Microencapsulation of Lime Peel Essential Oils (Citrus aurantifolia) with Complex Coacervation Methods using Gelatin/Sodium Alginate Coating

Sandra Puspita¹, Diana Rakhmawaty Eddy¹, Tatang Wahyudi², Euis Julaeha¹*

¹Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University
Jl. Raya Bandung Sumedang km. 21 Jatinangor, Sumedang, 45363, Indonesia
²Center for Textile, Jl. Jenderal Ahmad Yani No.390, Bandung, 40272, Indonesia

*Corresponding author: euis.julaeha@unpad.ac.id

Received: February 2020; Revision: April 2020; Accepted: July 2020; Available online: August 2020

Abstract

Lime (Citrus aurantifolia) peel essential oils are complex metabolites mainly used as natural preservatives. The principal constituents include d-limonene, β-pinene, and terpineol. Moreover, essential oils (EOs) are potentially known volatile and unstable compounds, hence, they require proper packaging techniques, e.g., microencapsulation. The purpose of this study is to evaluate the binary methods of lime peel essential oils microencapsulation using complex coacervation. This involves the application of gelatin and sodium alginate coatings under two specific conditions, termed core/coating ratio 1:1.2, with modified stirring and core/coating ratio 1:2.0, with stirring speed of 600 rpm, respectively. The results showed the EOs preparation generated 0.70% yield, characterized by good quality, fresh aroma, and pale-yellow coloration. Also, microcapsules delivered 37.06% yield, 39.18% oil content, 31.53% encapsulation efficiency (EE), and less smooth curved, SEM surface. Furthermore, it was carefully observed that condition II produced more superior microcapsules.

Keywords: Citrus aurantifolia, lime, complex coacervation, microencapsulation.

DOI: 10.15408/jkv.v6i1.14618

1. INTRODUCTION

Citrus aurantifolia or lime are found in large quantities in tropical regions, including Asia (Razak et al., 2013). Several industries in Indonesia process the fruit into a variety of foods and drinks, where the flesh and water are widely used as raw materials. Subsequent data analysis significantly shows the small-scale manufacturers generate maximum peel waste of 6 tons per month. However, the degradation process appears complicated and extended due to the presence of antimicrobial essential oils (Wahyudi et al., 2017b).

EOs are aromatic compounds insoluble in water, but potentially dissolve in alcohol, ether, or natural oils (Preedy, 2016). The lime peel EOs are a complex mixture of approximately 400 compounds (Mahato et al., 2017), including β-pinene, d-limonene, terpinen-4-ol, and α-terpineol (Wahyudi et al., 2017), and are separable through hydro-distillation (Julaeha et al., 2018; Costa et al., 2014). However, traces of certain intrinsic biological properties such as spasmyloytic, neuroprotective, and antioxidant are discovered, in addition to exhibiting antibacterial activities (Costa et al., 2014; Enejoh et al., 2015; Al-Aamri et al., 2018; Jafari et al., 2011), e.g., antiseptic, antispasmodic, aromatic, and carminative (Suryawanshi, 2011).

The oils comprise of volatile and non-volatile compounds ranging from 85-99% and 1-15%, respectively. These active materials are volatile and unstable to the application of oxygen, heat, or light (Mahato et al., 2017), therefore instigating the need to adopt proper packaging technique for preservative purposes e.g. microencapsulation. The method uses a particular polymer to subsequently control the material flow gradually (Wahyudi et al., 2017a; Julaeha et al., 2018). The product known as microcapsule is characterized by particle size...
between 0.2 to 5,000 μm (Silva et al., 2014).

The microencapsulation process performed using complex coacervation, describes the interaction between two or more opposing coatings (Timilsena et al., 2018). This approach is widely applied in various industries due to large capacity to reserve contents and control possible material release (Tang et al., 2020). Several contributing factors and parameters include pH, temperature, and coating comparison with capsule cores (Yan & Zhang, 2014). Furthermore, stirring the mixture appears to further impact the microcapsules, with the tendency to control particle size (Timilsena et al., 2018).

The development of microcapsules involves the application of two coating types, termed natural materials and synthetic polymer. The addition of gelatin serves as a protein derivative from denatured collagen (Shaddel et al., 2017). These proteins include amphoteric compounds with positive charges and pH between 8-9 located underneath the isoelectric point. Meanwhile, sodium alginate which includes polysaccharides is a sodium salt of alginic acid which is white to yellowish brown, and are obtained from brown algae extract with a negative charge at low pH (Devi et al., 2012).

The application of alginate and gelatin have been widely reported although with varied core, such as sunflower oil (Devi & Kakati, 2013), buriti oil (Lemos et al., 2017), olive oil (Devi et al., 2012), and ginger EOs (Wang et al., 2016). In addition, the introduction of lime peel EOs core is not yet achieved. Therefore, this paper significantly describes the microencapsulation results of lime peel EOs core using complex coacervation.

There has been a known performance of microencapsulation using a mixture of alginate and gelatin coatings, tween 80 emulsifiers, and glutaraldehyde crosslinkers by Devi et al. (2012). This study also captures a similar outcome, but the novelty was the use of a different core. Devi et al. (2012) used non-volatile olive oil core, a mixture of primary metabolites from fatty acids, while the volatile secondary metabolites and sesquiterpenes were the main EOs components. The resulting microcapsule characteristics are influenced by the difference, with the core/coating ratio 1:1.2 and 1:2.0 utilized under two stirring conditions.

2. MATERIALS AND METHODS

Materials

Lime peel (C. aurantifolia) samples were obtained from Caringin Main Market, Bandung. The materials used are aquadest, glacial acetic acid (Merck), acetone (Merck), gelatin (PT. Subur Jaya Kimia, in Bandung), glutaraldehyde (Merck), n-hexane (Merck), sodium alginate (PT. Subur Jaya Kimia, in Bandung), anhydrous sodium sulfate (Merck), and tween-80 (PT. Subur Jaya Kimia, in Bandung). Glass equipment are commonly used in laboratories, scanning electron microscopy (SEM) JEOL brand type JSM-6510, GCMS brand Agilent type 7890A/5975C, and UV-Vis spectrometer brand Perkin-Elmer with Lambkin 35 type.

Preparation and Determination of Physical Properties of Lime Essential Oils

The EOs preparation and physical property determination were generated based on density, refractive index, acid number, and alcohol solubility (Julaeha et al. 2018). Moreover, the chemical components of lime EOs were analyzed using GCMS and 35ms DB capillary column length of 30 m, diameter of 0.25 mm, and thickness of 0.25 micron liquid phase film. This was conducted by adjusting the temperature from 50-250°C, with an increase of 3.5°C/min. The injector was set to 250°C, while the amount of oil injected was 1 μL.

Essential Oils Microencapsulation

The Devi et al. (2012) microencapsulation method modified the material type and core amount, as well as the stirring speed. This process also used separate alginate and gelatin coating of 2% in aquadest. Condition I commenced with the following steps: First, the gelatin solution (140 mL) was poured into a beaker and stirred at 1250 rpm speed to achieve a solution temperature of 60 ± 1°C. Tween 80 (0.8 g) was then added along with EOs (3.5 g) in a dropwise pattern. Subsequently, sodium alginate solution (40 mL) was gradually introduced. The resulting mixture was then stirred for 15 minutes, and 2.5% acetic acid added to acquire a pH of 3.75. Furthermore, the liquid was cooled in an ice bath, while continuously stirred at 600 rpm speed to attain a solution temperature between 5-10°C, where glutaraldehyde (0.472 mL) was gently added. The solution was reheated to arrive between 35-40°C, while agitating for 3-4
hours, and stirred at 250 rpm under room temperature for 18 hours. The microcapsules formed were then filtered using a Buchner funnel. The final product was then washed with aquadest and n-hexane, before drying using a refrigerator.

Condition II showed a similar process, but the stirring speed was adjusted to 600 rpm, and without 18 hours stirring, although 2g core was added to produce a core/coating ratio of 1:2.0.

Microcapsules Characterization

The microcapsules obtained are further characterized: morphology with Scanning Electron Microscope (SEM) and EOs content measurement in microcapsules by UV-Vis spectroscopy. The oil content in the microcapsules is calculated by the regression equation obtained from the standard curve.

Oil content value calculation, and the encapsulation efficiency (EE) is carried out using Equations (1) and (2).

\[
\text{Oil content (\%)} = \frac{w_1}{w} \times 100\%
\]

\[
\text{EE (\%)} = \frac{w_1}{w_2} \times 100\%
\]

Where, \(w \) = weight of microcapsules; \(w_1 \) = the actual amount of oil coated, \(w_2 \) = the oil added amount.

3. RESULTS AND DISCUSSION

Preparation and Determination of Physical Properties of Lime Essential Oils

The EOs preparation results obtained a yield of 0.7% characterized by good quality, fresh aroma, and pale-yellow coloration using hydro-distillation for 3 hours. Table 1 shows the physical properties from the process.

Table 1. The physical properties of *C. aurantifolia* peel EOs resulting from preparation

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refractive index (25°C)</td>
<td>1.542</td>
</tr>
<tr>
<td>Specific gravity (25°C)</td>
<td>0.893</td>
</tr>
<tr>
<td>(g/L)</td>
<td></td>
</tr>
<tr>
<td>Acid number (%)</td>
<td>0.24</td>
</tr>
<tr>
<td>Solubility in alcohol</td>
<td>Soluble in ethanol 96% (Volume 5 mL)</td>
</tr>
</tbody>
</table>

Gamarra et al. (2006) reported the refractive index of *C. aurantifolia* between 1.479-1.485 and the specific gravity ranged from 0.847 to 0.882 g/L. On the contrary, this study recorded the refractive index and specific gravity as 1.542 and 0.893 g/L, respectively. The difference proves the oil properties were influenced by various factors, including the geographical growth location, climate, species, maturity level, extraction methods, etc. (Darjazi, 2014). Currently, the Indonesian National Standard (SNI) related to the *C. aurantifolia* essential oil physical properties does not exist.

Table 2 represents 18 secondary metabolites of lime peel EOs, and the four main components highlighted as d-limonene with abundance (35.98%), \(\beta \)-pinene (9.02%), \(\alpha \)-terpineol (8.12%) and citral (7.49%).

Table 2. *C. aurantifolia* peel essential oil composition

<table>
<thead>
<tr>
<th>Compound</th>
<th>Time Retention</th>
<th>Composition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)-Pinene</td>
<td>6.205</td>
<td>0.81</td>
</tr>
<tr>
<td>(\beta)-Pinene</td>
<td>7.922</td>
<td>9.02</td>
</tr>
<tr>
<td>(\beta)-Phellandrene (+)-4-Carene</td>
<td>10.302</td>
<td>2.23</td>
</tr>
<tr>
<td>d-Limonene</td>
<td>12.568</td>
<td>35.98</td>
</tr>
<tr>
<td>o-Cymene</td>
<td>10.634</td>
<td>1.38</td>
</tr>
<tr>
<td>(\beta)-Ocimene</td>
<td>10.748</td>
<td>0.75</td>
</tr>
<tr>
<td>(\gamma)-Terpinene</td>
<td>11.441</td>
<td>1.14</td>
</tr>
<tr>
<td>2-Carene</td>
<td>12.568</td>
<td>1.61</td>
</tr>
<tr>
<td>(\beta)-Myrcene</td>
<td>19.337</td>
<td>0.20</td>
</tr>
<tr>
<td>Terpinen-4-ol</td>
<td>17.466</td>
<td>2.94</td>
</tr>
<tr>
<td>(\alpha)-Terpineol</td>
<td>18.410</td>
<td>8.12</td>
</tr>
<tr>
<td>Citral</td>
<td>22.204</td>
<td>7.49</td>
</tr>
<tr>
<td>Nerolidol</td>
<td>16.282</td>
<td>0.20</td>
</tr>
<tr>
<td>Trans-(\alpha)-bergamotene</td>
<td>25.208</td>
<td>0.89</td>
</tr>
<tr>
<td>Caryophyllene</td>
<td>25.328</td>
<td>2.03</td>
</tr>
<tr>
<td>(\gamma)-Elemene</td>
<td>25.746</td>
<td>0.55</td>
</tr>
<tr>
<td>(\beta)-Bisabolene</td>
<td>28.469</td>
<td>2.12</td>
</tr>
</tbody>
</table>

EOs constituent compounds are influenced by the physical properties, including increased refractive index due to more long-chain components or mechanisms containing oxygen. This causes the medium density to increase, so that the incident light becomes more difficult to refract. In addition, other physical properties such as specific gravity, are influenced by the constituent components weight fraction, while the acid number indicates the free acid level contained. Furthermore, most compounds forming EOs, including d-limonene and \(\beta \)-pinene are nonpolar, and are estimated to subsequently affect alcohol solubility.

Monoterpenes are the largest constituent of volatile compounds present in
EOs. Furthermore, citrus varieties, geographical location and the climate where plants grow are important factors in the composition and type of various compounds contained (Lin et al., 2019). by the time duration (Rozenblat et al., 1989). In addition, the core number is influenced by encapsulation efficiency with the tendency reported to decrease due to excess volatile oil core (Wang et al., 2016). Excess uncaptured oil tends to stick to the microcapsule surface (Bastos et al., 2020), causing a low oil content value due to residual oil.

Table 3 shows the microencapsulation conditions towards yield value, oil content, and EE. The oil content is absorbed in the microcapsules, while the EE states the oil penetration efficiency, although both parameters determine the success of the process. Table 3 also describes condition I and II produces 37.06% yield, 39.18% oil content, 31.53% EE, and 51.46% yield, 58.66% oil content, 92.04% EE, respectively. The results showed the oil content in condition II provided greater performance than condition I, therefore more oil is absorbed in condition II microcapsules. Furthermore, the higher EE value led to a more efficient process, and subsequently, condition II produced better outcome. These are caused by stirring speed effect, as rapid particle motion promotes microcapsules bursting, therefore, resulting in less homogenous size distribution (Figure 3).

Figure 1. Gelatin-sodium alginate bonds formation (Li et al., 2011)
Microencapsulation of Lime Peel Essential Oils (*Citrus aurantifolia*) with Complex Coacervation

Puspita, et. al.

Table 3. Microencapsulation conditions of *C. aurantifolia* peel essential oils

<table>
<thead>
<tr>
<th>Stirring speed (rpm)</th>
<th>W (g)</th>
<th>W1 (g)</th>
<th>W2 (g)</th>
<th>W3 (g)</th>
<th>Yield (%)</th>
<th>Oil content (%)</th>
<th>EE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition I</td>
<td>1250, 600, & 250</td>
<td>2.82</td>
<td>1.11</td>
<td>3.50</td>
<td>4.10</td>
<td>37.06</td>
<td>39.18</td>
</tr>
<tr>
<td>Condition II</td>
<td>600</td>
<td>3.14</td>
<td>1.84</td>
<td>2.00</td>
<td>4.10</td>
<td>51.46</td>
<td>58.66</td>
</tr>
</tbody>
</table>

W: Microcapsule mass; W1: Encapsulated oil mass; W2: Essential oil mass added; W3: Total polymer

Figure 2. The mechanism of crosslinking glutaraldehyde with gelatin and alginate (Rojas, 2015)

Figure 3. SEM micrographs of condition I microcapsules at magnification 1.000x

SEM measurement results support these conditions. However, condition I microcapsule morphology have less smooth surface and inhomogeneous size distribution (Figure 3). Meanwhile, In condition II, the resulting microcapsules have a better round shape and smoother surface (Figure 4).

Figure 4. SEM micrographs of condition II microcapsules at magnification 1.000x
4. CONCLUSION

This study concludes the investigation of lime (C. aurantifolia) peel EOs microencapsulation condition II (core ratio/coating 1:2.0 and stirring speed of 600 rpm) provides better microcapsule results compared to condition I (core/coating ratio 1:1.2 and stirring conditions modified). The outcome in condition II in yield, oil content, and EE were 51.46%, 58.66%; and 92.04%, respectively.

ACKNOWLEDGEMENT

The authors are grateful to the Ministry of Research, Technology and Higher Education for the support of PDUPT funding in the fiscal year of 2019 and to the Head of the Center for Textile for research collaboration and facilities provided.

REFERENCES

Microencapsulation of Lime Peel Essential Oils (Citrus aurantifolia) with Complex Coacervation

