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Abstract  
The problem of portfolio optimization is to select a trading strategy which maximizes the expected 

terminal wealth. Since the stocks are traded at discrete random times in a real-world market, we are 

interested in a time sampling method. The sampling of stock price is obtained from the process of time 

sampling which is used in a point and figure chart. Point and figure (PF) chart displays the up and down 

movements of unbalanced stock prices. The basic idea is to describe essential movements of the 

unbalanced stock prices using a hidden Markov model. The model parameters are transition probability 

matrices. They are estimated using maximum likelihood method and expectation maximization 

algorithm. The estimation procedure involves change of measure. The model is then applied to the 

stock price of Bumi Resources Tbk. collected on a daily basis. The estimated parameters are used to 

calculate the optimal portfolio using a recursive algorithm. The results show that the discrete hidden 

Markov model can be applied to describe essential movements of the stock price. The best result gives 

93.63% accuracy of the estimate of observation sequence with mean absolute percentage error (MAPE) 

3.63%. The numerical calculation shows that the optimal logarithmic PF-portfolio increases the wealth. 

Keywords: point and figure portfolio; optimization portfolio; discrete hidden Markov model; 
expectation maximization algorithm; stock price of Bumi Resources Tbk. 
 

Abstrak 
Masalah pengoptimalan portofolio adalah pemilihan strategi perdagangan yang dapat memaksimalkan kekayaan 

terminal yang diharapkan. Karena di pasar dunia nyata, saham diperdagangkan pada waktu acak yang berbeda, 

sehingga kami tertarik pada metode pengambilan sampel waktu. Proses pengambilan sampel waktu diperoleh sampling 

harga saham yang digunakan dalam diagram point and figure (PF-chart). Grafik point and figure hanya 

menampilkan pergerakan naik atau turun harga saham yang tidak seimbang. Ide dasarnya adalah untuk 

mendeskripsikan pergerakan esensial dari harga saham yang tidak seimbang menggunakan model hidden Markov. 

Parameter dari model ini adalah matriks probabilitas transisi. Parameter diestimasi menggunakan metode maximum 

likelihood dan algoritma expectation maximization. Prosedur estimasi melibatkan perubahan ukuran. Model ini 

kemudian diaplikasikan pada harga saham Bumi Resources Tbk. dari tanggal 2 Januari 2007 sampai dengan 31 

Januari 2011. Hasil estimasi parameter tersebut digunakan untuk menghitung portofolio optimal menggunakan 

algoritma rekursif. Hasil penelitian ini menunjukkan bahwa model hidden Markov diskrit dapat diterapkan untuk 

menggambarkan pergerakan esensial dari harga saham. Model terbaik memberikan akurasi 93.63% dari estimasi 

deretan observasi dengan mean absolute percentage error (MAPE) 3,63% dan 5 faktor penyebab kejadian. Perhitungan 

numerik menunjukkan bahwa logaritma portofolio-PF yang optimal dapat meningkatkan kekayaan. 

Kata kunci: portofolio point and figure; optimalisasi portofolio; model hidden Markov diskrit; algoritma 

expectation maximization; harga saham PT Bumi Resources. 
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1. INTRODUCTION 

The investment decision basically concerns the issue of allocating assets for a certain period with 

the aim of maximizing the return with an acceptable level of risk. A collection of investments owned 

by individuals or institutions is called a portfolio [1]. In the investment, wealth is allocated by forming 

a portfolio. The portfolio consists of risk-free assets and risky assets (stocks). The problem of portfolio 

optimization is determining a trading strategy that maximizes returns at an acceptable risk level. 

Shares are securities as a proof of individual or institutional ownership of a company [2]. Investors 

who allocate their assets in a stock trading must consider the level of return and risk when choosing 

stocks. The rate of return is in the form of dividends and profits if the selling price of the shares 

exceeds the purchasing price. Meanwhile, the risk of investment in stocks is caused by fluctuations in 

stock prices which result in an uncertain rate of return. In world markets, stocks are traded in a 

continuous time but in reality, investors make decisions to sell or buy a stock in a discrete time point. 

Therefore, it is necessary to process time discretization, i.e. sampling time which results in unbalanced 

stock prices (up or down). Each time sample corresponds to the current stock price sample. The 

sample share prices can be described in a diagram called a point and figure chart (PF-chart). 

The PF-charts only show the x symbol indicating a rising (up) in stock prices and the o symbol 

indicating a falling (down) in stock prices. The criteria for the rise and fall of share prices depend on 

a fixed interval of stock prices. A portfolio based solely on the information contained in a PF-chart is 

called a PF-portfolio. Investors who follow PF-portfolios will trade their shares on a time sample and 

investors' decisions are only based on the price sample associated to that particular time sample. 

Portfolio optimization problems are an example of stochastic process problems, i.e. problems 

related to the probability of an event, where future events cannot be predicted with certainty. Every 

incident has a cause and sometimes the cause of the incident is not directly observed. The causes of 

an event can form various mathematical models, one of of them is called the Markov chain model. 

The pair of events and causes that are not observed (hidden) and form a Markov chain is called the 

hidden Markov model.  

The hidden Markov model are characterized by several parameters, i.e. the transition probability 

matrix from the cause of the event and also several parameters from the observation process. These 

parameters are estimated using the Maximum Likelihood method and the Expectation Maximization 

(EM) algorithm. The result of parameter estimation is in the form of recursive estimation. The 

parameters obtained are then re-evaluated using parameters or with new data. 

The hidden Markov model has many mathematical structures and can be well modeled in many 

important applications. Applications that have been studied include the problem of asset allocation 

[3], bond pricing [4], option pricing [5], portfolio optimization [6] [7] [8], finance [9] [10], medicine 

[11], psychology [12] and speech recognition [13]. In this study, the PF portfolio optimization is 

studied using the hidden Markov model and applied to the Bumi Resources Tbk. shares. 

 

2. METHOD 

2.1. Point and Figure Chart 

One of important charts used in technical analysis [2] [14] [15] is called a point and figure chart 

(PF-chart). This diagram only shows significant change in stock price. This is based on the fact that 
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investors only buy and sell their stocks when the prices experience up and down movements. Dorsey 

[16] stated that the rise and fall in prices is depicted using symbol x and o, respectively in the PF-chart. 

In other words, every column only contains x or o symbols. The symbol changes in a column indicate 

that there is change in the direction of stock price movement. 

The construction of PF-chart from a stock price movement is carried out as follows [6]:  

1. Set a value of ∆ > 0, 

2. Start the observation at time 𝜏0, 
3. Write one of the symbol (x or o) at time 𝜏1 if the stock price lies beyond the interval 
[𝑆1(𝜏0) − ∆, 𝑆

1(𝜏0) + ∆]. If the stock price goes above the upper limit of 𝑆1(𝜏0) + ∆, then write x 
symbol in the PF-chart and if the stock price goes below the lower limit of 𝑆1(𝜏0) − ∆ then write 
o symbol, 

4. Repeat the same procedure for the next interval, i.e. [𝑆1(𝜏0) − ∆, 𝑆
1(𝜏0) + ∆], 

5. A stochastic process {𝑋𝑘: 𝑘 ∈  ℕ} defined in a probability space (Ω, ℱ, 𝑃) is a set of random variables 
that maps a space Ω to a state space 𝑆. Thus, for every 𝑘 ∈ ℕ, 𝑋𝑘 is a random variable. In this case, 
𝑘 ∈  ℕ is considered as time and value from a random variable 𝑋𝑘, i.e. as a state from a process at 
time k.  

This procedure is done recursively until a time sample observation {𝜏𝑘 : 𝑘 ∈ ℕ} is obtained that 

indicates a stopping time from the stock prices. Every time sample observation 𝜏𝑘 is associated with 

a stock price 𝑆1(𝜏𝑘). 

A portfolio based on the information included in the PF-chart is called a PF-portfolio. Investor 

that follows a PF-portfolio will buy and sell the stocks at time {𝜏𝑘 : 𝑘 ∈ ℕ}. Every time 𝜏𝑘 investor’s 

decision is only based on the observation of 𝑆1(𝜏0), therefore the optimization of PF-portfolio is a 

problem of choosing a discrete portfolio.  

 

2.2. Point and Figure Portfolio 

A portfolio Θ(. ) is a pair of (Θ0(. ), Θ1(. )) Measured and adapted process from {ℱ𝑡: 𝑡 ≥ 0} with 

∫ |Θ𝑖(𝑠)|2
𝑡

0
𝑑𝑠 < ∞ where (i = 0,1), ∀t ≥ 0. In this case, Θ𝑖(𝑡) shows the i-th total asset in time t.  A 

portfolio Θ(. ) is called a self-financed portfolio at time t if: 

𝑋Θ(𝑡) = 𝑋0(𝑡) + ∑  ∫ Θ𝑖(𝑢)𝑑𝑆𝑖(𝑢)
𝑡

0
1
𝑖=1 , ∀t ≥ 0                                       (1) 

A self-financed portfolio is a trading strategy when buying on a number of assets are funded only from 

the selling of portfolio assets. A self-financed portfolio is called a PF-portfolio if ∀t ≥ 0: 

Θ𝑖(𝑡) = Θ0
𝑖 𝐼[𝜏0,𝜏1](𝑡) + ∑  Θ𝑘

𝑖 𝐼[𝜏𝑘,𝜏𝑘+1](𝑡)
∞
𝑘=1 , i = 1,2                                    (2) 

where {Θ𝑘
0 : 𝑘 ∈ 𝑁} and {Θ𝑘

1 : 𝑘 ∈ 𝑁} are adapted-Υ with: 

 𝛶 = {𝜎(𝑆1(𝜏𝑗): 𝑗 ≤ 𝑘): 𝑘 ∈ 𝑁} = {𝜎(𝑌𝑗: 𝑗 ≤ 𝑘): 𝑘 ∈ 𝑁}                                 (3) 

𝐼𝐴(𝑡) is an indicator function in a set A and 𝜎(𝑌1, 𝑌2, . . , 𝑌𝑗) is a full  𝜎-field generated by 𝑌1, 𝑌2, . . , 𝑌𝑗 . 

Next, if Θ(. ) is a self-financed, then the wealth XΘ(. ) satisfies: 

XΘ(𝜏𝑘+1) − X
Θ(𝜏𝑘) = ∑ Θ𝑘

𝑖 (𝑆𝑖(𝜏𝑘+1) − 𝑆
𝑖(𝜏𝑘))

1
𝑖=0 , ∀k ∈ N                             (4) 
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2.3. Hidden Markov Models 

Let 𝑋 = {𝑋𝑘: 𝑘 ∈  ℕ}  be a Markov chain defined in a probability space {𝛺, ℱ, 𝑃} with finite 

and homogenous state and suppose it is assumed the states are not directly observed. A process 𝑌 =

{𝑌𝑘: 𝑘 ∈  ℕ} is an observable process in a discrete range data. The process {𝑋𝑘, 𝑌𝑘} is called a discrete 

hidden Markov model. The hidden Markov model discusses in this study is in the form [3]: 

 

𝑋𝑘+1 = 𝐴𝑋𝑘 + 𝑉𝑘+1 

𝑌𝑘+1 = 𝐶𝑋𝑘 +𝑊𝑘+1, 𝑘 ∈ 𝑁                                                     (4) 

where: 

1. {𝑋𝑘: 𝑘 ∈ 𝑁} is a homogenous and unobservable Markov chain with state space 𝑆𝑋 = {𝑒1, 𝑒2, . . , 𝑒𝑁} 

where 𝑒𝑖 is a unit vector in ℝ𝑁 , 
2. {𝑌𝑘: 𝑘 ∈ 𝑁} is an observable process in a discrete range data with state space 𝑆𝑌 = {𝑓1, 𝑓2, . . , 𝑓𝑀} 

where 𝑓𝑗 is a unit vector in ℝ𝑀 , 

3. 𝐴 = (𝑎𝑗𝑖)𝑁×𝑁 is a transition probability matrix with 𝑎𝑗𝑖 = 𝑃(𝑋𝑘+1 = 𝑒𝑗|𝑋𝑘 = 𝑒𝑖) which satisfies 

∑ 𝑎𝑗𝑖 = 1
𝑁
𝑗=1  and 𝑎𝑗𝑖 ≥ 0,  

4. 𝐶 = (𝑐𝑗𝑖)𝑀×𝑁 is a transition probability matrix with 𝑐𝑗𝑖 = 𝑃(𝑌𝑘+1 = 𝑓𝑗|𝑋𝑘 = 𝑒𝑖) which satisfies 

∑ 𝑐𝑗𝑖 = 1
𝑀
𝑗=1  and 𝑐𝑗𝑖 ≥ 0.  

The parameters of discrete hidden Markov model are the transition probability matrices A and C 

as well as the expected value from the observable process. These parameters are estimated using 

Maximum Likelihood estimation and Expectation Maximization (EM) algorithm. The algorithm to 

estimate the parameters are: 

1. Estimate the states: 

𝛾𝑘+1(𝑋𝑘+1) = 𝑞𝑘+1 = ∑ 𝑐𝑗(𝑌𝑘+1)〈𝑞𝑘 , 𝑒𝑗〉𝑎𝑗
𝑁
𝑗=1 .             (5) 

2. Estimate the number of jumps: 

𝛾𝑘+1,𝑘+1(𝒥𝑘+1
𝑟𝑠 ) = ∑ 𝑐𝑗(𝑌𝑘+1)〈𝛾𝑘,𝑘(𝒥𝑘+1

𝑟𝑠 ), 𝑒𝑗〉𝑎𝑗 + 𝑐𝑟(𝑌𝑘+1)〈𝑞𝑘 , 𝑒𝑟〉𝑎𝑠𝑟𝑒𝑠
𝑁
𝑗=1 .              (6) 

3. Estimate the duration of the event: 

𝛾𝑘+1,𝑘+1(𝑂𝑘+1
𝑟 ) = ∑ 𝑐𝑗(𝑌𝑘+1)〈𝛾𝑘,𝑘(𝑂𝑘+1

𝑟 ), 𝑒𝑗〉𝑎𝑗 + 𝑐𝑟(𝑌𝑘+1)〈𝑞𝑘 , 𝑒𝑟〉𝑎𝑟
𝑁
𝑗=1 .               (7) 

4. Estimate the observable process 

𝛾𝑘+1,𝑘+1(𝒯𝑘+1
𝑟𝑠 ) = ∑ 𝑐𝑗(𝑌𝑘+1)〈𝛾𝑘,𝑘(𝒯𝑘+1

𝑟𝑠 ), 𝑒𝑗〉𝑎𝑗 +𝑀〈𝑞𝑘 , 𝑒𝑟〉〈𝑌𝑘+1, 𝑓𝑠〉𝑐𝑠𝑟𝑎𝑠
𝑁
𝑗=1 ,            (8) 

where 𝑐𝑗 = 𝐶𝑒𝑗 = (𝑐1𝑗, 𝑐2𝑗 , … , 𝑐𝑀𝑗)
𝑇
 is the j-th column of matrix 𝐶 = (𝑐𝑗𝑖) and 𝑎𝑗 = 𝐴𝑒𝑗 =

(𝑎1𝑗, 𝑎2𝑗, … , 𝑎𝑁𝑗)
𝑇
 is the j-th column of matrix 𝐴 = (𝑎𝑗𝑖). The estimated model parameters are: 

�̂�𝑠𝑟(𝑘 + 1) =
𝛾𝑘+1(𝒥𝑘+1

𝑟𝑠 )

𝛾𝑘+1(𝑂𝑘+1
𝑟𝑠 )

  and �̂�𝑠𝑟(𝑘 + 1) =
𝛾𝑘+1(𝒯𝑘+1

𝑟𝑠 )

𝛾𝑘+1(𝑂𝑘+1
𝑟𝑠 )

.                                (9) 
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Next, the expected conditional value of 𝑌𝑘+1 given 𝒴𝑘 is known is: 

�̂�𝑘+1 = 𝐸[𝑌𝑘+1|𝒴𝑘 ] = ∑ ∑ 𝑐𝑗𝑖𝑞𝑘(𝑒𝑖)𝑓𝑖
𝑁
𝑖=1

𝑀
𝑗=1 .                                  (10) 

3. RESULT & DISCUSSION 

The PF-chart construction is applied to the stock prices of Bumi Resources Tbk collected from 

January 4th, to March 31th 2010 for illustration. A total of 61 stock prices is observed from this 

timeframe with initial observation value 𝑆1(𝜏0) = 2454. Figure 1 displays the trend of these stock 

prices collected on a daily basis. 

 

Figure 1. Stock prices of Bumi Resources from January 4th to March 31th 2010. 

The following summarizes the steps in construction the PF-chart: 

1. set ∆= 100, 
2. 𝑆1(𝜏0)  is the initial value of the stock prices, i.e. 𝑆1(𝜏0) = 2454, 

3. for interval [𝑆1(𝜏0) − ∆, 𝑆
1(𝜏0) + ∆] = [2325,2525]  and according to Figure 1, the stock 

prices move up and exceed the interval. Thus, at time 𝜏1, the stock price is at the level of 2525 
and 𝑆1(𝜏1) = 2525. The first column in PF-chart is denoted by x symbol. 

4. for the next interval [𝑆1(𝜏1) − ∆, 𝑆
1(𝜏1) + ∆] = [2425,2625]  and according to Figure 1, the 

stock prices still move up and exceed this interval. Thus, 𝑆1(𝜏2) = 2625 and still on the first 
column of PF-chart is denoted by x symbol.  

5. repeat the same process for interval [𝑆1(𝜏𝑘) − ∆, 𝑆
1(𝜏𝑘) + ∆] for 𝑘 = 2,3, … ,18 until we obtain 

a time sequence {𝜏𝑘 , 𝑘 = 1,2, … ,19} showing as a time sample. 
 

The obtained PF-chart is shown in Figure 2. Based on the PF-chart construction, a small and 

insignificant stock price, i.e. a stock price within the interval [𝑆1(𝜏𝑘) − ∆, 𝑆
1(𝜏𝑘) + ∆], can be 

eliminated from the PF-chart. Technical analysis indicates that PF-chart can be used as a filter to show 

only important information from the stock prices. This is in line with the market reality, although 

stocks are traded in a continuous time, investor only trade them at discrete time point, which is the 

time when the stock price rises or falls. 
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Figure 2. PF-chart of Bumi Resources Tbk. from January 4th to March 31th 2010. 

Application of hidden Markov model to the stock prices of Bumi Resources Tbk. is by considering a 

daily stock prices (close-to-close) from January 2nd 2007 to January 31th 2011 with a total of 993 

observations. Figure 3 displays these observed stock prices.  

 

Figure 3. Stock prices of Bumi Resources Tbk. from January 2nd 2007 to January 31th 2011.  

Using the basic concept of PF-chart, a time discretization scheme for stock trading results in 

unbalanced stock prices. The initial observation of stock price is 𝑆0
1 = 910 and we obtained a time 

sampling and its associated stock price sample equal to 455 observations. The result of time sampling 

process yields a sequence of observations {𝑌1, 𝑌2 , … , 𝑌455} that takes values {𝑑, 𝑢} where d and u 

represents the up and down in stock prices, respectively. To explain the behavior of these movement 

(up and down) in stock prices of Bumi Resources Tbk., a hidden Markov model is developed to obtain 

the best estimate of the sequence {�̂�1, �̂�2, … , �̂�455} so that 𝑌𝑘 = �̂�𝑘 is maximum. 

It is assumed that {𝑌1, 𝑌2 , … , 𝑌455} is generated by an observable process which is only influenced 

by the process of caused events forms a homogeneous Markov chain that cannot be observed directly. 

The number of caused events (N) is the input that is determined and selected 𝑁 = 2,3, … ,10. Based 

on the algorithm (5)-(10), a computational program of algebra mathematics using Mathematica 8.0 

software is developed. Table 1 presents the computational results. The notation  

𝑢 →  𝑑 in the table indicates that 𝑌𝑘 = 𝑢 and �̂�𝑘 = 𝑑. Based on Table 1, we can plot the estimation 

accuracy as shown in Figure 4. This indicates that the best hidden Markov model that can explained 

the behavior of the sequence of the observation process is when the caused events is N=5.  
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Table 1. The computational results for the estimation of observation sequence. 

N 
The number of accuracy estimation  

Percentage of accuracy 
estimation MAPE 

(%) 
𝒖 →  𝒖 𝒖 →  𝒅 𝒅 →  𝒖 𝒅 →  𝒅  𝒖 𝒅 

Sequence of 
observation 

2 241 4 59 151  98 72 86.15 7.36 

3 225 20 55 155  92 74 83.52 10.44 

4 234 11 35 175  96 83 89.89 6.26 

5 241 4 25 185  98 88 93.63 3.63 

6 229 16 41 169  93 80 87.47 8.02 

7 199 46 17 193  81 92 86.15 11.98 

8 217 28 50 160  89 76 82.86 11.65 

9 220 25 55 155  90 74 82.42 11.54 

10 227 18 71 139  93 66 80.44 11.76 

 

  

Figure 4. Plot of estimation accuracy based on the observation sequence (left) and MAPE (right). 

From this computational result where N=5, the estimation accuracy for the observation sequence is 

93.63% and MAPE 3.63%. The transition probability matrix is: 

𝐴 =

(

 
 

1.03 × 10−57 1.72 × 10−57 9.99 × 10−60 7.25 × 10−58 1.33 × 10−57

3.51 × 10−48 5.31 × 10−49 8.09 × 10−47 2.67 × 10−46 8.56 × 10−47

1 1 1 1 1
2.23 × 10−13 1.76 × 10−13 5.65 × 10−13 1.59 × 10−12 2.88 × 10−13

9.25 × 10−58 4.11 × 10−58 1.01 × 10−59 6.19 × 10−57 5.19 × 10−57)

 
 

, 

𝐶 = (
0.1855 0.4678 0.9687 0.9609 0.0988
0.8145 0.5321 0.0312 0.0390 0.9011

). 

In addition, we also obtained the expected value from the Markov chain, i.e.: 

𝐸[𝑋] = 𝝅 = (6.25 × 10−8 , 6.25 × 10−8, 6.25 × 10−8, 6.25 × 10−8)𝑻. 

The wealth process from the optimal portfolio with utility logarithm function of Bumi Resources Tbk. 

shares for the period of January 2nd, 2007 to January 31th, 2011 is shown in Table 2 and Figure 5. 

 

  



Point and Figure Portfolio Optimization Using Hidden Markov Models and its Application on … 
 
  

51 | InPrime: Indonesian Journal of Pure and Applied Mathematics 
 

Table 2. The wealth process of PF-portfolio for Bumi Respurces Tbk. Shares. 

𝑘 𝜏𝑘 𝑆𝑘
1 𝛾𝑘−1(1) 𝜋𝑘

∗  
�̃�𝑘
1 − �̃�𝑘−1

1

�̃�𝑘−1
1  �̃�𝑘+1

𝑥,𝑣∗
 

1 12.59 950.95 1.00000 6.09031 0.04500 1.27406 

2 14.09 993.74 0.90164 5.89674 0.04500 1.51332 

3 16.46 1038.46 0.76088 4.97345 0.04500 1.68361 

4 20.17 1085.19 0.62357 4.81281 0.04500 1.81866 

: : : : : : : 

454 991.80 2905.61 4.33927×10-10  5.97214 -0.04500 2.83840 

455 992.67 2774.86 4.55628×10-10  6.31857 -0.04500 2.83840 

 

 

 

Figure 5.  Plot of wealth process of PF-portfolio for Bumi Respurces Tbk. shares for the period of          

January 2nd, 2007 to January 31th, 2011. 

 

4. CONCLUSIONS 

The discrete hidden Markov model can be well used to explain the behavior in a sequence of 
stock price movements of Bumi Resources Tbk. The accuracy of the predicted sequence of 
observations depends on the initial value of the model parameters. The results obtained for the 
number of causes events N = 5 are sufficient to explain these behaviors, because adding more 
numbers of events does not show any significant effect. It is shown that the best fitted model yields a 
very high accuracy of 93.63% and with the mean absolute percentage error (MAPE) of 3.63%. In 
addition, the estimation of model parameters in the hidden Markov model combined with the 
martingale method for PF-portfolio can optimize the wealth in random time of stock trading. 
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