Another Antimagic Decomposition of Generalized Peterzen Graph

Nur Inayah*, M. Ivran Septiar Musti, and Soffi Nur Masyithoh
Department of Mathematics, UIIN Syarif Hidayatullah Jakarta
Jln. Ir. H. Juanda no.95–Ciputat 15412, Tangerang Selatan, Indonesia
Email: *nur.inayah@uinjkt.ac.id, {irvanseptiar, soffilee0113}@gmail.com

Abstract
A decomposition of a graph \(P \) into a family \(Q \) consisting of isomorphic copies of a graph \(Q \) is \((a, b)\)-\(Q\)-antimagic if there is a bijection \(\varphi : V(P) \cup E(P) \rightarrow \{1, 2, 3, 4, \ldots, v_P + e_P\} \) such that for all subgraphs \(Q' \) isomorphic to \(Q \), the \(Q \)-weights

\[
\varphi(Q') = \sum_{v \in V(Q')} \varphi(v) + \sum_{e \in E(Q')} \varphi(e)
\]

constitute an arithmetic progression \(a, a + b, a + 2b, \ldots, a + (r - 1)b \) where \(a \) and \(b \) are positive integers and \(r \) is the number of subgraphs of \(P \) isomorphic to \(Q \). In this article we prove the existence of a \((a, b)\)-\(P_4\)-antimagic decomposition of a generalized Peterzen graph \(GPz(n, 3) \) for several values of \(b \).

Keywords: covering; decomposition; antimagic; generalized Peterzen.

1. INTRODUCTION

All graphs are finite and simple graphs. The edge and vertex sets of a graph \(P \) are denoted by \(V(P) \) and \(E(P) \), respectively, where \(|V(P)| = v_P \) and \(|E(P)| = e_P \). A graph labeling of a graph \(P \) is a bijective function that carries a set of elements of \(P \) onto a set of labels, usually, a set of positive integers. If the domain and co-domain of this function are \(V(P) \cup E(P) \) and the set \(\{1, 2, 3, 4, \ldots, v_P + e_P\} \), respectively, then it is called a total labeling.

An edge-covering of \(P \) is a family of subgraphs \(Q = \{Q_1, Q_2, Q_3, \ldots, Q_k\} \) such that each edge of \(E(P) \) belongs to at least one of the subgraphs \(Q_i, 1 \leq i \leq k \). Then it is said that \(P \) admits an \((Q_1, Q_2, Q_3, \ldots, Q_k)\)-(edge) covering. If every \(Q_i \) is isomorphic to a given graph \(Q \), then \(P \) admits an \(Q \)-covering [1]. An \((Q_1, Q_2, Q_3, \ldots, Q_k)\)-(edge) covering of \(P \) is called an \((Q_1, Q_2, Q_3, \ldots, Q_k)\)-
decomposition, if \(E(Q_i) \cap E(Q_j) = \emptyset \) for \(i \neq j \). If every \(Q_i \) is isomorphic to a given graph \(Q \), then \(P \) admits an \(Q \)-decomposition.

Suppose \(P \) admits an \(Q \)-decomposition and let \(f : V(P) \cup E(P) \rightarrow \{1, 2, 3, 4 \ldots, v_P + e_P\} \) be a total labeling. An \(Q \)-weight of a subgraph \(Q \) of \(P \) under a total labeling is the sum of all edge and vertex labels on \(Q \). If every subgraph \(Q \in \mathcal{Q} \) has the same \(Q \)-weights, then it is called an \(Q \)-magic decomposition of \(P \). If all \(Q \in \mathcal{Q} \) have distinct \(Q \)-weights, then it is called an \(Q \)-antimagic decomposition of \(P \). In particular, if \(Q \)-weights of all \(Q \in \mathcal{Q} \) are an arithmetic sequence with the first term \(a \) and a common difference \(b \) then it is called an \((a, b)-H \)-antimagic decomposition of \(P \).

Inayah et al. [2] [3] introduced an \((a, b)-Q\)-antimagic total labeling of a graph \(P \) admitting an \(Q \)-decomposition, denoted as an \((a, b)-Q\)-antimagic decomposition as a bijective function \(\phi: V(P) \cup E(P) \rightarrow \{1, 2, 3, 4 \ldots, |V(P)| + |E(P)|\} \) such that for a subgraph \(Q' \) isomorphic to \(Q \), the \(Q \)-weights \(\phi(Q') = \sum_{v \in V(Q')} \phi(v) + \sum_{e \in E(Q')} \phi(e) \) constitute an arithmetic progression \(a, a+b, a+2b, \ldots, a+(r-1)b \) where \(a \) and \(b \) are positive integers and \(r \) is the number of all subgraphs of \(P \) isomorphic to \(Q \). The recent results on this subject can be seen, as an example, in [4] and [5]. The complete results can be seen in a dynamic survey of graph labelings by Gallian [6].

In this article, we proved \((a, b)-P_4\)-antimagic decompositions of generalized Peterzen graphs \(GP_2(n, 3) \). We show that the graphs admit \((a, b)-P_4\)-antimagic decompositions for several values of \(b \).

2. MAIN RESULTS

In this section, we prove the existence of the \((a, b)-P_4\)-antimagic decomposition of the generalized Peterzen graph \(GP_2(n, 3) \) for \(b \in \{1, 2, 3, 4, 5\} \). Watkins [7] defined the generalized Peterzen graph \(GP_2(n, 3) \) as a graph having vertex set

\[
V(GP_2(n, 3)) = \{v_i, u_i: 0 \leq i \leq n-1\}
\]

and edge set

Outer Rim \(E_O((GP_2(n,k)) = \{u_i u_{(i+1) \mod n}\}_{i=0}^{n-1} \),

Inner Rim \(E_I((GP_2(n,k)) = \{v_i v_{(i+k) \mod n}\}_{i=0}^{n-1} \),

Spoke \(E_S(n,k) = \{u_i u_{j}\}_{i=0}^{n} \).

Let \(\mathcal{Q} = \{P_4^0, P_4^1, \ldots, P_4^{n-1}\} \), where the edge and vertex sets of the subgraph \(P_4^i \) defined as follows: For \(i \in [0, n-1] \),

\[
V(P_4^i) = \{v_i, v_{(i+3) \mod n}, u_i, u_{(i+1) \mod n}: 0 \leq i \leq n-1\},
\]

\[
E(P_4^i) = \{v_i v_{(i+3) \mod n}, u_i u_{i+1} u_{(i+1) \mod n}: 0 \leq i \leq n-1\}.
\]

It is not difficult to see that \(\mathcal{Q} = \{P_4^0, P_4^1, \ldots, P_4^{n-1}\} \) is a \(P_4 \)-decomposition of \(GP_2(n, 3) \). Figure 1 displays the generalized Peterzen Graph \(GP_2(n, 3) \).
Figure 1. Generalized Peterzen Graph $GP_z(n, 3)$

Theorem 1. For any integer $n \geq 7$, the graph $GP_z(n, 3)$ has a $(20n + 4, 1) P_4$-antimagic decomposition.

Proof. Define a total labeling ψ_q on the edges and vertices of the graph $GP_z(n, 3)$ in the following way

\[
\begin{align*}
\psi_q(v_{i}v_{(i+3) \mod n}) &= \begin{cases}
 i + 5 & \text{for } i \in [0, n - 5] \\
 -n + i + 5 & \text{for } i \in [n - 4, n - 1]
\end{cases} \\
\psi_q(v_{i}u_{i}) &= \begin{cases}
 2n & \text{for } i = 0 \\
 n + i & \text{for } i \in [1, n - 1]
\end{cases} \\
\psi_q(u_{i}u_{(i+1) \mod n}) &= \begin{cases}
 2n + 1 & \text{for } i = 0 \\
 3n - i + 1 & \text{for } i \in [1, n - 1]
\end{cases} \\
\psi_q(u_{i}) &= \begin{cases}
 4n - i - 3 & \text{for } i \in [0, n - 5] \\
 5n - i - 3 & \text{for } i \in [n - 4, n - 1] \\
 4n + i + 1 & \text{for } i \in [0, n - 1]
\end{cases}
\end{align*}
\]

It can be seen that the labeling ψ_q is a bijective function from $E(GP_z(n, 3)) \cup V(GP_z(n, 3))$ to \{1, 2, 3, 4, ..., 3n\} and $\psi_q(V(GP_z(n, 3))) = \{1, 2, 3, 4 ..., n + 1\}$. Furthermore, the P_4-weight under the labeling ψ_q are as follows.

\[
w(P_4^i) = \begin{cases}
\psi_q(v_{(i+3)}) + \psi_q(v_{i}v_{(i+3)}) + \psi_q(v_{i}) + \psi_q(v_{i}u_{i}) + \psi_q(u_{i}) \\
+ \psi_q(u_{i}u_{(i+1)}) + \psi_q(u_{(i+1)}), & \text{for } i \in [0, n - 4] \\
\psi_q(v_0) + \psi_q(v_{i}v_0) + \psi_q(v_{i}) + \psi_q(v_{i}u_{i}) + \psi_q(u_{i}) \\
+ \psi_q(u_{i}u_{(i+1)}) + \psi_q(u_{(i+1)}), & \text{for } i = [n - 3] \\
\psi_q(v_{i}) + \psi_q(v_{i}v_1) + \psi_q(v_{i}) + \psi_q(v_{i}u_{i}) + \psi_q(u_{i}) \\
+ f_q(u_{i}u_{(i+1)}) + f_q(u_{(i+1)}), & \text{for } i = [n - 2] \\
\psi_q(v_2) + \psi_q(v_{i}v_2) + \psi_q(v_{i}) + \psi_q(v_{i}u_{i}) + \psi_q(u_{i}) \\
+ \psi_q(u_{i}u_1) + \psi_q(u_0), & \text{for } i = [n - 1]
\end{cases}
\]

For $i \in [0, n - 1]$, under labeling ψ_q, we find
Another Antimagic Decomposition of Generalized Peterzen Graph

\[w(P^i_4) = w(P^i_4) = \psi_q(v_{i+3}) + \psi_q(v_i v_{i+3}) + \psi_q(v_i) + \psi_q(u_i) + \psi_q(u_{i+1}) = (4n + (i + 3) + 1) + (i + 5) + (4n + i + 1) + (2n) + (4n - i - 3) + (2n + 1) + (4n - (i + 1) - 3) = 20n + i + 4 \]

Since \[w(P^{i+1}_4) - w(P^i_4) = 1 \] and \[w(P^0_4) = 20n + 4 \], the generalized Peterzen \(GPz(n, 3) \) admits a \((20n + 4, 1)\)-\(P_4\)-antimagic decomposition.■

Figure 2. A \((144, 1) - P_4\)-Antimagic Decomposition of Generalized Peterzen Graph \(GPz(7, 3) \) (left), a \((164, 1) - P_4\)-Antimagic Decomposition of Generalized Peterzen Graph \(GPz(8, 3) \) (right).

Theorem 2. For any integer \(n \geq 7 \), the graph \(GPz(n, 3) \) has a \((14n + 4, 2)\)-\(P_4\)-antimagic decomposition.

Proof. Define a total labeling \(\psi_e \) on the edges and vertices of the graph \(GPz(n, 3) \) in the following way

\[
\begin{align*}
\psi_e(v_{i} v_{(i+3) \mod n}) &= 4n + i + 1 & \text{for } i \in [0, n - 1] \\
\psi_e(v_{i} u_{i}) &= \begin{cases}
4n + i - 2 & \text{for } i \in [0, 2] \\
3n + i - 2 & \text{for } i \in [3, n - 1]
\end{cases} \\
\psi_e(u_{i} u_{(i+1) \mod n}) &= \begin{cases}
3n - 2i - 2 & \text{for } i \in [0, n - 2] \\
5n - 2i - 2 & \text{for } i = [n - 1]
\end{cases} \\
\psi_e(u_{i}) &= n + 2i + 1 & \text{for } i \in [0, n - 1] \\
\psi_e(v_{i}) &= \begin{cases}
-i + 3 & \text{for } i \in [0, 2] \\
-n + 3 & \text{for } i \in [3, n - 1]
\end{cases}
\end{align*}
\]

It can be seen that the labeling \(\psi_e \) is a bijective function from \(E(GPz(n, 3)) \cup V(GPz(n, 3)) \) to \(\{1, 2, 3, 4, \ldots, 3n\} \) and \(\psi_e(V(GPz(n, 3))) = \{1, 2, 3, 4, \ldots, n + 1\} \). Furthermore, the \(P_4 \)-weight under the labeling \(\psi_e \) are as follows
For $i \in [0, n - 1]$, under labeling ψ_e, we find

$$w(p^i_4) = \begin{cases}
\psi_e(v_{(i+3)}) + \psi_e(v_i v_{(i+3)}) + \psi_e(v_i) + \psi_e(v_i u_i) + \psi_e(u_i) + \psi_e(u_i u_{(i+1)}) + \psi_e(u_{(i+1)}), & \text{for } i \in [0, n - 4] \\
\psi_e(v_0) + \psi_e(v_i v_0) + \psi_e(v_i) + \psi_e(v_i u_i) + \psi_e(u_i) + \psi_e(u_i u_{(i+1)}) + \psi_e(u_{(i+1)}), & \text{for } i = [n - 3] \\
\psi_e(v_1) + \psi_e(v_i v_1) + \psi_e(v_i) + \psi_e(v_i u_i) + \psi_e(u_i) + \psi_e(u_i u_{(i+1)}) + \psi_e(u_{(i+1)}), & \text{for } i = [n - 2] \\
\psi_e(v_2) + \psi_e(v_i v_2) + \psi_e(v_i) + \psi_e(v_i u_i) + \psi_e(u_i) + \psi_e(u_i u_{(i+1)}) + \psi_e(u_{(i+1)}), & \text{for } i = [n - 1]
\end{cases}$$

Since $w(p^{i+1}_4) - w(p^i_4) = 2$ and $w(p^0_4) = 14n + 4$, the generalized Peterzen GPZ$(n, 3)$ admits a $(14n + 4, 2)$-P_4- antimagic decomposition.

Theorem 3. For any integer $n \geq 7$, the graph GPZ$(n, 3)$ has a $(19n + 5, 3)$-P_4- antimagic decomposition.

Proof. Define a total labeling Ψ_r on the edges and vertices of the graph GPZ$(n, 3)$ in the following way

$$
\begin{align*}
\psi_r(v_{i} v_{(i+3) \mod n}) &= i + 1 & \text{for } i \in [0, n - 1], \\
\psi_r(v_i u_i) &= 2n + i - 1 & \text{for } i \in [0, 1], \\
\psi_r(u_i u_{(i+1) \mod n}) &= n + i - 1 & \text{for } i \in [2, n - 1], \\
\psi_r(u_i) &= 2n + i + 1 & \text{for } i \in [0, n - 1], \\
\psi_r(u_{(i+1)}) &= 3n - i + 3 & \text{for } i \in [0, 2], \\
\psi_r(v_i) &= 4n - i + 3 & \text{for } i \in [3, n - 1], \\
\psi_r(v_0) &= 5n + i - 2 & \text{for } i \in [0, 2], \\
\psi_r(v_3) &= 4n + i - 2 & \text{for } i \in [3, n - 1].
\end{align*}
$$

It can be seen that the labeling ψ_r is a bijective function from $E(GPZ(n, 3)) \cup V(GPZ(n, 3))$ to $\{1, 2, 3, 4, ..., 3n\}$ and $\psi_r(V(GPZ(n, 3))) = \{1, 2, 3, 4, ..., n + 1\}$. Furthermore, the P_4-weight under the labeling ψ_r are as follows
Another Antimagic Decomposition of Generalized Peterzen Graph

For $i \in [0, n - 1]$, under labeling ψ_r, we find

\[
w(P^i_4) = \begin{cases}
\psi_r(v_{i+3}) + \psi_r(v_i v_{i+3}) + \psi_r(v_i) + \psi_r(v_iu_i) + \psi_r(u_i) \\
+ \psi_r(u_iu_{i+1}) + \psi_r(u_{i+1}), & \text{for } i \in [0, n - 4] \\
\psi_r(v_0) + \psi_r(v_i v_0) + \psi_r(v_i) + \psi_r(v_iu_i) + \psi_r(u_i) \\
+ \psi_r(u_iu_{i+1}) + \psi_r(u_{i+1}), & \text{for } i = [n - 3] \\
\psi_r(v_1) + \psi_r(v_i v_1) + \psi_r(v_i) + \psi_r(v_iu_i) + \psi_r(u_i) \\
+ \psi_r(u_iu_{i+1}) + \psi_r(u_{i+1}), & \text{for } i = [n - 2] \\
\psi_r(v_2) + \psi_r(v_i v_2) + \psi_r(v_i) + \psi_r(v_iu_i) + \psi_r(u_i) \\
+ \psi_r(u_iu_{i+1}) + \psi_r(u_0), & \text{for } i = [n - 1]
\end{cases}
\]

Since $w(P^i_{4+1}) - w(P^i_4) = 3$ and $w(P^0_4) = 19n + 5$, the generalized Peterzen GPz(n, 3) admits a $(19n + 5, 3) - P_4$-antimagic decomposition. }

Theorem 4. For any integer $n \geq 7$, the graph GPz(n, 3) has a $(13n + 5, 4) - P_4$-antimagic decomposition.

Proof. Define a total labeling Ψ_t on the edges and vertices of the graph GPz(n, 3) in the following way

\[
\Psi_t(v_i v_{i+3} \text{ mod n}) = \begin{cases}
4n - i + 1 & \text{for } i = 0 \\
5n - i + 1 & \text{for } i \in [1, n - 1] \\
4n + i - 3 & \text{for } i \in [0, 3] \\
3n + i - 3 & \text{for } i \in [4, n - 1]
\end{cases}
\]

\[
\Psi_t(v_i u_i) = \begin{cases}
3n + i - 3 & \text{for } i \in [4, n - 1]
\end{cases}
\]

\[
\Psi_t(u_i u_{i+1} \text{ mod n}) = \begin{cases}
n + 2 + 2i & \text{for } i \in [0, n - 1]
\end{cases}
\]

\[
\Psi_t(u_i) = \begin{cases}
3n + 2i - 1 & \text{for } i = 0 \\
n + 2i - 1 & \text{for } i \in [1, n - 1]
\end{cases}
\]

\[
\Psi_t(v_i) = \begin{cases}
4 - i & \text{for } i \in [0, 3] \\
n + 4 - i & \text{for } i \in [4, n - 1]
\end{cases}
\]

It can be seen that the labeling Ψ_t is a bijective function from $E(GPz(n, 3)) \cup V(GPz(n, 3))$ to \{1, 2, 3, 4, ..., 3n\} and $\Psi_t(V(GPz(n, 3))) = \{1, 2, 3, 4, ..., n + 1\}$. Furthermore, the P_4-weight under the labeling Ψ_t are as follows
Theorem 5. For any integer \(n \geq 7 \), the graph \(GPz(n, 3) \) has a \((18n + 6, 5)\)-\(P_4\)-antimagic decomposition.

Proof. Define a total labeling \(\Psi_y \) on the edges and vertices of the graph \(GPz(n, 3) \) in the following way

\[
\begin{align*}
\psi_y(v_i v_{i+3} \mod n) &= 2i + 1 & \text{for } i \in [0, n - 1] \\
\psi_y(v_i u_i) &= 2i + 2 & \text{for } i \in [0, n - 1] \\
\psi_y(u_i u_{i+1} \mod n) &= \begin{cases} 3n + i - 3 & \text{for } i \in [0, 3] \\ 2n + i - 3 & \text{for } i \in [4, n - 1] \\ \end{cases} \\
\psi_y(u_i) &= \begin{cases} 4n + i & \text{for } i = 0 \\ 3n + i & \text{for } i \in [1, n - 1] \end{cases} \\
\psi_y(v_i) &= \begin{cases} 4n - i + 4 & \text{for } i \in [0, 3] \\ 5n - i + 4 & \text{for } i \in [4, n - 1] \end{cases}
\end{align*}
\]

It can be seen that the labeling \(\psi_y \) is a bijective function from \(E(GPz(n, 3)) \cup V(GPz(n, 3)) \) to \(\{1, 2, 3, 4, ..., 3n\} \) and \(\psi_y(V(GPz(n, 3))) = \{1, 2, 3, 4, ..., n + 1\} \). Furthermore, the \(P_4 \)-weight under the labeling \(\psi_y \) are as follows.
Another Antimagic Decomposition of Generalized Peterzen Graph

For every integer $i \geq 0$, and odd positive integers $w = 18i + 6$, the generalized Peterzen $GPz(n, 3)$ admits a $(18n + 6, i, 3)$-P_{4}-antimagic decomposition.■

3. CONCLUSION

In this article, we proved the existence of (a, b)-P_{4}-antimagic decompositions of the generalized Peterzen graph $GPz(n, 3)$ for (i) every integer $n \geq 7$ and odd positive integers $b \in \{1, 3, 5\}$; and (ii) every integer $n \geq 7$ and even positive integers $b \in \{2, 4\}$.

The open problems related to these results are as follows:

For every integer $6 \geq n$ and positive integers b, find (a, b)-P_{4}-antimagic decompositions of the generalized Peterzen graph $GPz(n, 3)$.

Funding

Supported by the center of research and publication of Syarif Hidayatullah State Islamic University Jakarta.

REFERENCES

