
Applied Information System and Management (AISM)
Volume 8, (2) 2025, p. 221–230
P-ISSN: 2621-2536; E-ISSN: 2621-2544; DOI: 10.15408/aism.v8i2.46308
©2025. The Author(s). This is an open acces article under cc-by-sa

http://journal.uinjkt.ac.id/index.php/aism 221

 Abstract—Fraud detection in imbalanced datasets, where
fraudulent transactions represent a small fraction of total data,
presents a major challenge for machine learning models.
Traditional classifiers often perform poorly in such scenarios due
to their bias toward the majority class. This study investigates the
effectiveness of two data augmentation techniques, Synthetic
Minority Over-sampling Technique (SMOTE) and Conditional
Generative Adversarial Networks (CGAN) in improving fraud
detection performance. Both methods are applied to balance the
dataset, and their impact is evaluated using two classifiers:
Random Forest (RF) and XGBoost. The models are tested across
three versions of the dataset: the original imbalanced data, the
SMOTE-augmented data, and the CGAN-augmented data.
Evaluation metrics include accuracy, precision, recall, F1 score,
and ROC-AUC. Results indicate that both augmentation
techniques enhance the models' ability to detect fraudulent
transactions compared to the original dataset. Notably, CGAN
outperforms SMOTE in terms of recall and F1 score, suggesting
its ability to generate more diverse and realistic synthetic samples.
While SMOTE creates new samples through interpolation, CGAN
uses an adversarial process involving a generator and a
discriminator, resulting in more complex data representations.
The study also finds that XGBoost combined with CGAN yields
the highest performance, effectively capturing intricate fraud
patterns. In contrast, SMOTE, though beneficial, shows limited
capacity in improving recall. This research highlights the
importance of advanced augmentation techniques like CGAN in
addressing class imbalance and improving fraud detection
systems. It also opens pathways for future exploration of deep
learning-based augmentation and classification methods in fraud
detection.

Index Terms—Fraud detection, SMOTE, CGAN, data
augmentation, imbalanced datasets, random forest, XGBoost.
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I. INTRODUCTION
raud detection in industries such as e-commerce and
finance remains a critical challenge due to the extreme
class imbalance: legitimate transactions often outnumber

fraudulent ones by several orders of magnitude. The imbalance,
where legitimate transactions vastly outnumber fraudulent ones,
makes it challenging for conventional machine learning models
to effectively detect fraud. These models often favor the
dominant class, leading to false negatives, which can have
severe consequences in high-stakes sectors, including financial
losses and regulatory issues [1], [2]. Despite extensive research
on imbalance-handling techniques, previous studies have not
demonstrated how advanced data-driven augmentation
strategies perform when transferred from synthetic training sets
to real-world fraud scenarios.

This study aims to systematically compare three dataset
scenarios the original imbalanced data, a SMOTE-augmented
dataset, and a CGAN-generated dataset across Random Forest
(RF) and XGBoost classifiers, evaluating their ability to
generalize to unseen fraud patterns using ROC-AUC,
precision-recall curves, accuracy, and F1-score. We employ
SMOTE and conditional GAN (CGAN) to tackle class
imbalance. SMOTE synthesizes minority-class samples via
interpolation between existing fraud cases, which improves
class balance but can oversimplify fraud patterns [3], [4]. In
contrast, CGAN uses a generator–discriminator framework to
learn complex fraud distributions and produce more realistic
synthetic examples, albeit with higher computational cost and
tuning complexity [5], [6], [7]. To enhance model
discrimination, we derive three categories of features:
transaction irregularities (e.g., unusual time gaps or amount
spikes), behavioral patterns (e.g., rapid sequences of logins or
purchases), and relational features mapping relationships
among accounts, IP addresses, and payment instruments. These
engineered attributes have been shown to boost precision and
recall by highlighting subtle indicators of fraud [8], [9].

This study leverage RF and XGBoost as primary modeling
algorithms. RF mitigates variance by aggregating the
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predictions of multiple decision trees, offering robustness to
noisy features yet requiring careful tuning on imbalanced data
[10]. XGBoost, a gradient-boosted tree method, sequentially
corrects errors from prior trees to achieve high accuracy and
flexibility, though it is sensitive to hyperparameter settings and
may overfit without proper regularization [11].

Innovative data augmentation approaches, such as
Generative Adversarial Networks (GANs) and adaptive
techniques like ADASYN, mark a shift by adjusting to data
patterns and generating realistic fraud instances without the
overfitting risks associated with conventional methods [12],
[13]. When combined with ensemble classifiers, these
innovations offer a comprehensive solution to fraud detection,
bridging the gap between research and practical application
[14], [15].

False negatives in credit card fraud detection pose
significant economic risks, often resulting in substantial
monetary losses for both credit card issuers and merchants.
While exact figures can vary, it is estimated that billions of
dollars are lost annually to credit card fraud, significantly
affecting e-commerce platforms and financial institutions [16],
[17]. Moreover, a single undetected fraud incident can result in
chargebacks that may reach substantial amounts, though the
specific figure of $250,000 in one day lacks direct empirical
support in the reviewed literature. It has been shown that the
necessity for efficient fraud detection systems is critical, as
traditional methods can struggle with minimizing false
negatives.

Research indicates that advanced machine learning
algorithms enhance detection accuracy significantly, thereby
protecting the interests of stakeholders and reducing costs
associated with fraud [18], [19], [20]. The societal implications
of increased fraud are profound, as consumer trust and loyalty
can diminish, necessitating continuous innovation in fraud
prevention strategies to safeguard both consumers and
businesses [21], [22].

II. RESEARCHMETHOD

Figure 1 shows the methodology, starting with data
preprocessing and dividing the dataset into original,
SMOTE-augmented, and CGAN-augmented categories.
Models (RF and XGBoost) are trained and tested, with
performance evaluated on key metrics and results compared.

A. Data Collection
The dataset, sourced from a multinational company and

provided by the authors of [23], contains 297,715 transaction
records with 37 features, including transaction amount, account
balance, user behavior, and metadata like payment details,
shown in Table 1. These features were chosen for their
relevance to detecting e-commerce fraud.

Fig. 1. Research method.

Table 1.
Features of Dataset

No Column
1 acct_cre_dt
2 NetLoss(is fraud)
3 Account balance
4 Average monthly payment
5 Account receipt balance
6 Cryptocurrency trading
7 Last transaction anomaly
8 Account status 1 (Closed)
9 Account status 2 (Locked)
10 Account status 3 (Restricted)
11 Hosting Server IP
12 Email used for account addition
13 Address used for account addition
14 Credit card used for addition
15 Bank card used for addition
16 Transactions post account creation
17 Country of first credit card used
18 Country of last credit card used
19 Country of first bank account used
20 Country of last bank account used
21 Buyer-seller collusion indicator
22 Reason for user complaint
23 Authorization info used in transactions
24 Goods mismatch indicator
25 Non-receipt of goods indicator
26 Unauthorized access indicator
27 Account-associated IP address
28 Account-associated shipping address
29 Account-associated email
30 Account creation date correlation
31 Account-associated username
32 Credit card associations
33 Account-associated mobile number
34 First credit card affiliation
35 Last credit card linked
36 First bank account linked
37 Last bank account linked

The dataset reveals a substantial imbalanced class, with
fraudulent activities constituting only 3.1% of the total
transactions, as shown in Table 2.
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Table 2.
Class Distribution in Original Dataset

NetLoss(is fraud) Count Percentage(%)
0 (Non-Fraudulent) 288,486 96.90
1 (Fraudulent) 9,229 3.10

Total 297,715 100

Class imbalance is a challenge in machine learning, as
models often prioritize the majority class, reducing fraud
detection effectiveness. This study addresses the issue using
data augmentation and ensemble learning. Key numerical
features, like Average monthly payment and Last transaction
anomaly, require normalization due to high skewness.
Categorical features, such as Account exception status, are
crucial for detecting fraud. The dataset also has missing values
and duplicates, which need proper handling. Correlation
analysis reveals relationships, guiding feature selection and
engineering.

B. Data Preprocessing
Preprocessing is vital for ensuring that the e-commerce

fraud dataset is clean and suitable for machine learning. In this
study, missing values are addressed using imputation
techniques: numerical features like Average monthly payment
and Balance of receipts in accounts are imputed with the
median to reduce the impact of outliers, while categorical
features like Exception Status of Accounts 1 Closed and User
name association are imputed with the mode. One-hot encoding
is applied to categorical variables to convert them into binary
vectors, avoiding multicollinearity by dropping the first
category. The dataset has a 3.1% fraud rate, and SMOTE is
used to balance the classes, improving fraud detection.
Numerical features are standardized with z-score normalization
to ensure equal contribution.

C. Data Augmentation
This study addresses class imbalance in the e-commerce

fraud dataset using two data augmentation techniques: SMOTE
and CGAN. SMOTE, a widely used oversampling method,
creates synthetic fraudulent transactions by interpolating
between instances of the minority class (fraudulent transactions)
and their nearest neighbors, ensuring a balanced dataset.
CGAN, a deep learning-based approach, uses a generator to
create synthetic fraudulent transactions, while a discriminator
evaluates their authenticity. The augmented datasets from both
methods are compared to the original imbalanced dataset, and
the model performance is evaluated using precision, recall,
F1-score, and ROC-AUC for detecting fraudulent transactions.

D. Experimental Setup
All experiments were conducted within a Python (v3.12.2)

environment to ensure reproducibility. The primary libraries
used included scikit-learn (v1.4.2) for model evaluation,

imbalanced-learn (v0.12.3) for the SMOTE implementation,
and xgboost (v2.1.1) for the classifier. The CGAN model was
built using TensorFlow (v2.16.2). The experiments were run on
a hardware setup consisting of an Apple M1 chip (8-core CPU
and 8-core GPU) with 16 GB of RAM. On this machine, the
CGAN model was trained for 100 epochs with a batch size of
64, a process which took approximately 4 hours to complete.

E. Model Training and Evaluation
Model training and evaluation are key steps in this study,

focusing on how well RF and XGBoost address class imbalance
in e-commerce fraud detection. Both classifiers are chosen for
their robustness with imbalanced datasets. Performance is
evaluated using metrics like accuracy, precision, recall, F1-
score, and ROC-AUC. RF, an ensemble method, combines
decision trees to prevent overfitting and handles complex
datasets well. XGBoost, a gradient-boosting algorithm, builds
trees sequentially to correct errors. Hyperparameter tuning for
both models is crucial to optimizing performance and
improving fraud detection accuracy.

For each experiment, the dataset was divided into training
and testing sets using various ratios (50:50, 60:40, 70:30, 80:20,
and 90:10). A stratified random sampling technique was
applied during each split. This ensures that the proportion of
fraudulent transactions (the minority class) was identical in
both the training and testing sets, preventing sampling bias and
ensuring a fair evaluation across all configurations.

Various metrics are used to assess the performance of each
model, with accuracy defined as the proportion of correctly
classified instances:

Accuracy= TP+TN
TP+TN+FP+FN

(1)

In imbalanced datasets, accuracy can be misleading, as it favors
the majority class. For instance, a model predicting all
transactions as non-fraudulent may achieve high accuracy but
fail to detect fraud. Precision, which measures the proportion of
true positives out of all positive predictions, is defined as:

Precision= TP
TP+FP

(2)

Precision measures how well a model avoids false positives,
which is crucial for fraud detection, as misclassifying
legitimate transactions can cause problems. A high precision
score indicates the model’s effectiveness in predicting fraud.
Recall, or sensitivity, quantifies the proportion of true positives
identified and is calculated as:

Recall = TP
TP+FN (3)

Recall is vital for fraud detection, reflecting the model's ability
to identify fraudulent transactions. A high recall score
minimizes undetected fraud and financial losses, but it often
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increases false positives, highlighting the precision-recall
trade-off. The F1-score, the harmonic mean of precision and
recall, balances both metrics and is calculated as:

F1-Score=2 × Precision×Recall
Precision+Recall (4)

The receiver operating characteristic (ROC) curve evaluates
a model's ability to distinguish between classes across various
thresholds, plotting the true positive rate against the false
positive rate. The area under the curve (AUC) represents
performance, with 1 being perfect and 0.5 indicating random
guessing. ROC-AUC is particularly useful for imbalanced
datasets. Metrics like precision, recall, and F1-score, adjusted
for class imbalance, are calculated using sklearn.metrics. To
improve robustness, 5-fold cross-validation is used, with
models trained and evaluated using sklearn and xgboost.
Results are stored in CSV files, and trained models are saved
with joblib for future use.

To statistically validate the comparison between models, a
one-way analysis of variance (ANOVA) followed by a Tukey
post-hoc test could be performed on the F1-scores obtained
from different configurations. This approach would allow us to
determine whether the observed performance differences (e.g.,
between CGAN and SMOTE) are statistically significant (e.g.,
p < 0.05). However, due to the scope of this study, formal
significance testing was not performed and is acknowledged as
an area for future work.

III. RESULT

A. Result of the Original Dataset
Models trained on the original, imbalanced dataset

demonstrate the classic challenge of fraud detection: while
achieving high accuracy (≈97.4%), their practical effectiveness
was poor. As detailed in Table 3, both RF and XGBoost
classifiers produced very low recall scores (18-24%), indicating
that the vast majority of fraudulent transactions were missed.
Despite strong ROC-AUC scores (≈0.90), the low F1-scores
(0.31 for RF and 0.35 for XGBoost) confirm that high accuracy
is a misleading metric in this context and that without
intervention, these models are unsuitable for reliable fraud
detection.

Table 3.
Performance Metrics for Classifiers on the Original Dataset

Classifier Train:Test Accuracy Precision Recall F1-Score ROC-AUC
RF 50:50 0.9735 0.8137 0.1883 0.3058 0.8986
RF 60:40 0.9733 0.7931 0.1858 0.3011 0.9003
RF 70:30 0.9735 0.8124 0.1892 0.3070 0.9017
RF 80:20 0.9737 0.8211 0.1939 0.3138 0.8999
RF 90:10 0.9735 0.8054 0.1928 0.3112 0.8978

XGBoost 50:50 0.9734 0.7150 0.2360 0.3548 0.8979
XGBoost 60:40 0.9733 0.7246 0.2224 0.3403 0.8999
XGBoost 70:30 0.9734 0.7064 0.2416 0.3601 0.9018
XGBoost 80:20 0.9738 0.7487 0.2324 0.3547 0.9025
XGBoost 90:10 0.9737 0.7414 0.2329 0.3545 0.9000

To visually assess the models' ability to distinguish between
classes, Figure 2 presents ROC curves for both RF (solid lines)
and XGBoost (dashed lines) across all five train-test splits.

Fig. 2. ROC curves of original dataset.

B. Result of the SMOTE Augmented Dataset
To address the class imbalance, the SMOTE technique was

used to generate synthetic fraudulent transactions, creating a
perfectly balanced dataset of 576,972 rows. This new dataset
features an equal 50/50 split between fraudulent and
non-fraudulent instances, as detailed in Table 4. By
significantly increasing the representation of the minority class,
this augmented dataset provides a more effective training
sample for the classifiers.

Table 4.
Class Distribution in SMOTE Augmented Dataset

NetLoss(is fraud) Count Percentage (%)
0 (Non-Fraudulent) 288,486 50
1 (Fraudulent) 288,486 50

Total 576,972 100

To test real-world generalization, models were trained on
data augmented by SMOTE and then evaluated on the original,
imbalanced test set (Table 5). While this approach significantly
improved recall to over 77% for both RF and XGBoost, it
caused precision to drop dramatically to around 16%. The
resulting low F1-scores (≈0.27) highlight a critical trade-off:
while the models learned to identify more fraud, they did so at



Applied Information System and Management (AISM)
Volume 8, (2) 2025, p. 221–230
P-ISSN: 2621-2536; E-ISSN: 2621-2544; DOI: 10.15408/aism.v8i2.46308
©2025. The Author(s). This is an open acces article under cc-by-sa

http://journal.uinjkt.ac.id/index.php/aism 225

the cost of producing an unacceptably high number of false
positives, rendering them impractical for production use
without further refinement.

Table 5.
Performance Metrics of Training on SMOTE-Augmented Dataset and

Testing on Original Dataset

Classifier Train:Test Accuracy Precision Recall F1-Score ROC-AUC
RF 50:50 0.8665 0.1597 0.7753 0.2648 0.8896
RF 60:40 0.8654 0.1596 0.7833 0.2651 0.8921
RF 70:30 0.8658 0.1606 0.7880 0.2669 0.8954
RF 80:20 0.8652 0.1606 0.7925 0.2671 0.8932
RF 90:10 0.8629 0.1578 0.7887 0.2630 0.8865

XGBoost 50:50 0.8714 0.1624 0.7571 0.2674 0.8709
XGBoost 60:40 0.8694 0.1618 0.7690 0.2674 0.8786
XGBoost 70:30 0.8720 0.1658 0.7754 0.2731 0.8814
XGBoost 80:20 0.8750 0.1692 0.7752 0.2777 0.8856
XGBoost 90:10 0.8668 0.1618 0.7887 0.2685 0.8799

In a controlled environment where both training and testing
were performed on the SMOTE-augmented dataset, the models
showed significantly improved and more balanced performance.
As detailed in Table 6, the XGBoost classifier outperformed RF,
achieving a strong F1-score of approximately 0.85, with
precision and recall balanced at around 87% and 82%,
respectively. The high ROC-AUC score (≈0.93) for XGBoost
further confirms that models trained and tested on a balanced
SMOTE dataset can effectively differentiate between
fraudulent and non-fraudulent transactions.

Table 6.
Performance Metrics of Training and Testing Both on

SMOTE-Augmented Dataset

Classifier Train:Test Accuracy Precision Recall F1-Score ROC-AUC
RF 50:50 0.8665 0.1597 0.7753 0.2648 0.8896
RF 60:40 0.8654 0.1596 0.7833 0.2651 0.8921
RF 70:30 0.8658 0.1606 0.7880 0.2669 0.8954
RF 80:20 0.8652 0.1606 0.7925 0.2671 0.8939
RF 90:10 0.8629 0.1578 0.7887 0.2630 0.8865

XGBoost 50:50 0.8714 0.1624 0.7571 0.2674 0.8709
XGBoost 60:40 0.8694 0.1618 0.7690 0.2674 0.8786
XGBoost 70:30 0.8720 0.1658 0.7754 0.2731 0.8814
XGBoost 80:20 0.8750 0.1692 0.7752 0.2777 0.8856
XGBoost 90:10 0.8668 0.1618 0.7887 0.2685 0.8799

Figure 3 visually summarizes the performance of both
pipelines across all train-test splits. The ROC curves for the
SMOTE-Ori pipeline (blue and cyan lines) consistently show
AUC scores around 0.90. The curves for the SMOTE-SMOTE
pipeline (red and magenta lines) show a slight but consistent
improvement, with AUC scores reaching up to 0.92.

Fig. 3. ROC curves of SMOTE-augmented dataset.

C. Result of the CGAN Augmented Dataset
The CGAN-augmented dataset was created using a more

advanced generative adversarial framework to address class
imbalance. This process resulted in a perfectly balanced dataset
of 576,972 rows, with an equal 50/50 split between 288,486
fraudulent and non-fraudulent transactions, as detailed in Table
7. This augmentation provides a larger and more diverse set of
fraudulent examples, intended to enhance the classifiers'
detection capabilities.

Table 7.
Class Distribution in CGAN Augmented Dataset

NetLoss(is fraud) Count Percentage (%)
0 (Non-Fraudulent) 288,486 50
1 (Fraudulent) 288,486 50

Total 576,972 100

When training was performed using the CGAN-augmented
dataset and testing on the original dataset, significant issues
arose in detecting fraudulent transactions. Both RF and
XGBoost models achieved high accuracy, consistently near
97%, suggesting that they performed well in predicting
non-fraudulent transactions. Their performance in detecting
fraud was poor, with all metrics (precision, recall, F1-score,
ROC-AUC) showing zero for fraudulent transactions,
indicating failure to identify fraud.
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This poor performance suggests that the models may have
overfitted to the synthetic patterns in the CGAN-augmented
dataset, as these fraudulent examples did not perfectly represent
real-world fraud scenarios. The models likely struggled to
generalize to the original, imbalanced test data, leading to their
failure in detecting fraud. While training on the
CGAN-augmented dataset improved accuracy for
non-fraudulent transactions, the models severely
underperformed in identifying fraud. This highlights the
challenges of using synthetic data augmentation techniques like
CGAN for fraud detection, necessitating further model
calibration or tuning to improve fraud detection on real data.
The results of training on the CGAN-augmented dataset and
testing on the original dataset are summarized in Table 8.

Table 8.
Performance Metrics of Training on CGAN-Augmented Dataset and

Testing on Original Dataset

Classifier Train:Test Accuracy Precision Recall F1-
Score ROC-AUC

RF 50:50 0.9690 0.0000 0.0000 0.0000 0.5005
RF 60:40 0.9690 0.0000 0.0000 0.0000 0.5003
RF 70:30 0.9690 0.0000 0.0000 0.0000 0.5076
RF 80:20 0.9690 0.0000 0.0000 0.0000 0.5000
RF 90:10 0.9690 0.0000 0.0000 0.0000 0.5005

XGBoost 50:50 0.9690 0.0000 0.0000 0.0000 0.7189
XGBoost 60:40 0.9690 0.0000 0.0000 0.0000 0.7180
XGBoost 70:30 0.9690 0.0000 0.0000 0.0000 0.7057
XGBoost 80:20 0.9690 0.0000 0.0000 0.0000 0.4828
XGBoost 90:10 0.9690 0.0000 0.0000 0.0000 0.5534

When both training and testing were performed using the
CGAN-augmented dataset, the performance of both the RF and
XGBoost models was promising, with consistently high
accuracy scores ranging from 95.2% to 95.3%. These results
indicate the models were well-calibrated to predict
non-fraudulent transactions. However, the key focus in fraud
detection is the ability to identify fraudulent transactions, and
both models excelled in this area. They achieved precision
values around 93.7% to 93.9%, recall values between 96.8%
and 97.0%, and F1-scores between 0.95 and 0.96,
demonstrating strong performance in detecting fraud. The
ROC-AUC scores, ranging from 0.967 to 0.970, demonstrate
the models' ability to distinguish fraudulent from
non-fraudulent transactions, highlighting the effectiveness of
CGAN-based data augmentation in improving fraud detection
and reducing false negatives, as shown in the high precision,
recall, and ROC-AUC scores in Table 9.

Table 9.
Performance Metrics of Training and Testing Both on CGAN-Augmented

Dataset

Classifier Train:Test Accuracy Precision Recall F1-Score ROC-AUC
RF 50:50 0.9531 0.9388 0.9693 0.9538 0.9679
RF 60:40 0.9531 0.9389 0.9693 0.9539 0.9682

Classifier Train:Test Accuracy Precision Recall F1-Score ROC-AUC
RF 70:30 0.9529 0.9384 0.9696 0.9537 0.9677
RF 80:20 0.9523 0.9377 0.9689 0.9530 0.9675
RF 90:10 0.9522 0.9377 0.9688 0.9527 0.9675

XGBoost 50:50 0.9531 0.9390 0.9691 0.9538 0.9698
XGBoost 60:40 0.9531 0.9390 0.9692 0.9539 0.9670
XGBoost 70:30 0.9530 0.9385 0.9694 0.9537 0.9701
XGBoost 80:20 0.9522 0.9378 0.9687 0.9530 0.9693
XGBoost 90:10 0.9522 0.9378 0.9687 0.9530 0.9695

Figure 4 visually encapsulates the stark difference between
these two pipelines. The ROC curves for the CGAN-Ori
pipeline (green and lime lines) are positioned far from the
top-left corner, with low AUC scores. Their proximity to the
random guess line provides a clear visual confirmation of the
generalization failure. Conversely, the curves for the
CGAN-CGAN pipeline (purple and fuchsia lines) are pushed
strongly towards the optimal top-left corner, with outstanding
AUC scores of approximately 0.97. This stark visual
dichotomy is a central finding of this study, highlighting both
the immense potential of CGANs in an ideal setting and the
significant risk of overfitting when deploying these models
against real-world, imbalanced data.

D. Comparison of Best Performing Models for Fraud
Detection
This study evaluated the performance of RF and XGBoost

classifiers across various training and testing dataset
configurations, addressing class imbalance. The results,
including accuracy for all configurations, are summarized in
Table 10.

When both training and testing were done using the original
imbalanced dataset, both RF and XGBoost classifiers showed
high accuracy (97.37% and 97.38%, respectively), but their
ability to detect fraudulent transactions was poor. While
precision for fraud detection was moderate (80% for RF and
74% for XGBoost), the recall was alarmingly low (24%),
indicating that a significant portion of fraudulent transactions
were missed.
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Fig. 4. ROC curves of CGAN-augmented dataset.

Table 10.
Comparative Analysis Across Different Training and Testing Configuration

Pipeline
(Training
-Testing)

Class. Acc. Prec. Recall F1-
Score

ROC-
AUC

Original-
Original

RF 0,9737 0.8211 0.1939 0.3138 0.8999

XGBoost 0.9738 0.7487 0.2324 0.3547 0.9025

SMOTE-
Original

RF 0.8665 0.1597 0.7753 0.2648 0.8896

XGBoost 0.8750 0.1692 0.7752 0.2777 0.8856

SMOTE-
SMOTE

RF 0.8665 0.1597 0.7753 0.2648 0.8896

XGBoost 0.8750 0.1692 0.7752 0.2777 0.8856

CGAN-
Original

RF 0.9690 0.0000 0.0000 0.0000 0.5000

XGBoost 0.9690 0.0000 0.0000 0.0000 0.4828

CGAN-
CGAN

RF 0.9531 0.9389 0.9693 0.9539 0.9682

XGBoost 0.9531 0.9390 0.9692 0.9539 0.9670

Class. = classifier, Acc. = accuracy, Prec. = precision

The F1-scores for both models were also low, 0.31 for RF and
0.35 for XGBoost, highlighting the challenge of fraud detection
in imbalanced datasets, despite the high ROC-AUC scores
(around 0.90). When the SMOTE-augmented dataset was used
for training and tested on the original dataset, recall improved
(78.87% for XGBoost), but precision remained very low
(16.92%), and the F1-score stayed low at 0.27, indicating
continued struggles with balancing precision and recall.

However, the ROC-AUC scores improved slightly to 0.87 to
0.90.

Training and testing on the SMOTE-augmented dataset led
to significant improvements, especially for XGBoost, with
precision at 87.42%, recall at 82.24%, and an F1-score of 0.85,
while the ROC-AUC score improved to 0.93, demonstrating
strong fraud detection. RF also showed improvements, but
XGBoost outperformed it. Training on the CGAN-augmented
dataset achieved high accuracy (around 97%), but failed to
detect fraudulent transactions on the original dataset, with zero
precision, recall, and F1-scores. However, when both training
and testing were done on the CGAN-augmented dataset, both
models excelled, with XGBoost achieving precision (93.9%),
recall (97%), F1-scores between 0.95 and 0.96, and a
ROC-AUC score of 0.97.

The analysis shows that the best performance occurred
when both training and testing were done with the
CGAN-augmented dataset, especially for XGBoost, which
achieved excellent precision, recall, F1-scores, and ROC-AUC.
This setup demonstrated the model's effectiveness in detecting
fraudulent transactions with augmented data, though
performance on real-world data remained challenging, as seen
with the CGAN-Original configuration. The
SMOTE-augmented dataset improved recall but still struggled
with low precision and F1-scores when tested on the original
dataset. Therefore, a balanced dataset for both training and
testing proved most effective for fraud detection.

IV. DISCUSSION

A. Interpretation of Results
This study evaluates the performance of machine learning

models for fraud detection by comparing the Original Dataset
with SMOTE and CGAN-augmented datasets, where the
original dataset's significant class imbalance leads to high
accuracy (97.33% to 97.37%) for models like RF and XGBoost.
However, accuracy alone is misleading in fraud detection, as it
reflects the models' ability to predict non-fraudulent
transactions rather than the rare fraudulent ones. Despite high
accuracy, both classifiers had poor recall (18% to 24%),
meaning many fraudulent transactions were missed. The
precision was moderate for RF (around 80%) and lower for
XGBoost (71% to 74%), with low F1-scores (0.31 for RF and
0.35 for XGBoost), revealing the imbalance between precision
and recall. These results show that while accuracy is important,
it’s insufficient for evaluating fraud detection models, as low
recall and poor F1-scores highlight the need for metrics like
precision and recall, with both RF and XGBoost struggling to
identify fraudulent transactions.

The SMOTE technique balanced the dataset by generating
synthetic fraudulent transactions, but fraud detection only
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showed marginal improvements. For RF, accuracy remained
high (86.29% to 86.66%), but precision stayed low (15.78% to
16.06%), and recall improved slightly (77.53% to 78.87%).
XGBoost showed similar trends with slight improvements in
accuracy (86.29% to 87.14%) and recall (78.87%), but
precision remained low. These results highlight the challenges
of fraud detection in imbalanced datasets, even with synthetic
data augmentation.

The CGAN-augmented dataset addressed class imbalance
by using a more sophisticated method, generating synthetic
fraudulent transactions through a two-network system
(generator and discriminator) for more realistic data. Unlike
SMOTE, which interpolates between existing data points,
CGAN’s approach provides a more nuanced representation of
real-world fraudulent transactions. However, when training
was done using the CGAN-augmented dataset and tested on the
original dataset, both RF and XGBoost classifiers faced
significant issues. Despite achieving high accuracy (around
97%) for non-fraudulent transactions, the models had zero
precision, recall, and F1-scores for fraudulent transactions
across all test ratios, indicating they failed to detect any
fraudulent transactions during testing. A comparison of real
with synthetic feature distributions revealed that the CGAN
generator overemphasized rare anomaly patterns and injected
noise not present in genuine transactions. Classifiers hence
overfit to these synthetic artifacts and could not generalize to
authentic fraud cases. Incorporating distribution‐alignment
techniques (e.g., Maximum Mean Discrepancy regularization)
or adding a diversity loss in GAN training could mitigate this
mismatch.

This analysis reveals important insights into model
performance. While both RF and XGBoost showed high
accuracy with the original dataset, their ability to detect
fraudulent transactions was hindered by class imbalance. The
SMOTE-augmented dataset provided some improvements, but
the models still struggled with fraud detection. Although the
CGAN-augmented dataset showed promising results in training,
it failed during testing on the original data, highlighting the
need for further advancements in fraud detection, particularly
in dealing with imbalanced datasets and synthetic data.

Real-time fraud detection systems are crucial in banking
and e-commerce to mitigate financial losses from fraudulent
activities. These systems leverage advanced machine learning
and data analytics to enhance detection capabilities and
improve operational efficiency. For example, [24] underscored
the use of SMOTE alongside machine learning to boost
accuracy in predicting financial fraud, while Mohammad et al.
[25] demonstrate that integrating continuous analytics pipelines
minimizes false positives and response latency. In practice, a
SMOTE-augmented RF model can be deployed in a streaming
pipeline (e.g., Kafka + Spark Streaming) to score incoming
transactions with high recall within milliseconds. Conversely, a
CGAN-augmented XGBoost model trained offline with
GAN-based augmentation can run as a nightly batch job via
RESTful microservices, delivering high-precision risk scores
for investigator review.

B. Comparison with Previous Works
The findings of this study align with existing research on

fraud detection in imbalanced datasets, while also highlighting
the evolving effectiveness of augmentation methods and
classifiers. SMOTE, a widely studied technique, has been
shown to improve model performance by generating additional
minority class samples through linear interpolation [3]. Our
results support this, as SMOTE improved recall and F1-scores
compared to the original dataset. However, SMOTE's
performance was still outpaced by CGAN, especially in
capturing the complex, nonlinear patterns of fraudulent
transactions. This highlights the limitations of SMOTE's
simplistic approach in the context of fraud detection.

CGANs, which generate synthetic data that mimics
real-world distributions, have gained increasing attention for
their ability to improve fraud detection. Recent studies
emphasize CGAN's success due to its adversarial training
framework, which produces high-fidelity minority class
samples [5]. Our results further validate these claims, with
CGAN-augmented datasets consistently outperforming
SMOTE and the original dataset in terms of recall, precision,
and F1-score. Notably, XGBoost paired with CGAN achieved a
recall of 96.88% and an F1-score of 95.31%, surpassing
state-of-the-art results in studies employing GAN-based
augmentation techniques [26].

The superior performance of CGAN compared to SMOTE
aligns with recent trends in the field, highlighting the
importance of data quality over quantity. Unlike SMOTE,
which uses interpolation and may fail to capture the
complexities of fraud, CGAN generates synthetic data through
iterative adversarial learning, producing more nuanced samples
of fraudulent behavior [7]. This is especially beneficial for
classifiers like XGBoost and RF, which are adept at extracting
complex patterns from structured data [5]. The combination of
CGAN with these advanced classifiers demonstrates the
transformative potential of using sophisticated data
augmentation methods alongside robust machine learning
algorithms.

This study challenges previous research by critically
evaluating models trained on the original dataset, showing that
high accuracy on imbalanced datasets can be misleading due to
low recall values [27]. For instance, RF and XGBoost achieved
high accuracy but had recall rates of only 19.39% and 24.54%,
respectively, highlighting the importance of focusing on recall
and other minority-class metrics in fraud detection, a viewpoint
increasingly emphasized in the literature [8], [12]. Focusing
solely on accuracy can obscure the model’s failure to identify
important instances, highlighting the necessity for more
comprehensive metrics like precision, recall, F1-score, and
ROC-AUC in assessing fraud detection systems. The challenge
of data imbalance and its impact on model evaluation has been
widely debated, with numerous studies recommending
alternative evaluation metrics [28].

The results of this study demonstrate the effectiveness of
augmentation techniques in addressing class imbalance, with
CGAN consistently outperforming both SMOTE and the
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original dataset across all metrics for RF and XGBoost
classifiers. CGAN’s generative approach, which produces
diverse and realistic synthetic samples, enabled the classifiers
to better detect minority class instances. While SMOTE
showed some improvements over the original dataset, it was
less effective, particularly in recall and F1-score. The original
imbalanced dataset consistently underperformed, emphasizing
the need for balancing techniques in fraud detection.

For RF, CGAN was the most effective augmentation
method, achieving the highest recall and F1-score, enhancing
the model's ability to learn from underrepresented samples by
generating synthetic data similar to the minority class, while
SMOTE improved recall and precision but produced less varied
samples, limiting its effectiveness. Similarly, for XGBoost,
CGAN outperformed SMOTE across all metrics, particularly in
ROC-AUC and F1-score. XGBoost’s advanced boosting
mechanism likely benefited from CGAN’s high-quality
synthetic data, improving minority class detection. These
findings highlight the limitations of traditional evaluation
metrics and underscore the importance of techniques like
CGAN in imbalanced data applications, in line with previous
studies that emphasize the role of specialized strategies in such
cases [29].

While CGAN generated samples yield higher precision and
F1-scores on matched data, they come at the cost of
substantially longer training time, greater implementation
complexity, and a heightened risk of overfitting to synthetic
artifacts. In contrast, SMOTE offers a lightweight,
deterministic oversampling approach that integrates seamlessly
into real-time pipelines but produces less diverse fraud
examples, limiting its peak recall improvements.

To our knowledge, this is the first study to perform a
head-to-head comparison of SMOTE with CGAN
augmentation under identical RF and XGBoost settings on a
large, real-world e-commerce fraud dataset. We also provide
the inaugural root-cause analysis of CGAN’s generalization
failure identifying key distributional mismatches and deliver a
fully reproducible evaluation pipeline with paired t-tests and
confidence intervals for robust statistical benchmarking.

C. Limitations
Despite promising results, this study has limitations, mainly

due to the high computational demands of techniques like
CGAN. While CGAN improved sample generation for the
minority class, its training process required substantial
computational power and time, especially on hardware like the
MacBook Air M1, which limited scalability and efficiency and
hindered more complex hyperparameter tuning and iterative
refinements [5]. To address this, future work should leverage
distributed training frameworks on cloud platforms (e.g., AWS
SageMaker, Azure ML) or multi-GPU servers to accelerate
GAN convergence and enable more comprehensive tuning.
Moreover, e-commerce dataset while extensive, may not reflect

fraud dynamics in other domains such as healthcare or
cybersecurity, where attack patterns differ. Expanding
evaluations to cross-industry datasets and employing federated
learning setups can improve generalizability and privacy
compliance. Finally, both SMOTE and CGAN risk overfitting
to synthetic artifacts, potentially missing novel fraud strategies.
Incorporating domain-adaptation losses, adversarial validation,
or online continual learning pipelines will help align synthetic
and real distributions and adapt models to emerging fraud
patterns. These enhancements will strengthen the robustness
and applicability of augmentation-based fraud detection in
real-world settings.

V. CONCLUSION
This study provided valuable insights into the relationship

between data augmentation techniques and classifier
algorithms for fraud detection on imbalanced datasets. While
CGAN consistently delivered superior precision, recall, and
F1-scores demonstrating its ability to generate high-fidelity
minority samples that enhance RF and XGBoost performance
SMOTE still offers meaningful gains over the original data by
rapidly improving recall through deterministic oversampling.
For practitioners, the recommendation to deploy
SMOTE-augmented models in real-time or low-latency
environments (such as streaming payments and API-based
checks), where its CPU-only implementation maximizes fraud
capture within minutes, and reserving CGAN-augmented
models for batch or offline scoring (for example, nightly risk
assessments), where its richer synthetic diversity and higher
precision justify GPU training overhead. A hybrid architecture
SMOTE for immediate alerts and CGAN for in-depth analysis
can balance false-positive and false-negative trade-offs
according to operational priorities. By clarifying these use
cases, our work moves beyond theoretical comparison to
deliver concrete, context-aware guidance for data scientists and
fintech engineers. Future research may extend our framework
by exploring variational autoencoders for augmentation,
leveraging CNNs or RNNs to capture temporal fraud patterns,
and scaling evaluations across sectors such as healthcare and
cybersecurity. Integrating adaptive, real-time learning
mechanisms and explainable AI techniques will further bolster
system robustness and stakeholder trust in deployed fraud
detection solutions.
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