, and resilience
to noisy input, making it a strong candidate for practical deployment in CCS inversion
workflows, particularly in challenging environments where traditional physics-based methods
fall short.

One of the most significant advantages of RF in this context lies in its integration with multi-
attribute inversion techniques. By incorporating multiple seismic-derived attributes—each
with distinct physical sensitivity to lithological and fluid variations—into a supervised learning
model, RF can offer enhanced predictions that reflect the complex realities of subsurface
systems. For instance, attributes such as instantaneous amplitude, Hilbert envelope, and RMS
amplitude may each respond differently to porosity variations, fluid substitution effects, or
thin-bed stratigraphy. When used collectively, these attributes allow for a richer and more
discriminative inversion process, improving the delineation of CO, reservoir zones, internal
heterogeneities, and potential migration pathways. Topér and Sowizdzat [2] applied RF in
conjunction with other ML tools to estimate porosity and saturation types in Miocene
sandstone formations, finding that ensemble methods could successfully resolve lithofacies
variability and fluid distribution that conventional inversion often overlooks. Their work
highlights how ML-based multi-attribute inversion facilitates a more spatially continuous,
geologically coherent, and physically plausible prediction of reservoir properties—critical traits
for CCS site characterization, where decisions must balance subsurface uncertainty with
operational feasibility. In addition, this approach allows researchers to iteratively refine
attribute selection and model architecture based on feedback from uncertainty maps and
validation data, further boosting confidence in the interpreted results.

The Dutch sector of the North Sea—specifically the F3 Block—presents an ideal natural
laboratory to test and deploy RF-based seismic inversion workflows under CCS-relevant
conditions. The F3 Block hosts a publicly available, high-resolution seismic dataset alongside
two key well logs, enabling method development and benchmarking in a geologically diverse
environment. The block’s subsurface is typified by deltaic siliciclastic systems, comprising
interbedded sandstone-shale units, sinuous channel deposits, and locally deformed caprock
analogs. Such features are representative of many storage complexes currently under
consideration in Europe’s North Sea and other continental shelf basins, making the site a
meaningful proxy for broader CCS applications. Safari et al. [3] previously emphasized how
attribute continuity and structural smoothing significantly improved seismic interpretation in
this area, aiding fault detection and stratigraphic delineation. Nevertheless, accurately
predicting porosity and Al remains challenging due to overlapping seismic signatures, weak
reflectors in low-contrast zones, and the fine layering of deltaic facies. By applying a Random
Forest-based multi-attribute inversion strategy to the F3 Block, this study aims to bridge these
interpretational gaps, delivering spatially refined maps of porosity and impedance that honor
well log constraints and reveal internal heterogeneities of potential CO, storage intervals. In
so doing, the method demonstrates how machine learning can enhance our ability to screen,
characterize, and monitor CCS sites using conventional seismic datasets—thus offering a
scalable and data-efficient pathway for subsurface decarbonization planning.
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RESEARCH METHODS
Machine Learning

Machine learning (ML) refers to a suite of data-driven algorithms that enable computational
models to identify patterns and make data-based predictions without being explicitly
programmed. In the context of Carbon Capture and Storage (CCS), where accurate estimation
of porosity, acoustic impedance, and seal integrity is crucial for injectivity and containment
assessment, ML provides a flexible framework for seismic inversion and petrophysical property
prediction. Unlike traditional deterministic inversion methods, which often rely on linear
assumptions and prior model constraints, ML can model nonlinear, high-dimensional
relationships between seismic attributes and rock properties, making it particularly
advantageous in thinly bedded, heterogeneous, or poorly constrained formations. As
highlighted by Bishop, ML is grounded in probabilistic modeling and statistical inference, with
learning defined as the ability to generalize from past observations [4]. This foundation has
enabled ML models to surpass traditional methods in resolution and adaptability, particularly
in complex geologies common to CCS sites. The rapid growth in geophysical data availability,
combined with increased computational capacity, has catalyzed the use of ML across Earth
science domains, including CCS reservoir monitoring and seal characterization [5].

Recent applications underscore ML's capacity to enhance seismic inversion outcomes. For
instance, Anjom et al. applied a data-driven AVO inversion using ML to resolve subtle gas-
bearing sand signatures, a task where conventional inversion often fails due to thin-bed
interference and amplitude attenuation [6]. Although their study focused on offshore Egypt,
the challenges addressed mirror those found in depleted gas fields considered for CO,
injection. Similarly, Wu et al. employed Random Forest and other ensemble models to fuse
seismic velocities, resistivity, and borehole data for lithological classification, demonstrating
improved delineation of reservoir facies and internal baffles [7]. These examples show that ML
models, and RF in particular, can integrate disparate geophysical inputs to resolve
petrophysical targets with higher sensitivity and spatial continuity than deterministic methods.
In CCS workflows, this enables more accurate identification of injectivity zones, barriers to flow,
and potential leakage pathways—insights that are critical for site feasibility and risk mitigation.

Moreover, the evolution of physics-guided machine learning frameworks has further improved
model reliability and physical consistency. By incorporating geophysical constraints such as
conservation laws and domain-specific knowledge, these hybrid approaches reduce overfitting
and enhance generalization—key benefits in CCS where well control is often sparse. Karpatne
et al. argued for embedding physical principles into ML architectures to ensure geoscientific
validity, laying the foundation for physics-informed learning [8]. This paradigm has been
successfully applied in CCS-relevant tasks, including the hybrid CNN framework proposed by
Hu et al. to predict porosity and sandbody thickness in the Bohai Bay Basin, which
outperformed conventional inversion techniques [9]. In addition, ML is gaining ground in
microseismic monitoring for CO, injection, where real-time classification and spatial
localization of induced events play a crucial role in operational safety [10]. Collectively, these
advances underscore the growing importance of ML as not merely a computational add-on,
but as a core inversion strategy capable of resolving the nonlinear, uncertain, and
stratigraphically complex nature of CO, storage formations.
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Random Forest in Seismic Inversion

Random Forest (RF) is a tree-based ensemble algorithm that relies on stochastic sampling to
construct multiple decision trees, each trained on different bootstrapped subsets of the data
and a random selection of features [11]. While the ensemble framework inherently improves
model generalization, its performance remains sensitive to key hyperparameters, particularly
in high-dimensional geophysical applications such as seismic inversion for CO, storage
assessment. In this study, the RF model was carefully tuned to balance predictive accuracy,
computational efficiency, and resistance to overfitting factors especially critical in
heterogeneous and data-limited CCS reservoirs. The number of trees (n_estimators) was set to
100 to ensure sufficient diversity across the ensemble while maintaining tractable runtime
during full-section inference. The maximum depth (max_depth) was limited to 12, a value
selected based on iterative testing to allow each tree to learn meaningful nonlinear
interactions between multi-attribute inputs and petrophysical outputs, without fragmenting
the feature space excessively or responding to spurious variations in seismic amplitude.
Shallower depths led to underfitting of log—seismic relationships, while deeper trees increased
variance without improving correlation at the well locations.

Although the parameters controlling node purity such as min_samples_split and
min_samples_leaf were kept at their default values, their regularizing effects were enhanced
by the use of a £3 sample windowing scheme during training data generation. This windowed
approach increased the density of training examples derived from each log curve, while
embedding local temporal context that helps the model learn transitions in seismic response
across thin-bed and vertically heterogeneous facies. Each training instance comprised a 10-
dimensional feature vector built from seismic-derived attributes, including amplitude,
gradient, Hilbert envelope, RMS, relative acoustic impedance, low-pass and curvature
components. These features were selected for their sensitivity to lithological contrasts, fluid-
related effects, and stratigraphic geometry, all of which govern CO, injectivity and caprock
integrity in CCS systems. The input attributes were standardized prior to training using z-score
normalization to ensure fair contribution across features and reduce model sensitivity to scale
disparities.

Independent RF models were trained for porosity and acoustic impedance using calibration
data from two wells (Well 34 and Well 61) strategically positioned within the F3 Block. Once
trained, the models were deployed across the full seismic section to predict spatial
distributions of Al and porosity, producing continuous property volumes that were evaluated
against well log measurements. The resulting correlation coefficients ranged from 0.90 to 0.94
at the calibration wells, indicating strong alignment between predicted and actual log values.
These results suggest that the selected RF configuration offers an effective balance between
model complexity and stability, capturing the nonlinear seismic-log relationships required for
reliable petrophysical inversion in CCS reservoir settings. As emphasized by Breiman [11], the
strength of the Random Forest algorithm lies in its ability to reduce variance through ensemble
averaging, which in this case proved essential for maintaining prediction consistency across a
geologically variable and stratigraphically complex setting.

Multi-attribute
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Multi-attribute seismic inversion offers significant value in Carbon Capture and Storage (CCS)
site evaluation by integrating multiple seismic-derived attributes to refine the prediction of
key subsurface properties critical to CO, storage feasibility. Each attribute carries unique
geological sensitivities: amplitude aids in identifying impedance contrasts associated with
reservoir-caprock interfaces; phase reveals reflector continuity relevant for trap integrity;
frequency attributes relate to bed thickness crucial for vertical sealing; and similarity enhances
the delineation of structural boundaries, which can influence potential leakage pathways [18].
In the F3 Block of the Dutch North Sea, a well-documented CCS analogue, seismic attributes
such as similarity, dip, and curvature have shown effectiveness in highlighting buried fluvial
channels and deltaic stratigraphy—features that critically impact both injectivity and
containment reliability [19].

Kabaca emphasized that attributes like instantaneous phase, raw amplitude, and RMS
amplitude were instrumental in delineating stratigraphic layering and depositional trends
across the F3 Block [20]. These characteristics are not only relevant for hydrocarbon systems
but are equally essential in evaluating the continuity of potential storage zones and the lateral
extent of sealing facies in CCS settings. Additionally, the utility of these attributes in horizon
flattening and channel boundary mapping supports the interpretation of baffle geometries
and sedimentary heterogeneities, which may act as either migration barriers or vertical leakage
conduits within storage formations [21].

In CCS-focused inversion workflows, multi-attribute inputs are often integrated with machine
learning algorithms like Random Forest to enhance the prediction of porosity and acoustic
impedance—both of which are foundational to assessing reservoir capacity and seal integrity.
Zou et al. applied a multi-attribute Random Forest framework and successfully improved
porosity prediction accuracy while providing ensemble-based uncertainty metrics, which are
essential in risk-informed CCS site screening [22]. In a parallel study within the same F3 Block,
the inclusion of attributes such as seismic energy and envelope amplitude within inversion
modeling enabled better lithological differentiation, helping to distinguish porous injection
zones from low-permeability barriers [23]. Furthermore, advanced attribute integration
techniques like 3D Wheeler transformation, when combined with curvature and dip, allowed
for the reconstruction of paleo-geomorphological trends and stratigraphic architecture—
information pivotal in identifying compartmentalization risks and migration pathways in a CCS
scenario [24].

Collectively, these studies underscore that multi-attribute seismic inversion, originally
developed for hydrocarbon exploration, holds substantial potential for CCS site assessment.
By capturing geological complexity and enhancing interpretability, this method supports a
more informed evaluation of both storage capacity and containment security—two pillars of
any viable CCS operation..

Seismic Inversion

Seismic inversion remains a cornerstone in geophysical reservoir characterization, providing a
structured methodology for transforming reflection-based seismic amplitudes into spatially
resolved subsurface property volumes. Among its outputs, acoustic impedance (Al) stands as
a fundamental parameter due to its sensitivity to lithological contrasts and fluid content,
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offering a critical linkage between seismic response and petrophysical interpretation [25]. In
clastic-dominated settings such as deltaic or fluvial reservoirs, Al serves not only as a lithology
proxy but also as a first-order predictor for properties like porosity and permeability. In the F3
Block of the Dutch North Sea well-documented CCS analogue characterized by interbedded
sandstone—shale sequences model-based post-stack inversion has been successfully applied
to derive Al volumes that illuminate sedimentary architectures, enabling the identification of
reservoir-prone intervals and internal facies transitions [25]. However, traditional inversion
approaches remain bounded by intrinsic limitations, including reliance on low-frequency initial
models, assumption of linear relationships between reflectivity and impedance, and sensitivity
to seismic noise and vertical resolution loss due to wavelet bandwidth constraints. These
challenges are especially pronounced in CCS projects, where subtle contrasts between seal
and reservoir units and thin-bed heterogeneity can govern the long-term containment of
injected CO..

To address these constraints, recent developments have introduced data-driven
methodologies that augment or replace conventional workflows with machine learning (ML)-
based models trained on seismic-derived attributes. As discussed in the previous section,
multi-attribute seismic analysis allows for the extraction of amplitude, phase, curvature, and
frequency-domain information each with specific geological sensitivities that together provide
a richer input set for supervised inversion. These attributes are subsequently fed into inversion
frameworks such as Random Forest or deep neural networks, which can capture nonlinear
relationships between seismic patterns and rock properties with greater flexibility than
physics-based transforms alone. For instance, Jo et al. [26] presented a deep learning
framework that integrates prestack seismic data to predict porosity directly, showing improved
adaptability to heterogeneous lithologies where conventional Al-to-porosity transformations
falter. Similarly, Mojeddifar et al. [27] proposed a pseudo-forward modeling strategy that
employs similarity-based attributes to estimate porosity without relying on a fixed physical
kernel, thus mitigating the rigidity of traditional inversion algorithms.

Despite these advancements, ML-based inversion remains susceptible to challenges such as
data quality dependence, overfitting in sparse training conditions, and limited generalizability
beyond the training domain. Moreover, while these methods can reproduce high-frequency
variations in predicted properties, their effective vertical resolution remains fundamentally
limited by the seismic wavelet's bandwidth and signal-to-noise ratio factors that must be
carefully considered in any CCS feasibility study. To enhance reliability, hybrid strategies that
embed physical constraints into ML architectures are increasingly being explored, allowing
geoscientists to harness the pattern recognition capabilities of data-driven models while
maintaining consistency with geophysical principles. Collectively, these trends suggest a
paradigm shift where multi-attribute inversion evolves from a deterministic signal-matching
process into a probabilistic learning framework, offering improved robustness, better handling
of uncertainty, and a deeper integration of geological complexity all of which are essential for
risk-informed decision-making in CO, storage site evaluation.

Methodology

Following the upsampling of the seismic data to a 2 ms sampling interval, a diverse set of ten
seismic attributes was extracted from each trace to enhance subsurface interpretability. These
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attributes were selected for their capacity to highlight various aspects of geological variability,
ranging from amplitude-based contrasts to frequency and geometry-related patterns. The
attribute set included raw amplitude, RMS amplitude, Hilbert envelope, instantaneous phase,
amplitude gradient, curvature, relative acoustic impedance, the derivative of the envelope, and
two Gaussian-filtered amplitude components. The rationale behind this selection was
grounded in both geophysical theory and geological applicability. Attributes such as RMS and
envelope are known to respond to energy concentrations that often correlate with porous or
gas-charged zones. Curvature and gradient tend to accentuate subtle structural features like
channel flanks or compaction-related flexures that could compromise seal integrity. The
inclusion of smoothed and derivative forms was intended to capture multi-scale signal
variations, providing sensitivity to both fine layering and broader stratigraphic architecture.
Post-model analysis confirmed that envelope, curvature, and RMS amplitude were consistently
the most influential attributes for both porosity and acoustic impedance prediction, aligning
with their expected geological importance and reinforcing the reliability of the attribute
framework.

Rather than relying on a conventional model-based inversion that begins with an assumed
starting model and forward modeling, this study adopted a data-guided approach in which
the relationships between seismic attributes and petrophysical properties were learned from
the available well control. Once trained using the calibration from Well 34 and Well 61, the
method was applied trace by trace across the entire seismic section to produce continuous
volumes of predicted porosity and acoustic impedance. These volumes revealed features
consistent with known deltaic stratigraphy in the F3 Block, including lateral facies transitions,
multi-story channel fills, and vertically persistent sealing units. The impedance volumes
captured the broad internal architecture of the reservoir system, while the porosity predictions
helped distinguish between cleaner sand bodies and heterolithic intervals with limited
injectivity. This mapping was especially useful in identifying potential injection zones and the
continuity of caprock analogs, both of which are essential for evaluating containment integrity
in CO; storage scenarios. The results not only aligned well with the interpreted geological
framework but also extended the predictive capacity into areas lacking direct borehole data,
offering a practical tool for reservoir screening and early-phase CCS planning.

To address the need for confidence in the predictions, the inversion outputs were accompanied
by a basic uncertainty evaluation. This was achieved by quantifying the variability among
individual predictions within the model ensemble for each sample location. The resulting
ensemble spread served as a proxy for uncertainty, highlighting intervals where the model
exhibited low internal agreement. As expected, higher uncertainty tended to cluster near facies
transitions, thinly bedded sequences, and low-reflectivity zones where seismic signals are
inherently ambiguous. Conversely, thick, well-bounded units such as clean sand packages and
continuous shales showed relatively low prediction spread. These spatial patterns were further
validated against well log comparisons, where residual analysis confirmed that the largest
deviations between predicted and observed values occurred near lithological boundaries or in
zones of acoustic impedance overlap. Although overall model performance remained strong—
with correlation coefficients between 0.90 and 0.94 across both wells—the inclusion of
uncertainty diagnostics added another layer of interpretive value. This information is
particularly relevant for CCS feasibility studies, where understanding the degree of confidence
in reservoir and seal predictions can inform both risk management and monitoring strategy
design.
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Together, the integration of carefully selected seismic attributes, data-driven property
prediction, and ensemble-based uncertainty screening provides a robust and transferable
framework for subsurface evaluation. The method is well suited to clastic environments with
limited well control and strong lateral variability, such as the F3 Block and other deltaic
reservoirs under consideration for carbon storage. By moving beyond deterministic workflows
and embracing a probabilistic understanding of geophysical response, this approach supports
more informed decisions about injectivity, seal reliability, and long-term containment
performance in CO, storage projects.

MNear Offset Qriginal
Seismic Well
Data

Upsampling |

sample rate Wiall-Seismic
I Tie

Seaeismic Multi-
attributes Extraction

1. Original Amplitude
Z_Amplitude Gradient
2. Hilbert Envelope

4. Envelope Derivative
S.RMS Enaergy

5. Gaussian-filtered
Armplitudce

7. Relative Impedance
S. Instantanseocus
FPhase

9. Second Order
Curvature

10. Smoothaed
Armiplitude

Randorm Forest
Algorithm

2-D accoustic, 2-D Porosity
|rﬁpsdar1gce Distribution
Distribution Map

Map

Figure 1. Random Forest Workflow

35


http://issn.pdii.lipi.go.id/issn.cgi?daftar&1523512026&1&&

Al-Fiziya: Journal of Materials Science, Geophysics, Vol.8 No. [ 2025, 27-44
Instrumentation and Theoretical Physics P-ISSN: 2621-0215, E-ISSN: 2621-489X

RESULTS AND DISCUSSION
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Figure 2 provides insight into the subsurface geological architecture of the F3 Block, as
revealed by the spatial distribution of porosity and acoustic impedance. The alignment of high-
porosity zones with low acoustic impedance values suggests the presence of sand-rich
depositional environments, likely distributary channels or mouth bars, which are characteristic
of deltaic systems [20]. These sand-dominated facies are not only relevant in hydrocarbon
plays, but also critically important as potential CO, injection intervals in a CCS framework, due
to their higher storage capacity and injectivity. The curvilinear geometry of these features,
along with abrupt changes in impedance boundaries, further supports the interpretation of
channel complexes bordered by shale-rich levees or floodplain deposits [18]. Such geometries
often define natural flow baffles or barriers, which may enhance long-term CO, containment
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by restricting lateral plume migration. These lateral facies variations are typical in delta lobe
switching and multi-phase progradation observed in the F3 setting [3].

The seismic expression of possible minor faulting or compactional deformation can also be
inferred from the discontinuities and impedance breaks across the map. These features, while
subtle, may play an important role in compartmentalizing the reservoir and controlling lateral
fluid flow. In CCS contexts, even minor structural discontinuities can influence pressure build-
up or act as potential leak pathways, making their identification essential for long-term risk
mitigation. The clarity of such features in the Al map demonstrates the effectiveness of multi-
attribute modeling in enhancing subsurface interpretation [25]. Additionally, the coherence
between predicted petrophysical properties and geological structures illustrates the
advantage of using ensemble learning techniques for complex stratigraphic frameworks [1].

Another important geological interpretation from Figure 2 involves the identification of
channel stacking and possible stratigraphic traps. The vertical and lateral continuity of low-
impedance, high-porosity bodies suggests multi-generational channel systems, indicating
phases of deposition followed by abandonment and avulsion, typical in wave- and tide-
influenced deltaic environments [18]. These repeated depositional events can lead to vertically
stacked reservoir units that are favorable not only for hydrocarbon accumulation but also for
CO, storage layering, offering potential for plume stratification and enhanced storage security.
The spatial separation of impedance lows, juxtaposed with sealing facies, may indicate
locations with high reservoir potential that warrant further evaluation. This ability to delineate
reservoir geometry and potential flow barriers from seismic-derived attributes is crucial in early
exploration and development planning [3], and particularly essential when evaluating a
formation's capacity to act as a secure CO; sink.

In addition to these observations, the consistent alignment between the geometry of
impedance anomalies and expected depositional patterns in deltaic regimes highlights the
model's capability in preserving geological realism. Subtle textural differences, which may
correspond to grain-size variations or diagenetic overprints, appear to be captured in the Al
and porosity maps—an encouraging outcome given the limitations of post-stack data. From
a CCS perspective, such fidelity is critical for modeling CO injectivity and assessing the extent
of heterogeneities that could influence plume dynamics. Moreover, these attribute-based
predictions complement structural interpretation by revealing gentle deformation zones or
paleotopographic lows where sediments preferentially accumulated, possibly forming natural
traps for injected CO,. This comprehensive view reinforces the value of multi-attribute and
machine learning workflows in reducing interpretational ambiguity and providing a data-
driven lens into the depositional history of complex clastic systems such as the F3 Block—while
also informing key risk and capacity metrics relevant to carbon storage.

Porosity Correlation
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Figure 3 shows the correlation between predicted and log-derived porosity values at Well 34,
demonstrating a strong linear agreement throughout the interval. This high correlation is
attributed to the presence of thick, clean sandstones that dominate the lithology around this
well location, which typically show strong and predictable relationships with seismic attributes
[2]. From a CCS standpoint, such clean and laterally continuous sandstone bodies are highly
desirable injection targets, as they offer high porosity, permeability, and volume capacity
needed for efficient and secure CO, sequestration. The accuracy of the Random Forest model
in capturing these variations validates the suitability of machine learning for porosity inversion
in well-calibrated and geologically homogeneous settings [1]. This performance is further
enhanced by the use of carefully selected seismic attributes, such as RMS amplitude and
envelope, which are sensitive to lithological and fluid contrasts [18]—making them particularly
effective in delineating high-capacity reservoir zones for potential CO, storage.

The reliable prediction at Well 34 also highlights the benefits of having high-quality training
data and minimal geological noise. These conditions mirror ideal CCS injection scenarios,
where reservoir predictability directly correlates with long-term storage integrity and plume
migration control. The clean signal and simple facies distribution allow the Random Forest
algorithm to effectively generalize and extrapolate porosity patterns across the seismic section
[25]. In deltaic environments like F3, such conditions are often encountered within distributary
channels that are laterally extensive and have minimal shale intercalations, reducing potential
barriers to injectivity and improving storage uniformity. Therefore, the results at Well 34 serve
not only as a reference case for evaluating inversion performance across the field, but also as
a conceptual model for identifying prime CO; injection candidates in similar clastic reservoirs.
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Figure 4. Porosity Correlation Well 61

In contrast to Well 34, the porosity correlation at Well 61 exhibits greater scatter, particularly
at shallower and deeper depths. This increased dispersion is likely caused by complex
interbedding of sand and shale layers, which introduce seismic interference and reduce the
fidelity of attribute-based predictions [20]. The facies at this location may include more
heterolithic or distal deposits, such as levee or overbank sands, which complicate the
relationship between porosity and seismic response [18]. From a CCS perspective, such
variability introduces greater uncertainty in assessing both reservoir capacity and injectivity, as
the presence of interbedded shale may hinder vertical plume migration and affect long-term
storage behavior. Nevertheless, the overall trend of the predicted values still aligns with the
general porosity profile, indicating the model's resilience [1].

The Random Forest model, despite encountering more complex geological variability, was able
to maintain a reasonable prediction across the well interval. This highlights the importance of
ensemble methods in handling non-linear and noisy data environments [25], particularly when
evaluating candidate storage sites where heterogeneity may obscure capacity estimation. The
performance at Well 61 emphasizes the need for improved attribute selection or local model
tuning when applying machine learning in geologically heterogeneous zones. Nonetheless,
the result remains within acceptable limits and offers a useful approximation for initial reservoir
characterization, especially in early-stage screening of CCS storage intervals where rapid
assessments are required.

Al Correlation
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Figure 5. Al Correlation Well 34

The acoustic impedance (Al) correlation at Well 34 presents a nearly linear relationship
between predicted and actual log values, especially in intervals dominated by clean sandstone.
These sandstones exhibit low density and velocity, resulting in low Al values that are easier to
capture using seismic attributes such as amplitude and frequency-derived measures [1]. The
high correlation reflects the Random Forest model’s strong capacity to learn attribute—
impedance relationships in geologically straightforward contexts [25]. In deltaic deposits, such
homogeneity is often encountered in the axis of distributary channels [20]. For the purpose of
CCS, this level of predictability becomes vital, as such sand-prone units can act as effective CO,
storage reservoirs due to their high injectivity and predictable sealing boundaries.

Moreover, the absence of structural complexities and thin layering at this well location
minimizes distortion of the seismic signal, leading to high-quality input features (Mazloum,
2020). These favorable geological conditions enable accurate prediction and demonstrate the
strength of machine learning approaches in enhancing post-stack impedance inversion. From
a carbon storage standpoint, such well-behaved reservoir units offer a baseline for evaluating
seal-reservoir pairs, enabling early-stage estimation of storage volume and injectivity. The
consistent results at Well 34 reinforce the reliability of the model in well-characterized zones
and provide a benchmark for validation in assessing storage site quality across the broader
CCS field deployment area.
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Figure 6. Al Correlation Well 61

Figure 6 reveals that the Al prediction at Well 61 is moderately correlated with the actual log
values but shows a broader spread than that observed at Well 34. This deviation suggests that
Well 61 is located in a more geologically complex setting, possibly near facies transitions or
thin interbedded sequences [18]. In such environments, the seismic response becomes less
distinct, and the attributes carry mixed signals that obscure true impedance contrasts [20].
Despite these complications, the overall Al trend remains intact and within an acceptable error
range (Zou et al,, 2021). These conditions—marked by heterogeneity and subtle stratigraphic
mixing—are often found in the marginal or distal portions of potential CO, storage reservoirs,
where injectivity and seal effectiveness must be assessed with higher scrutiny.

The capability of the Random Forest algorithm to capture impedance variations even in noisy
zones speaks to its robustness and adaptability. However, this figure also illustrates the
limitations of applying a uniform model across varied facies without localized adjustments [25].
For CCS site characterization, this underscores the necessity of tailoring inversion workflows
based on depositional environment and seal-reservoir architecture to improve predictions of
caprock integrity and injection capacity. The moderate correlation at Well 61 suggests that
future models may benefit from stratified training or facies-dependent attribute weighting to
refine impedance estimation in more variable lithologies. Still, the results demonstrate the
potential of data-driven inversion techniques in extracting valuable impedance information
from post-stack seismic data, especially in support of CCS screening where accurate property
distribution is crucial for risk reduction.

CONCLUSION AND RECOMMENDATION
Conclusion

This study underscores the value of Random Forest (RF)-based multi-attribute seismic
inversion as a powerful and interpretable machine learning approach for predicting key
petrophysical properties—specifically porosity and acoustic impedance (Al)—with direct
relevance to CCS site evaluation. By leveraging ten seismic attributes that capture a broad
range of structural and stratigraphic information, the RF model was able to generate high-
resolution 3D property volumes across the F3 Block. These outputs are not only consistent
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with well-log data but also preserve geological continuity, such as channel geometries and
lithological transitions, that are critical in determining both reservoir capacity and seal
performance for CO, storage.

The accuracy observed at Well 34 reflects the model's strong generalization in clean
sandstone-dominated settings with minimal heterogeneity—indicating high confidence for
predicting reservoir quality in primary injection targets. Meanwhile, the model’s resilience at
Well 61, despite lithological noise and facies complexity, highlights its adaptability across less
favorable CCS contexts, where uncertainties often impede decision-making. Importantly, the
Al results also delineate potential caprock intervals and baffle zones that could restrict vertical
migration, thereby informing both reservoir storage efficiency and containment integrity
assessments.

Furthermore, the use of ensemble learning allows for both prediction and uncertainty
estimation, making RF particularly advantageous for pre-injection risk analysis and regulatory
reporting. When integrated with conventional static modeling, RF-based inversion offers a
scalable and transferable method to screen large datasets for CO, storage suitability. As the
global energy transition increasingly prioritizes decarbonization, such tools will be essential
for accelerating the safe, effective, and scientifically credible deployment of CCS technologies.

Recommendation

Drawing upon the results obtained and the constraints identified throughout this investigation,
several forward-looking suggestions are put forth to inform both subsequent academic
inquiries and prospective practical implementations:

a. Incorporate additional borehole data, core measurements, and reservoir pressure
information to enhance validation accuracy and extend model generalizability across
the entire storage formation.

b. Couple the inverted porosity and impedance outputs with stress modeling and
mineralogical sensitivity analyses to assess caprock sealing behavior under CO, plume
migration and storage conditions.

c. Divide training data based on stratigraphic or depositional facies to improve model
resolution in heterogeneous or thinly interbedded zones often present in CO, storage
complexes.
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