IDENTIFICATION OF MISCONCEPTION OF HIGH SCHOOL STUDENTS ON TEMPERATURE AND CALOR TOPIC USING FOUR-TIER DIAGNOSTIC INSTRUMENT

Maison Maison, Ida Cuci Safitri, Rendy Wikrama Wardana

Abstract


IDENTIFIKASI MISCONCEPTION MAHASISWA SEKOLAH TINGGI PADA TEMPERATUR DAN TOPIK KALOR MENGGUNAKAN INSTRUMEN DIAGNOSTIK EMPAT-TIER

 

Abstrak

Miskonsepsi merupakan suatu konsepsi seseorang yang tidak sesuai dengan konsepsi ilmiah yang dimiliki oleh para ahli. Miskonsepsi harus dihindari dan kalau sudah terjadi perlu diremediasi karena dapat menjadi faktor penghambat dalam proses belajar siswa. Namun, miskonsepsi tidak mudah diidentifikasi, diperlukan instrumen khusus dan langkah-langkah tertentu untuk mengungkapkannya. Tujuan penelitian ini adalah untuk menggali, mengungkap, serta mendeskripsikan miskonsepsi siswa pada materi suhu dan kalor. Responden penelitian berjumlah 127 orang yang merupakan siswa dari SMA favorit di Jambi. Instrumen yang digunakan untuk pengumpulan data adalah Four-Tier Diagnostic Instrument pada materi suhu dan kalor. Analisis data dilakukan dengan cara mencari persentase jawaban benar pada setiap tingkat (tier) untuk setiap item dan persentase jawaban miskonsepsi untuk setiap kategori. Hasil penelitian menunjukkan  bahwa 10 jenis miskonsepsi pada materi suhu dan kalor pada siswa telah dapat diidentifikasi dengan menggunakan sembilan buah item instrumen. Rata-rata miskonsepsi adalah sebesar 24.25%, False Positif sebesar 9,01%, False Negatif sebesar 4,72%, dan Lack of Knowledge sebesar 10,32% pada materi suhu dan kalor. persentase miskonsepsi tertinggi terletak pada miskonsepsi keenam (M6) sebesar 58,27%, yaitu “Ketika berada pada ruang yang sama suhu besi lebih rendah daripada suhu benda di sekitarnya”.

Abstract

The misconception is a conception of someone who is not in accordance with the scientific conception possessed by experts. Misconceptions must be avoided, and if they occur, they need to be remediated because they can be a limiting factor in student learning. However, misconceptions are not easily identified; special instruments and specific steps are needed to express them. The purpose of this study is to explore, uncover, and describe students' misconceptions in temperature and heat material. The research respondents were 127 students from a favorite high school in Jambi. The instrument used for data collection was the Four-Tier Diagnostic Instrument on temperature and heat material. Data analysis was done by finding the percentage of correct answers at each level (tier) for each item and the percentage of answers to misconceptions for each category. The results showed that ten types of misconceptions in the temperature and heat material in students had been identified using nine instrument items. The average misconception is 24.25%, False Positive is 9.01%, False Negative is 4.72%, and Lack of Knowledge is 10.32% in temperature and heat material. The highest percentage of misconception lies in the sixth misconception (M6) of 58.27%, namely "When in the same room the temperature of the iron is lower than the temperature of the objects around it".

 


Keywords


Misconception; temperature and heat; four-tier diagnostic instrument

Full Text:

PDF

References


Abbas, M. L. H. (2016). Pengembangan instrumen three tier diagnostic test miskonsepsi suhu dan kalor. Ed-Humanistics, 01(2), 83–92.

Alwan, A. A. (2011). Misconception of heat and temperature Among physics students. Procedia - Social and Behavioral Sciences, 12, 600–614.

Brown, T. A. (2006). Confirmatory factor analysis for applied research. In NY: The Guilford Press.

Clement, J., Brown, D. E., & Zietsman, A. (1989). Not all preconceptions are misconceptions: Finding ‘anchoring conceptions’ for grounding instruction on students’ intuitions. International Journal of Science Education, 11(5), 554–565.

Duit, R., Niedderer, H., & Schecker, H. (2007). Teaching physics. In S. K. Abell & N.G. Lederman (Ed.), Handbook of research on science education (pp. 599–629). London: Routledge.

Fariyani, Q., Rusilowati, A., & Sugianto. (2015). Pengembangan four-tier diagnostic test untuk mengungkap miskonsepsi fisika siswa SMA Kelas X. Journal of Innovative Science Education, 4(2), 1–9.

Gurel, D. K., Eryilmaz, A., & McDermott, L. C. (2015). A review and comparison of diagnostic instruments to identify students’ misconceptions in science. Eurasia Journal of Mathematics, Science and Technology Education, 11(5), 989–1008.

Hammer, D. (2005). More than misconceptions: Multiple perspectives on student knowledge and reasoning, and an appropriate role for education research. American Journal of Physics, 64(10), 1316–1325.

Kaltakci-Gurel, D., Eryilmaz, A., & McDermott, L. C. (2017). Development and application of a four-tier test to assess pre-service physics teachers’ misconceptions about geometrical optics. Research in Science and Technological Education, 35(2), 238–260.

Maison, Lestari, N., & Widaningtyas, A. (2020). Identifikasi miskonsepsi siswa pada materi usaha dan energi. 6(1), 32–39.

May, D. B., & Etkina, E. (2002). College physics students’ epistemological self-reflection and its relationship to conceptual learning. American Journal of Physics, 70(12), 1249–1258.

McDermott, L. C. (1993). Guest Comment: How we teach and how students learn—A mismatch? American Journal of Physics, 61(4), 295–298.

Mulhall, P., & Gunstone, R. (2012). Views About Learning Physics Held by Physics Teachers with Differing Approaches to Teaching Physics. Journal of Science Teacher Education, 23(5), 429–449.

Oon, P.-T., & Subramaniam, R. (2013). Factors Influencing Singapore Students’ Choice of Physics as a Tertiary Field of Study: A Rasch analysis. International Journal of Science Education, 35(1), 86–118.

Pallant, J. (2011). SPSS Survival Manual. A step by step guide to data analysis using SPSS (4th ed.). Crows Nest, NSW: Allen & Unwin.

Peşman, H., & Eryılmaz, A. (2010). Development of a three-tier test to assess misconceptions about simple electric circuits. The Journal of Educational Research, 103(3), 208–222.

Sabella, M. S., & Redish, E. F. (2007). Knowledge organization and activation in physics problem solving. American Journal of Physics, 75(11), 1017–1029.

Silung, S. N. W., Kusairi, S., & Zulaikah, S. (2016). Diagnosis miskonsepsi siswa SMA di Kota Malang pada konsep suhu dan kalor menggunakan three tier test. Jurnal Pendidikan Fisika Dan Teknologi, 2(3), 95–105.

Utama, Z. P., Maison, & Syarkowi, A. (2018). Analisis kemampuan bernalar siswa SMA Kota Jambi (The analysis of scientific reasoning ability of senior high school students in Jambi City). Jurnal Penelitian Pembelajaran Fisika, 9(1), 1–5.

Wadana, R. W., & Maison. (2019). Description students’ conception and knowledge structure on electromagnetic concept. Journal of Physics: Conference Series, 1185(1), 012050.

Yediarani, R. D., Maison, M., & Syarkowi, A. (2019). Scientific reasoning abilities profil of junior high school students in Jambi. Indonesian Journal of Science and Education, 3(1), 21–25.




DOI: https://doi.org/10.15408/es.v11i2.11465 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


@ EDUSAINS.  P-ISSN:1979-7281;E-ISSN:2443-1281

This is an open access article under CC-BY-SA license

 

Web Analytics Made Easy - StatCounter View My Stats