Aggregate Risk Model and Risk Measure-Based Risk Allocation

Khreshna Syuhada



In actuarial modeling, aggregate risk is known as more attractive rather than individual risk. It has, however, usual difficulty in finding (the exact form of) joint probability distribution. This paper considers aggregate risk model and employ translated gamma approximation to handle such distribution function formulation. In addition, we deal with the problem of risk allocation in such model. We compute in particular risk allocation based on risk measure forecasts of Value-at-Risk (VaR) and its extensions: improved VaR and Tail VaR. Risk allocation shows the contribution of each individual risk to the aggregate. It has a constraint that the risk measure of aggregate risk is equal to the aggregate of risk measure of individual risk.

Keywords: allocation methods; tail-value-at-risk; translated gamma approximation.



Risiko agregat merupakan kajian yang lebih menarik dalam pemodelan aktuaria, dibandingkan dengan risiko individu. Namun fungsi distribusi risiko agregat sulit ditentukan bentuk eksaknya. Artikel ini membahas mengenai model risiko agregat dan menggunakan metode aproksimasi Translasi Gamma untuk menentukan fungsi distribusi risiko agregat. Berdasarkan fungsi distribusi tersebut, dapat diprediksi alokasi risiko agregat. Metode alokasi risiko agregat diterapkan pada ukuran risiko Value-at-Risk (VaR) dan pengembangannya: improved VaR dan Tail-VaR. Alokasi risiko menyatakan nilai kontribusi setiap risiko individu terhadap ukuran risiko agregat. Jumlahan atau agregat dari setiap alokasi risiko individu sama dengan ukuran risiko agregat.

Kata kunci: aproksimasi Translasi Gamma; alokasi risiko; Tail-Value-at-Risk.


allocation methods; tail-value-at-risk; translated gamma approximation


K. Syuhada, "The improved Value-at-Risk for heteroscedastic processes and their coverage probability," Journal of Probability and Statistics, Article ID 7638517, 2020.

J. Dhaene and D. Vyncke, "The individual risk model," Encyclopedia of Actuarial Science, vol. 2, pp. 871-875, 2010.

M. Nieto and E. Ruiz, "Frontiers in VaR forecasting and back-testing," International Journal of Forecasting, vol. 32, no. 2, pp. 475-501, 2016.

J. W. Chen, "On exactitude in financial regulation: value-at-risk," Risks, vol. 6, no. 2, pp. 61, 2018.

J. Dhaene, A. Kukush, D. Linders and Q. Tang, "Remarks of quantiles and distortion risk measures," European Actuarial Journal, vol. 2, pp. 319- 328, 2012.

J. Kim and S. Kim, "Tail risk measures and risk allocation for the class of multivariate normal mean variance mixture distributions," Insurance: Mathematics and Economics, vol. 86, pp. 145-157, 2019.

R. Kaas, M. Goovaerts, J. Dhaene and M. Denuit, Modern Actuarial Risk Theory Using R (2nd ed), Springer, 2008.

P. Kabaila and K. Syuhada, "Improved prediction limits for AR(p) and ARCH(p) processes," Journal of Time Series Analysis, vol. 29, pp. 213-223, 2008.

P. Kabaila and K. Syuhada, "The asymptotic efficiency of improved prediction intervals," Statistics and Probability Letters, vol. 80, pp. 1348-1353, 2010.

P. Artzner, F. Delbaen, J. Eber and D. Heath, "Coherent measures of risk," Mathematical Finance, vol. 9, pp. 203-228, 1999.

D. Tasche, "Risk contributions and performance measurement," Working paper, Zentrum Marhematic (SCA), TU Munchen, Germany, 1999.

D. Tasche, "Euler allocation: theory and practice," Arxiv preprint, arXiv: 0708.2542, 2008.

S. Kyselova, "Backward allocation of the diversification effect in insurance risk," MSc Thesis, VU University Amsterdam, 2011.

G. Van Gulick, A. DeWaegemaerre and H. Norde, "Excess based capital allocation of risk capital," Insurance: Mathematics and Economics, vol. 50, pp. 26-42, 2012.

D. Tasche, "Conditional Expectation as Quantile Derivative," Working Paper, Munich University of Technology, 2001.

Full Text: PDF

DOI: 10.15408/inprime.v2i1.14494


  • There are currently no refbacks.