Nanoporous Carbon Prepared with MOF-5 as a Template and Activated using KOH for Hydrogen Storage

Ratna Ediati, Tri Ana Mulyati, Amirul Mukminin, Dety Oktavia Sulistiono, Naimatul Khoiroh, Hamzah Fansuri, Didik Prasetyoko

Abstract


A series of nanoporous carbon was prepared with MOF-5 as a template and furfuryl alcohol as an additional carbon source by carbonation at temperatures of 550 °C and 900 °C, respectively, with and without activation using KOH. XRD patterns of the obtained carbons before and after the activation process showed characteristic peaks at the same 2θ values, which corresponded to the XRD pattern of a ZnO. The Surface morphology of the MOF-5 templated carbon with a carbonation temperature of 550 °C was in the form of a cube. In contrast, the one carbonated at 900 °C had a cubic and circular morphology. The N2 adsorption-desorption isothermal showed that MOF-5 templated carbon had a larger specific surface area, pore diameter, and pore volume than those of the original MOF-5. Activation of the MOF-5 templated carbon using KOH resulted in a decrease in surface area and pore volume. All the materials were measured for their hydrogen adsorption at room temperature and atmospheric pressure using a gravimetric method.


Keywords


MOF-5 templated carbon; adsorption; hydrogen storage; gravimetry

Full Text:

PDF

References


Almasoudi A, Mokaya R. 2012. Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework. Journal of Materials Chemistry. 22(1): 146–152. https://doi.org/10.1039/c1jm13314d.

Ata-ur-Rehman, Tirmizi SA, Badshah A, Ammad HM, Jawad M, Abbas SM, Rana UA, Khan SUD. 2018. Synthesis of highly stable MOF-5@MWCNTs nanocomposite with improved hydrophobic properties. Arabian Journal of Chemistry. 11(1): 26–33. https://doi.org/10.1016/j.arabjc.2017.01.012

Chen EY, Liu YC, Zhou M, Zhang L, Wang Q. 2012. Effects of structure on hydrogen adsorption in zeolitic imidazolate frameworks. Chemical Engineering Science. 71: 178–184. https://doi.org/10.1016/j.ces.2011.12.003

Cuhadaroglu D, Uygun OA. 2008. Production and characterization of activated carbon from a bituminous coal by chemical activation. African Journal of Biotechnology. 7(20): 3706–3713. https://doi.org/10.5897/AJB08.588

Ediati R, Mukminin A, Widiastuti N. 2017. Impregnation nickel on mesoporous ZSM-5 templated carbons as a candidate material for hydrogen storage. Indonesian Journal of Chemistry. 17(1): 30–36.

Greer HF, Liu Y, Greenaway A, Wright PA, Zhou W. 2016. Synthesis and formation mechanism of textured MOF-5, crystal growth and design. 16(4): 2104–2111. https://doi.org/10.1021/acs.cgd.5b01785

Hirscher M, Panella B, Schmitz B. 2010. Metal-organic frameworks for hydrogen storage. Microporous and Mesoporous Materials. 129(3): 335–339. https://doi.org/10.1016/j.micromeso.2009.06.005

Hou XX, Sulic M, Ortmann JP, Cai M, Chakraborty A. 2016. Experimental and numerical investigation of the cryogenic hydrogen storage processes over MOF-5. International Journal of Hydrogen Energy. 41(6): 4026–4038. https://doi.org/10.1016/j.ijhydene.2015.12.187

Hu J, Wang H, Gao Q, Guo H. 2010. Porous carbons prepared by using metal-organic framework as the precursor for supercapacitors. Carbon. 48(12): 3599–3606. https://doi.org/10.1016/j.carbon.2010.06.008

Hu YH, Zhang L. 2010. Hydrogen storage in metal-organic frameworks. Advanced Materials. 22(20): 117–130. https://doi.org/10.1002/adma.200902096

Jiang HL, Liu B, Lan YQ, Kuratani K, Akita T, Shioyama H, Zong F, Xu Q. 2011. From metal–organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. Journal of the American Chemical Society. 133(31): 11854–11857. https://doi.org/10.1021/ja203184k

Juan-Juan J, Marco-Lozar JP, Suárez-García F, Cazorla-Amorós D, Linares-Solano A. 2010. A comparison of hydrogen storage in activated carbons and a metal-organic framework (MOF-5). Carbon. 48(10): 2906–2909. https://doi.org/10.1016/j.carbon.2010.04.025

Khan IA, Badshah A, Khan I, Zhao D, Nadeem MA. 2017. Soft-template carbonization approach of MOF-5 to mesoporous carbon nanospheres as excellent electrode materials for supercapacitor. Microporous and Mesoporous Materials. 253: 169–176. https://doi.org/10.1016/j.micromeso.2017.06.049

Lee SY, Park SJ. 2012a. Influence of the pore size in multi-walled carbon nanotubes on the hydrogen storage behaviors. Journal of Solid State Chemistry. 194: 307–312. https://doi.org/10.1016/j.jssc.2012.05.027

Lee SY, Park SJ. 2012b. Synthesis of zeolite-casted microporous carbons and their hydrogen storage capacity. Journal of Colloid and Interface Science. 384(1): 116–120. https://doi.org/10.1016/j.jcis.2012.06.058

Lestari WW, Wibowo AH, Astuti S, Irwinsyah, Pamungkas AZ, Krisnandi YK. 2018. Fabrication of hybrid coating material of polypropylene itaconate containing MOF-5 for CO2 capture. Progress in Organic Coatings. 115(November 2017): 49–55. https://doi.org/10.1016/j.porgcoat.2017.11.006

Li W, Zhang Y, Li Q, Zhang G. 2015. Metal-organic framework composite membranes: Synthesis and separation applications. Chemical Engineering Science. 135: 232–257. https://doi.org/10.1016/j.ces.2015.04.011

Liu B, Shioyama H, Jiang H, Zhang X, Xu Q. 2010. Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon. 48(2), 456–463. https://doi.org/10.1016/j.carbon.2009.09.061

Liu XW, Sun TJ, Hu JL, Wang SD. 2016. Composites of metal-organic frameworks and carbon-based materials: Preparations, functionalities and applications. Journal of Materials Chemistry A. 4(10): 3584–3616. https://doi.org/10.1039/c5ta09924b

Ma X, Li L, Chen R, Wang C, Li H, Wang S. 2018. Heteroatom-doped nanoporous carbon derived from MOF-5 for CO2 capture. Applied Surface Science. 435(2010): 494–502. https://doi.org/10.1016/j.apsusc.2017.11.069

Ming Y, Purewal J, Yang J, Xu C, Veenstra M, Gaab M, Müller U, Siegel DJ. 2016. Stability of MOF-5 in a hydrogen gas environment containing fueling station impurities. International Journal of Hydrogen Energy. 41(22): 9374–9382. https://doi.org/10.1016/j.ijhydene.2016.03.155

Mulyati TA, Ediati R, Rosyidah A. 2015. Influence of solvothermal temperatures and times on crystallinity and morphology of MOF-5. Indonesian Journal of Chemistry. 15(2): 101–107. https://doi.org/10.22146/ijc.21202

Sculley J, Yuan D, Zhou HC. 2011. The current status of hydrogen storage in metal-organic frameworks-updated. Energy and Environmental Science. 4(8): 2721–2735. https://doi.org/10.1039/c1ee01240a

Segakweng T, Musyoka NM, Ren J, Crouse P, Langmi HW. 2016. Comparison of MOF-5- and Cr-MOF-derived carbons for hydrogen storage application. Research on Chemical Intermediates. 42(5): 4951–4961. https://doi.org/10.1007/s11164-015-2338-1

Sevilla M, Fuertes AB, Mokaya R. 2011. Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from polythiophene. International Journal of Hydrogen Energy. 36(24): 15658–15663. https://doi.org/10.1016/j.ijhydene.2011.09.032

Sevilla, Marta, Alam N, Mokaya R. 2010. Enhancement of hydrogen storage capacity of zeolite-templated carbons by chemical activation. Journal of Physical Chemistry C. 114(25): 11314–11319. https://doi.org/10.1021/jp102464e

Song J, Guo Q, Zhong Y, Gao X, Feng Z, Fan Z, Shi J, Liu L. 2013. Abstracts of new carbon materials 2012(1). Carbon. 50(8): 3117–3118. https://doi.org/10.1016/j.carbon.2012.02.070

Srinivas G, Krungleviciute V, Guo ZX, Yildirim T. 2014. Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy and Environmental Science. 7(1): 335–342. https://doi.org/10.1039/c3ee42918k

Yaghi OM, O’Keeffe M, Eddaoudi M, Li H. 1999. Design and synthesis of an exceptionally stable and highly. Letters to Nature, 402(November): 276–279.

Yang M, Guo L, Hu G, Hu X, Chen J, Shen S, Dai W, Fan M. 2016. Adsorption of CO2 by petroleum coke nitrogen-doped porous carbons synthesized by combining ammoxidation with KOH activation. Industrial and Engineering Chemistry Research. 55(3): 757–765. https://doi.org/10.1021/acs.iecr.5b04038

Yang SJ, Kim T, Im JH, Kim YS, Lee K, Jung H, Park CR. 2012. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chemistry of Materials. 24: 464–470. https://doi.org/10.1021/cm202554j

Yap MH, Fow KL, Chen GZ. 2017. Synthesis and applications of MOF-derived porous nanostructures. Green Energy & Environment. 2(3): 218–245. https://doi.org/10.1016/j.gee.2017.05.003




DOI: https://doi.org/10.15408/jkv.v6i1.13621 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Ratna Ediati

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

JURNAL KIMIA VALENSI has been indexed in :

 Mountain View      

Supported By:

Creative Commons License All Publication by Jurnal Kimia Valensi are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Penerbit: Program Studi Kimia, Fakultas Sains dan Teknologi, UIN Syarif Hidayatullah Jakarta.Jl. Ir. H. Juanda No. 95, Ciputat, Jakarta 15412, Indonesia, Telp. 021-7492855, Fax. 021-7493351, website: http://journal.uinjkt.ac.id/index.php/valensi, e-mail: kimia@uinjkt.ac.idISSN: 2460-6065, E-ISSN: 2548-3013 // ]]>

View My Stats