DETEKSI SITUS PORNOGRAFI BERDASARKAN GAMBAR MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK

Ahmad Hunaepi, Makhsun Makhsun, Sarwani Sarwani

Abstract


Today, the development of information technology is very fast. It is also followed by the growth of internet sites that are very fast, no exception the growth of sites contains pornographic. The Association of Indonesian Internet Service Providers (APJII), in 2018, reports as many as 55.9% of Indonesian internet users had experienced of appearance pornographic content suddenly. This study aims to detect pornographic sites based on images using the convolutional neural network method. To find out the level of accuracy in detection of pornographic sites, a training process with a dataset of 300 images is required. From the test results, an accuracy rate of 85% in the detection of pornographic sites is obtained.


Keywords


Deteksi; Website; Pornografi; Convolutional Neural Networks

Full Text:

PDF

References


APJII, “Infografis Penetrasi & Perilaku Pengguna Internet Indonesia,” Teknopreuner, vol. 1, no. Hasil Survei Penetrasi dan Perilaku Pengguna Internet Indonesia 2017, pp. 1–39, 2019.

T. Suyatno, “Pengaruh Pornografi Terhadap Perilaku Belajar Siswa ( Studi Kasus : Sekolah Menengah X ),” J. Pendidik. Dompet Dhuafa, pp. 1–12, 2011.

A. T. Haryanto, “Kominfo Sudah Blokir 106.466 Situs Pornografi Tahun Ini,” www.detik.com, 2018. [Online]. Available: https://inet.detik.com/law-and-policy/d-4354570/kominfo-sudah-blokir-106466-situs-pornografi-tahun-ini. [Accessed: 16-Jul-2019].

I. Rahmayani, “Begini Cara Kominfo Blokir Situs Terlarang,” kominfo.go.id, 2015. [Online]. Available: https://kominfo.go.id/content/detail/5957/begini-cara-kominfo-blokir-situs-terlarang/0/sorotan_media. [Accessed: 16-Jul-2019].

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

S. E. Limantoro, Y. Kristian, and D. D. Purwanto, “Deteksi Pengendara Sepeda Motor Menggunakan Deep Convolutional Neural Networks,” Semin. Nas. Teknol. Inf. dan Komun., pp. 79–86, 2017.

M. & B. S. Zufar, “Convolutional Neural Networks untuk Pengenalan Wajah Secara Real-Time,” J. Sains dan Seni, vol. 5, no. 3, pp. 1–6, 2016.

K. P. Danukusumo, “IMPLEMENTASI DEEP LEARNING MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI CITRA CANDI BERBASIS GPU,” vol. 4, pp. 9–15, 2017.

A. RAZI, “Klasifikasi Artikel Berita Berbahasa Indonesia Menggunakan Convolutional Neural Network,” 2017.

RISMIYATI, “Implementasi Convolutional Neural Network Untuk Sortasi Mutu Salak Ekspor Berbasis Citra Digital,” 2016.

A. Budi, S. Suma’inna, and H. Maulana, “Pengenalan Citra Wajah Sebagai Identifier Menggunakan Metode Principal Component Analysis (PCA),” J. Tek. Inform., vol. 9, no. 2, pp. 166–175, 2018.

W. Zhang, C. Li, G. Peng, Y. Chen, and Z. Zhang, “A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load,” Mech. Syst. Signal Process., vol. 100, pp. 439–453, 2018.

W. Edmonson et al., “Systems engineering of inter-satellite communications for distributed systems of small satellites,” 9th Annu. IEEE Int. Syst. Conf. SysCon 2015 - Proc., pp. 705–710, 2015.

M. Suhartanto, “Pembuatan Website Sekolah Menengah Pertama Negeri 3 Delanggu Dengan Menggunakan Php Dan Mysql,” J. Speed, vol. 4, no. 1, pp. 1–8, 2012.

P. Goyal and A. Goyal, “Comparative study of two most popular packet sniffing tools-Tcpdump and Wireshark,” in 2017 9th International Conference on Computational Intelligence and Communication Networks (CICN), 2017, pp. 77–81.

M. Berndtsson, J. Hansson, B. Olsson, and B. Lundell, Thesis Projects: A Guide for Students in Computer Science and Information Systems, 2008.




DOI: https://doi.org/10.15408/jti.v12i2.12488 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Prodi Teknik Informatika Universitas Islam Negeri Syarif Hidayatullah Jakarta

Lantai 3, Prodi Teknik Informatika, UIN Syarif Hidayatullah Jakarta
Jl. Ir. H. Juanda No.95, Cempaka Putih, Ciputat Timur. 
Kota Tangerang Selatan, Banten 15412
Tlp/Fax: +62 21 74019 25/ +62 749 3315
Handphone: +6281371798903
E-mail: jurnal-ti@uinjkt.ac.id


Creative Commons Licence
Jurnal Teknik Informatika by Prodi Teknik Informatika Universitas Islam Negeri Syarif Hidayatullah Jakarta is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://journal.uinjkt.ac.id/index.php/ti.

 

JTI Visitor Counter: View JTI Stats

 Flag Counter